吳家順 湯亞玲
口腔疾病研究國(guó)家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院病理科(四川大學(xué))成都 610041
涎腺腺樣囊性癌中上皮間充質(zhì)轉(zhuǎn)化分子調(diào)控機(jī)制的研究進(jìn)展
吳家順 湯亞玲
口腔疾病研究國(guó)家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院病理科(四川大學(xué))成都 610041
涎腺腺樣囊性癌(SACC)是最常見(jiàn)的涎腺惡性腫瘤之一,具有嗜神經(jīng)侵襲和肺高轉(zhuǎn)移特性,雖然生長(zhǎng)緩慢,但其侵襲性強(qiáng),預(yù)后差。近年來(lái)國(guó)內(nèi)外學(xué)者對(duì)SACC發(fā)生上皮間充質(zhì)轉(zhuǎn)化(EMT)進(jìn)行了大量的研究,以期探討SACC發(fā)生發(fā)展、侵襲和遠(yuǎn)處轉(zhuǎn)移的機(jī)制,啟發(fā)臨床治療新思路。本文就SACC中EMT發(fā)生機(jī)制的研究進(jìn)展作一綜述。
腺樣囊性癌; 上皮間充質(zhì)轉(zhuǎn)化; 調(diào)控機(jī)制
涎腺腺樣囊性癌(salivary adenoid cystic carcinoma,SACC)是最常見(jiàn)的涎腺惡性腫瘤之一,雖然生長(zhǎng)緩慢,但其侵襲性強(qiáng),常沿神經(jīng)、血管生長(zhǎng),且易復(fù)發(fā)和發(fā)生肺部轉(zhuǎn)移,臨床上主要以外科手術(shù)治療為主,但預(yù)后較差。上皮間充質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition,EMT)是上皮細(xì)胞在生理或病理?xiàng)l件下失去細(xì)胞極性、細(xì)胞間連接,細(xì)胞形態(tài)和結(jié)構(gòu)發(fā)生改變并獲得部分間質(zhì)細(xì)胞的特征,其表現(xiàn)為上皮標(biāo)志物丟失的同時(shí)間質(zhì)性標(biāo)志物表達(dá)增加,如E-鈣黏著蛋白(E- cadherin,E-cad)、α和β-連環(huán)蛋白以及細(xì)胞角蛋白的丟失,波形蛋白、纖連蛋白以及平滑肌肌動(dòng)
EMT的發(fā)生分子機(jī)制復(fù)雜,現(xiàn)已經(jīng)發(fā)現(xiàn)眾多的調(diào)控因子參與其中,研究較多的調(diào)控因子包括生長(zhǎng)因子和轉(zhuǎn)錄因子。近年來(lái)研究發(fā)現(xiàn)微小RNA(micro RNA,miRNA)和DNA甲基化也參與EMT的調(diào)控,另外部分腫瘤干細(xì)胞調(diào)控因子也與EMT的發(fā)生密切相關(guān),下面就EMT的分子調(diào)控機(jī)制在SACC方面中的研究進(jìn)展作一綜述。
各種外界的影響引起腫瘤微環(huán)境的變化都可能促進(jìn)EMT的發(fā)生,其中包括了各種生長(zhǎng)因子的變化。肝細(xì)胞生長(zhǎng)因子、成纖維細(xì)胞生長(zhǎng)因子、表皮生長(zhǎng)因子(epidermal growth factor,EGF)、胰島素樣生長(zhǎng)因子、轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF)-β等生長(zhǎng)因子,通過(guò)與腫瘤細(xì)胞表面的相應(yīng)受體結(jié)合,啟動(dòng)信號(hào)轉(zhuǎn)導(dǎo)級(jí)聯(lián)反應(yīng),能夠誘導(dǎo)各種E-cad轉(zhuǎn)錄抑制劑的表達(dá),使得E-cad表達(dá)喪失[7]。而E-cad的減少或丟失是EMT最重要的標(biāo)志性變化,其丟失會(huì)導(dǎo)致細(xì)胞骨架改建,破壞細(xì)胞間的連接,導(dǎo)致上皮細(xì)胞特性的喪失,進(jìn)一步導(dǎo)致腫瘤細(xì)胞極性的丟失和獲得運(yùn)動(dòng)和轉(zhuǎn)移能力,從而導(dǎo)致EMT的發(fā)生,并促進(jìn)腫瘤細(xì)胞運(yùn)動(dòng)和侵襲,引發(fā)腫瘤播散和轉(zhuǎn)移[5-6]。
神經(jīng)生長(zhǎng)因子(nerve growth factor,NGF)是一種多功能性多肽,可以促進(jìn)神經(jīng)細(xì)胞的分裂增殖,參與神經(jīng)系統(tǒng)的生長(zhǎng)與存活,在免疫調(diào)節(jié)等方面亦有著重要作用。近年研究[8]表明,NGF在多數(shù)的腫瘤細(xì)胞中表達(dá),其可以通過(guò)酪氨酸激酶受體A(tyrosine-relate kinase A,TrkA)或p75受體結(jié)合,激活相關(guān)信息傳導(dǎo)通路,誘導(dǎo)發(fā)生EMT,促進(jìn)腫瘤細(xì)胞的增殖、血管生成、浸潤(rùn)轉(zhuǎn)移。SACC重要的特征是其嗜神經(jīng)性,孫沫逸等[9]在研究中發(fā)現(xiàn),SACC中嗜神經(jīng)組NGF的表達(dá)顯著高于非嗜神經(jīng)組,NGF的過(guò)表達(dá)可能是SACC嗜神經(jīng)侵襲的原因,其機(jī)制可能為腫瘤細(xì)胞分泌并向周圍基質(zhì)釋放NGF,NGF擴(kuò)散并與神經(jīng)受體TrkA結(jié)合,引起神經(jīng)纖維順NGF濃度梯度生長(zhǎng),從而出現(xiàn)嗜神經(jīng)現(xiàn)象。Kowalski等[10]對(duì)76例SACC患者樣本和正常涎腺組織的對(duì)照研究發(fā)現(xiàn),腦源性神經(jīng)生長(zhǎng)因子(brain-derived neurotrophic factor,BDNF)及其受體TrkB在前者中的表達(dá)顯著高于后者,并且在SACC樣本中E-cad表達(dá)下調(diào),提示發(fā)生了EMT,BDNF的高表達(dá)與腫瘤神經(jīng)血管侵襲、遠(yuǎn)處轉(zhuǎn)移和患者預(yù)后差有顯著的相關(guān)性。他們利用外源性重組人BDNF處理SACC-83細(xì)胞后,發(fā)現(xiàn)大量地激活了TrkB受體,細(xì)胞表現(xiàn)出更強(qiáng)的運(yùn)動(dòng)能力和對(duì)周圍組織的侵襲能力,而用TrkB受體的抑制劑處理細(xì)胞能夠抑制腫瘤細(xì)胞發(fā)生EMT。但Oft等[11]認(rèn)為,SACC內(nèi)在性地表達(dá)BDNF與神經(jīng)侵襲的病理表現(xiàn)無(wú)明顯相關(guān)性。
TGF-β一開(kāi)始被認(rèn)為是腫瘤抑制因子,能抑制造血干細(xì)胞、內(nèi)皮細(xì)胞、上皮細(xì)胞和淋巴細(xì)胞等的增殖,但近年來(lái)研究[12-13]發(fā)現(xiàn),其能促進(jìn)腫瘤中后期的侵襲和轉(zhuǎn)移,與一些腫瘤的EMT的發(fā)生有密切的關(guān)系。TGF-β通過(guò)特異性受體作用于靶細(xì)胞,導(dǎo)致Smad2和Smad3磷酸化,進(jìn)而與Smad4結(jié)合,激活ZEB1、SIP1、Snail、Slug、Twist等轉(zhuǎn)錄因子,引起緊密連接蛋白及E-cad等上皮標(biāo)志物的表達(dá)下調(diào),波形蛋白、N-鈣黏著蛋白等間質(zhì)標(biāo)志物表達(dá)上調(diào),破壞細(xì)胞之間的連接和黏附性,使得細(xì)胞遷移和侵襲能力增強(qiáng)[14]。TGF-β除了通過(guò)Smad通路誘導(dǎo)腫瘤發(fā)生EMT外,還可激活JNK、Erk、PI3K及p38信號(hào)通路發(fā)揮作用[15]。Dong等[15]研究發(fā)現(xiàn),TGF-β1和磷酸化-Smad2的過(guò)表達(dá)與SACC的肺部轉(zhuǎn)移有顯著的相關(guān)性,在這些樣本中EMT標(biāo)志物β-連環(huán)蛋白表達(dá)下調(diào);在體外實(shí)驗(yàn)中發(fā)現(xiàn),SACC-83細(xì)胞轉(zhuǎn)染TGF-β1后E-cad、β-連環(huán)蛋白和黏連蛋白-1表達(dá)下調(diào),細(xì)胞的形態(tài)向間質(zhì)細(xì)胞轉(zhuǎn)變且侵襲能力增加,而利用構(gòu)建有顯性負(fù)相TGF-βⅡ型受體(TGF-β receptorⅡ,TβRⅡDN)質(zhì)粒轉(zhuǎn)染的細(xì)胞或用TGF-β1 siRNA沉默的細(xì)胞,則侵襲能力降低。他們?cè)趧?dòng)物實(shí)驗(yàn)中發(fā)現(xiàn),經(jīng)TGF-β1轉(zhuǎn)染腫瘤細(xì)胞接種的小鼠,出現(xiàn)了肺部遠(yuǎn)處轉(zhuǎn)移顯著增高的現(xiàn)象,由此認(rèn)為,TGF-β1誘導(dǎo)的EMT在SACC遠(yuǎn)處轉(zhuǎn)移中起著重要的作用,利用TβRⅡDN或siRNA阻斷TGF-β1的功能可能是治療SACC肺部轉(zhuǎn)移的新思路。
表皮生長(zhǎng)因子受體(epithelial growth factor receptor,EGFR)是EGFR家族中一員,和其配體EGF結(jié)合后,能夠活化促分裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)和JAK/STAT等多條信號(hào)傳導(dǎo)通路,促進(jìn)EMT的發(fā)生,從而增強(qiáng)腫瘤細(xì)胞的增殖分裂和侵襲轉(zhuǎn)移能力。另外EGF還能夠與β-連環(huán)蛋白直接發(fā)生作用,激活β-連環(huán)蛋白酪氨酸磷酸化,破壞腫瘤細(xì)胞間連接[16-17]。研究[18]證實(shí),EGFR在SACC中的表達(dá)要高于正常涎腺組織,同時(shí)與TGF-α的高表達(dá)有相關(guān)性,提示其在SACC的發(fā)生發(fā)展中發(fā)揮著重要作用。Yu等[17]研究表明,EGFR在SACC的表達(dá)顯著高于多形性腺瘤的表達(dá),這可為兩者的鑒別診斷提供新的思路。另外,EGFR在SACC血管床的生成中可能發(fā)揮著重要的作用,從而為腫瘤的生長(zhǎng)提供營(yíng)養(yǎng),并有利于腫瘤沿著血管侵襲生長(zhǎng)和發(fā)生遠(yuǎn)處轉(zhuǎn)移,同時(shí)是化學(xué)治療藥物抗性的重要基礎(chǔ)。因此,阻斷EGF信號(hào)傳導(dǎo)通路,進(jìn)而抑制腫瘤的生長(zhǎng)是治療SACC的新思路,在臨床上已經(jīng)有了該治療方法的相應(yīng)應(yīng)用。西妥昔單抗可與表達(dá)于正常細(xì)胞和多種癌細(xì)胞表面的EGF受體特異性結(jié)合,并競(jìng)爭(zhēng)性阻斷EGF和其他配體的結(jié)合,從而抑制癌細(xì)胞的增殖,誘導(dǎo)癌細(xì)胞的凋亡。Hitre等[19]證實(shí),西妥昔單抗能夠提高腺樣囊性癌的生存率,且能夠?qū)⑵洳涣挤磻?yīng)控制在可接受的范圍內(nèi)。但也有研究[20]表明,不同質(zhì)量濃度的EGFR蛋白對(duì)SACC83細(xì)胞YAP2蛋白的表達(dá)有一定的抑制作用,EGFR表達(dá)的增高可抑制Hippo-Yap通路,抑制腺樣囊性癌腫瘤的生長(zhǎng),由此他們認(rèn)為,從單因子入手不一定能取得良好的治療效果。
生長(zhǎng)因子信號(hào)傳導(dǎo)過(guò)程中激活大量的轉(zhuǎn)錄因子,一些轉(zhuǎn)錄因子在腫瘤細(xì)胞的EMT中起十分重要的作用,如Snail1、2、ZEB-1、2和 Twist,它們能抑制維持細(xì)胞極性和正常排列的基因表達(dá)。鋅指因子能夠結(jié)合E-cad編碼基因啟動(dòng)子區(qū)E-box基因片段序列,募集組蛋白去乙?;福╤istone deacetylase,HDAC)和mSin3A構(gòu)成的復(fù)合體,從而抑制其基因的轉(zhuǎn)錄,Snial-2與Snail相似但是募集的是由HDAC1/3和末端結(jié)合蛋白組成的復(fù)合體[21]。Jiang等[22]利用免疫組織化學(xué)方法分析121例SACC后發(fā)現(xiàn),Snail在實(shí)性型中的表達(dá)顯著高于篩狀型和管狀型,并提示Snail在SACC的神經(jīng)侵襲、局部復(fù)發(fā)和遠(yuǎn)處轉(zhuǎn)移中發(fā)揮著重要的作用。Twist- 1和2是屬于螺旋結(jié)構(gòu)蛋白家族,是高度保守的轉(zhuǎn)錄因子,它們能與E-cad的連接基因片段序列結(jié)合,抑制E-cad表達(dá),同時(shí)上調(diào)間質(zhì)細(xì)胞表面標(biāo)志物,促進(jìn)EMT的發(fā)生[23]。Zhou等[24]認(rèn)為,低氧環(huán)境中,低氧誘導(dǎo)因子-2α可能通過(guò)調(diào)控Twist-2/SIP1的表達(dá),從而誘導(dǎo)SACC發(fā)生EMT,提高腫瘤細(xì)胞的侵襲和轉(zhuǎn)移能力。Slug能夠抑制上皮細(xì)胞標(biāo)志物和黏附分子的表達(dá),并與wtp53和p53基因突變導(dǎo)致的腫瘤侵襲和轉(zhuǎn)移密切相。研究[25-26]發(fā)現(xiàn),Slug在SACC樣本中呈現(xiàn)高表達(dá),提示其可能是SACC發(fā)生侵襲和轉(zhuǎn)移的指標(biāo)。
Brachyury是T-box 轉(zhuǎn)錄因子家族中的成員之一,是高度保守的DNA結(jié)合蛋白,能與5 bp的DNA功能域(TCACA)特異性結(jié)合,在EMT中發(fā)揮著重要作用。Brachyury能夠直接與E-cad的啟動(dòng)子結(jié)合,抑制E-cad的轉(zhuǎn)錄,也能通過(guò)轉(zhuǎn)錄因子Slug間接調(diào)節(jié)E-cad的表達(dá),同時(shí)促進(jìn)多種細(xì)胞因子、趨化因子、血管生成因子的分泌,從而誘導(dǎo)腫瘤發(fā)生EMT[27]。Shimoda等[28]通過(guò)構(gòu)建綠色熒光標(biāo)志蛋白轉(zhuǎn)染的非轉(zhuǎn)移ACC細(xì)胞株和遠(yuǎn)處轉(zhuǎn)移的ACCS細(xì)胞株,發(fā)現(xiàn)后者中EMT相關(guān)基因(Snail,Twist-1、2,Slug,ZEB-1、2)表達(dá)上調(diào),同時(shí)激活腫瘤干細(xì)胞標(biāo)志物(Nodal、Lefty、Oct-4等)和細(xì)胞分化標(biāo)志物(Sox2和Afp),而用短發(fā)夾RNA(shRNA)沉默T-box轉(zhuǎn)錄因子Brachyury后,抑制了腫瘤干細(xì)胞標(biāo)志物和EMT標(biāo)志物的表達(dá)。他們認(rèn)為,T-box轉(zhuǎn)錄因子Brachyury能夠抑制EMT相關(guān)基因的表達(dá),誘導(dǎo)細(xì)胞形態(tài)向間質(zhì)細(xì)胞改變,提高腫瘤細(xì)胞的運(yùn)動(dòng)和致瘤能力,同時(shí)與腫瘤干細(xì)胞干性獲得有密切的聯(lián)系。在后續(xù)研究中發(fā)現(xiàn),敲除Brachyury基因能夠提高SACC患者對(duì)化學(xué)治療和放射治療的敏感性,這可能與三磷酸腺苷結(jié)合盒轉(zhuǎn)運(yùn)子表達(dá)下調(diào)有關(guān)[29]。
miRNA是一類非編碼小分子單鏈RNA,其主要功能為調(diào)控基因轉(zhuǎn)錄后的表達(dá),在機(jī)體生長(zhǎng)發(fā)育、新陳代謝、細(xì)胞的增殖分化和凋亡發(fā)揮著重要作用。目前miRNA已被證實(shí)參與了調(diào)節(jié)腫瘤EMT的發(fā)生,與腫瘤的發(fā)生發(fā)展、轉(zhuǎn)移和預(yù)后密切相關(guān)。miR-200家族成員和 miR-205家族成員能夠通過(guò)共同上調(diào)E-cad,相反這些miRNA 表達(dá)的下降是促進(jìn)EMT的重要因素[30]。研究[31]發(fā)現(xiàn),miR-17和miR-20a在SACC中的表達(dá)顯著高于正常涎腺組織,并與SACC預(yù)后不良密切相關(guān),這些miRNA的異常表達(dá)與實(shí)性型中的肌上皮細(xì)胞的減少有關(guān)。不同的SACC細(xì)胞系miRNA的表達(dá)也不同,與低轉(zhuǎn)移株SACC-83相比,SACC肺轉(zhuǎn)移亞系細(xì)胞(salivary adenoid cystic carcinoma-lung metastasis,SACC-LM)中的40個(gè)miRNA表達(dá)上調(diào),101個(gè)表達(dá)下調(diào),經(jīng)TGF-1處理后,1個(gè)miRNA的表達(dá)進(jìn)一步顯著上調(diào),miRNA可能在SACC轉(zhuǎn)移相關(guān)信號(hào)調(diào)節(jié)通路中起著重要的調(diào)控作用[32]。miR-320a不影響SACC腫瘤細(xì)胞的增殖和凋亡,但其能通過(guò)作用于靶點(diǎn)整合素β3,抑制腫瘤細(xì)胞的侵襲轉(zhuǎn)移能力,其在高肺部轉(zhuǎn)移潛能的ACCM和SACC-LM細(xì)胞系中表達(dá)顯著低于ACC2和SACC-83細(xì)胞系,而增強(qiáng)miR-320a的表達(dá)明顯能夠抑制小鼠移植瘤的肺部轉(zhuǎn)移率[33]。miRNA-181a能夠直接下調(diào)Snai2的表達(dá),并能通過(guò)抑制MAP2K1和MAPK1的表達(dá)間接抑制Snai2的功能,通過(guò)調(diào)節(jié)MAPK-Snai2通路的信號(hào)轉(zhuǎn)導(dǎo),抑制SACC細(xì)胞的增殖、侵襲和運(yùn)動(dòng)轉(zhuǎn)移能力,提示miRNA-181a在抑制SACC發(fā)生EMT發(fā)揮作用。研究[34]還發(fā)現(xiàn),SACC細(xì)胞轉(zhuǎn)染miR-181a類似物后,NGF、血管內(nèi)皮生長(zhǎng)因子和TGF-β2的mRNA表達(dá)下調(diào),這些生長(zhǎng)因子并沒(méi)有miR-181a作用的位點(diǎn),而轉(zhuǎn)染MAPK1 siRNA后同樣出現(xiàn)了NGF、血管內(nèi)皮生長(zhǎng)因子和TGF-β2的mRNA表達(dá)下調(diào)。啟動(dòng)子甲基化與SACC的發(fā)展、侵襲和轉(zhuǎn)移有密切的相關(guān)性,由此可見(jiàn),RASSF1A可以作為評(píng)價(jià)SACC預(yù)后的重要生物學(xué)指標(biāo)。Zhang等[40]研究發(fā)現(xiàn),RASSF1A基因雜合性丟失和體細(xì)胞基因突變,同樣能使RASSF1A編碼的蛋白質(zhì)失表達(dá),但這只在少量樣本中發(fā)生,提示RASSF1A啟動(dòng)子的甲基化修飾在RASSF1A編碼的蛋白質(zhì)失表達(dá)中起關(guān)鍵作用。為了探討SACC抑癌基因沉默的原因,Ki-shi等[41]對(duì)多種致癌基因的甲基化修飾、雜合性丟失、基因突變及組蛋白H3和H4乙?;瓤赡軐?dǎo)致抑癌基因沉默的途徑中進(jìn)行檢測(cè)與分析后發(fā)現(xiàn),在SACC中甲基化修飾是抑癌基因沉默的主要途徑,特別是RB1基因的甲基化修飾起關(guān)鍵作用。由此可見(jiàn),基因的甲基化在SACC相關(guān)蛋白表達(dá)調(diào)控中起著重要的作用,是腫瘤發(fā)生發(fā)展的相關(guān)因素。
DNA甲基化是DNA復(fù)制完成后,在DNA甲基化酶的作用下,S-腺苷甲硫氨酸分子上的甲基轉(zhuǎn)移到DNA分子中胞嘧啶殘基的第5位碳原子上,隨著DNA分子構(gòu)象的改變,轉(zhuǎn)錄過(guò)程中RNA聚合酶與模板的結(jié)合受到影響,從而降低轉(zhuǎn)錄活性。DNA甲基化修飾導(dǎo)致相關(guān)基因的表達(dá)異常,從而誘發(fā)腫瘤發(fā)生EMT,如血小板反應(yīng)素/凝血酶敏感蛋白1基因啟動(dòng)子甲基化的逆轉(zhuǎn)可激活TGF-β受體,促進(jìn)EMT[35]。染色體缺失、基因突變或啟動(dòng)子甲基化都可能是造成E-cad低表達(dá)或失表達(dá)的原因,其中啟動(dòng)子甲基化被認(rèn)為是SACC中E-cad低表達(dá)或失表達(dá)主要因素之一[36]。
基因的甲基化修飾在SACC是普遍存在的,Bell等[37]在對(duì)SACC樣本進(jìn)行檢測(cè)后發(fā)現(xiàn),32個(gè)基因片段出現(xiàn)了過(guò)甲基化修飾,7個(gè)基因片段出現(xiàn)了去甲基化修飾,其中EN1基因的甲基化與SACC的病理類型、腫瘤的部位及預(yù)后密切相關(guān)。在發(fā)生E-cad啟動(dòng)子甲基化修飾的SACC樣本中,出現(xiàn)E-cad失表達(dá)的概率大于未發(fā)生甲基化修飾的樣本,用甲基化抑制劑處理腫瘤細(xì)胞后,E-cad的表達(dá)上調(diào),提示E-cad啟動(dòng)子甲基化修飾是E-cad低表達(dá)或失表達(dá)主要途徑[38]。RASSF1A是常見(jiàn)的抑癌基因,其在維持細(xì)胞周期、控制細(xì)胞凋亡及調(diào)節(jié)細(xì)胞的黏附與運(yùn)動(dòng)能力中發(fā)揮著重要的作用。Li 等[39]對(duì)167例SACC進(jìn)行檢測(cè)發(fā)現(xiàn),35%的樣本中RASSF1A啟動(dòng)子發(fā)生了甲基化修飾,并且RASSF1A
腫瘤干細(xì)胞(cancer stem cell,CSC)假說(shuō)認(rèn)為,腫瘤內(nèi)極少數(shù)具有無(wú)限自我增殖潛能,導(dǎo)致腫瘤發(fā)生并維持其生長(zhǎng)的細(xì)胞起到干細(xì)胞的功能,而腫瘤內(nèi)其他大部分細(xì)胞則沒(méi)有此性質(zhì)。Bonnet等[42]從人急性粒細(xì)胞性白血病中分離出腫瘤干細(xì)胞,通過(guò)篩選發(fā)現(xiàn)表面標(biāo)志為CD34+CD38+的腫瘤細(xì)胞,其擁有干細(xì)胞無(wú)限增殖和自我更新的潛能。EMT誘發(fā)與腫瘤干細(xì)胞產(chǎn)生有著密切的關(guān)系。有學(xué)者認(rèn)為,腫瘤中高度分化的細(xì)胞通過(guò)EMT發(fā)生去分化,獲得干細(xì)胞特性,產(chǎn)生腫瘤干細(xì)胞;也有學(xué)者[43]證實(shí),一些調(diào)節(jié)腫瘤干細(xì)胞的因子在誘導(dǎo)SACC發(fā)生EMT中發(fā)揮著十分重要的作用。
BMI-1基因位于10p13,大小為4.9 kb,是PCG基因家族中重要成員之一,作為原癌基因與另外一種癌基因c-myc協(xié)同作用,參與調(diào)節(jié)細(xì)胞的增殖、分化與衰老。BMI-1基因與多種干細(xì)胞的自我更新和增殖密切相關(guān),并參與腫瘤干細(xì)胞的產(chǎn)生和腫瘤的侵襲轉(zhuǎn)移。Chang等[44]發(fā)現(xiàn),BMI-1在SACC中表達(dá)下調(diào),并且與腫瘤的分期、遠(yuǎn)處轉(zhuǎn)移、生存率密切相關(guān),在體外實(shí)驗(yàn)中亦證實(shí),侵襲和轉(zhuǎn)移能力高的SACC細(xì)胞株(SACC-LM)中BMI-1蛋白、EMT相關(guān)蛋白(Snail、Slug和波形蛋白)和腫瘤干細(xì)胞相關(guān)蛋白的表達(dá)顯著高于SACC83細(xì)胞株,而當(dāng)敲除BMI-1基因后發(fā)現(xiàn),SA-CC-LM細(xì)胞株喪失了EMT和干細(xì)胞標(biāo)志物,同時(shí)侵襲和轉(zhuǎn)移能力下降。他們認(rèn)為,BMI-1是EMT和腫瘤干細(xì)胞干性的調(diào)節(jié)因子,在SACC發(fā)生發(fā)展中起重要的作用,并能夠增強(qiáng)腫瘤細(xì)胞的轉(zhuǎn)移、侵襲能力。
作為重要的干細(xì)胞調(diào)節(jié)因子,c-kit在腫瘤EMT誘導(dǎo)和細(xì)胞干性的獲得中發(fā)揮著重要的作用。Tang 等[45]發(fā)現(xiàn),c-kit異常過(guò)表達(dá)能夠使SACC細(xì)胞E- cad表達(dá)喪失,誘導(dǎo)發(fā)生EMT,在此同時(shí)ACC-M/2 中CD133+/CD44+細(xì)胞亞群的數(shù)量增加,且細(xì)胞的微球體形成能力增強(qiáng),產(chǎn)生了部分干細(xì)胞特性,c-kit可能在EMT誘導(dǎo)產(chǎn)生腫瘤干細(xì)胞特性中發(fā)揮著紐帶的作用。他們發(fā)現(xiàn),TGF-β1對(duì)于c-kit誘導(dǎo)細(xì)胞運(yùn)動(dòng)能力增加是必需的,而在敲除c-kit基因后,TGF-β的信號(hào)轉(zhuǎn)導(dǎo)通路被阻斷,由此證實(shí),c-kit在TGF-β1誘導(dǎo)EMT過(guò)程中也是不可或缺的,因此通過(guò)TGF-β的信號(hào)通路誘導(dǎo)EMT可能是c-kit發(fā)揮作用的重要途徑。與RAS基因協(xié)同作用是c-kit誘發(fā)EMT另一途徑,其通過(guò)下調(diào)E-cad和β-連環(huán)蛋白的表達(dá),誘導(dǎo)細(xì)胞形態(tài)發(fā)生變化,并且增加間質(zhì)細(xì)胞標(biāo)志物的表達(dá)。另一研究[46]認(rèn)為,Slug可能是c-kit通路的重要調(diào)控因子,在SACC中c-kit的異常過(guò)表達(dá)與Slug的過(guò)表達(dá)有密切的相關(guān)性,并與SACC的侵襲和轉(zhuǎn)移密切相關(guān)。Phuchareon等[47]認(rèn)為,干細(xì)胞因子通過(guò)正反饋回路誘導(dǎo)c-kit的產(chǎn)生,同時(shí)周圍神經(jīng)末梢能夠通過(guò)旁分泌的方式分泌干細(xì)胞因子,并可能作為一種的生長(zhǎng)因子或化學(xué)引誘劑,使得腺樣囊性癌向神經(jīng)末梢生長(zhǎng),產(chǎn)生嗜神經(jīng)性。
EMT在SACC的發(fā)生發(fā)展中發(fā)揮著重要作用,是其局限性侵襲和遷徙轉(zhuǎn)移的重要基礎(chǔ)。近年來(lái)學(xué)者們對(duì)SACC中EMT發(fā)生機(jī)制進(jìn)行了深入的研究,揭示了生長(zhǎng)因子、轉(zhuǎn)錄因子等的調(diào)控作用,但EMT的機(jī)制極其錯(cuò)綜復(fù)雜,其發(fā)生的詳細(xì)機(jī)制依然不清楚。依據(jù)EMT發(fā)生的機(jī)制,靶向治療被認(rèn)為是極具應(yīng)用前景的治療腫瘤手段,針對(duì)某些腫瘤的靶向藥物已經(jīng)投入臨床,但目前為止針對(duì)SACC的靶向治療的研究尚未取得實(shí)質(zhì)性進(jìn)展;因此仍需不斷深入探討腫瘤中EMT發(fā)生的機(jī)制,特別是SACC中EMT的發(fā)生機(jī)制,進(jìn)一步理解SACC的發(fā)生發(fā)展及侵襲轉(zhuǎn)移問(wèn)題,以啟發(fā)臨床治療新療法,改善患者的預(yù)后。
[1] Saitoh M, Miyazawa K. Transcriptional and posttranscriptional regulation in TGF-β-mediated epithelial-mesenchymal transition[J]. J Biochem, 2012, 151 (6):563-571.
[2] Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial-mesenchymal transition[J]. Nat Rev Mol Cell Biol, 2014, 15(3):178-196.
[3] Thiery JP, Sleeman JP. Complex networks orchestrate epithelial-mesenchymal transitions[J]. Nat Rev Mol Cell Biol, 2006, 7(2):131-142.
[4] Jia S, Wang W, Hu Z, et al. BDNF mediated TrkB activation contributes to the EMT progression and the poor prognosis in human salivary adenoid cystic carcinoma[J]. Oral Oncol, 2015, 51(1):64-70.
[5] Tepass U, Truong K, Godt D, et al. Cadherins in embryonic and neural morphogenesis[J]. Nat Rev Mol Cell Biol, 2000, 1(2):91-100.
[6] Eger A, Aigner K, Sonderegger S, et al. DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells[J]. Oncogene, 2005(14):2375-2385.
[7] Tiwari N, Gheldof A, Tatari M, et al. EMT as the ultimate survival mechanism of cancer cells[J]. Semin Cancer Biol, 2012, 22(3):194-207.
[8] Descamps S, Toillon RA, Adriaenssens E, et al. Nerve growth factor stimulates proliferation and survival of human breast cancer cells through two distinct signaling pathways[J]. J Biol Chem, 2001, 276(21):17864-17870.
[9] 孫沫逸, 王磊, 楊連甲, 等. NGF在涎腺腺樣囊性癌中的表達(dá)及與嗜神經(jīng)侵襲和疼痛的關(guān)系[J]. 第四軍醫(yī)大學(xué)學(xué)報(bào), 2004, 25(11):1012-1014. Sun MY, Wang L, Yang LJ, et al. Relation between ngf expression and perineural invasion and pain in salivary adenoid cystic carcinoma[J]. J Fourth Milit Med Univ, 2004, 25(11):1012-1014.
[10] Kowalski PJ, Paulino AF. Perineural invasion in adenoid cystic carcinoma: its causation/promotion by brain-derived neurotrophic factor[J]. Hum Pathol, 2002, 33(9):933-936.
[11] Oft M, Heider KH, Beug H. TGFbeta signaling is necessary for carcinoma cell invasiveness and metastasis[J]. Curr Biol, 1998, 8(23):1243-1252.
[12] Hata A, Shi Y, Massagué J. TGF-beta signaling and cancer: structural and functional consequences of mutations in Smads[J]. Mol Med Today, 1998, 4(6): 257-262.
[13] Tian YC, Phillips AO. Interaction between the transforming growth factor-beta type Ⅱ receptor/ Smad pathway and beta-catenin during transforming growth factor-beta1-mediated adherens junction disassembly[J]. Am J Pathol, 2002, 160(5):1619- 1628.
[14] Chen XF, Zhang HJ, Wang HB, et al. Transforming growth factor-β1 induces epithelial-to-mesenchymal transition in human lung cancer cells via PI3K/Akt and MEK/Erk1/2 signaling pathways[J]. Mol Biol Rep, 2012, 39(4):3549-3556.
[15] Dong L, Ge XY, Wang YX, et al. Transforming growth factor-β and epithelial-mesenchymal transition are associated with pulmonary metastasis in adenoid cystic carcinoma[J]. Oral Oncol, 2013, 49 (11):1051-1058.
[16] Jorissen RN, Walker F, Pouliot N, et al. Epidermal growth factor receptor: mechanisms of activation and signalling[J]. Exp Cell Res, 2003, 284(1):31-53.
[17] Yu GT, Bu LL, Zhao YY, et al. Inhibition of mTOR reduce Stat3 and PAI related angiogenesis in salivary gland adenoid cystic carcinoma[J]. Am J Cancer Res, 2014, 4(6):764-775.
[18] 谷建琦, 張英懷, 張杰英, 等. 轉(zhuǎn)化生長(zhǎng)因子α及其受體在腺樣囊性癌中的表達(dá)及相互關(guān)系[J]. 現(xiàn)代口腔醫(yī)學(xué)雜志, 2007, 21(1):60-62. Gu JQ, Zhang YH, Zhang JY, et al. The expressions and correlativity of transforming growth facfor- α and epidermal growth factor reptor in salivary adenoid cystic carcinoma[J]. J Mod Stomatol, 2007, 21(1):60-62.
[19] Hitre E, Budai B, Takácsi-Nagy Z, et al. Cetuximab and platinum-based chemoradio- or chemotherapy of patients with epidermal growth factor receptor expressing adenoid cystic carcinoma: a phase Ⅱ trial[J]. Br J Cancer, 2013, 109(5):1117-1122.
[20] 李瑩, 王喜華, 于洋, 等. YAP2蛋白在涎腺腺樣囊性癌組織及細(xì)胞中的表達(dá)[J]. 口腔頜面外科雜志, 2013, 23(5):357-360. Li Y, Wang XH, Yu Y, et al. Role of egfr on expression of yap2 in salivary adenoid cystic carcinoma [J]. J Oral Maxillofac Surg, 2013, 23(5):357-360.
[21] Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype[J] Nat Rev Cancer, 2007, 7(6):415-428.
[22] Jiang J, Tang Y, Zhu G, et al. Correlation between transcription factor Snail1 expression and prognosis in adenoid cystic carcinoma of salivary gland[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2010, 110(6):764-769.
[23] Hulit J, Suyama K, Chung S, et al. N-cadherin signaling potentiates mammary tumor metastasis via enhanced extracellular signal-regulated kinase activation[J]. Cancer Res, 2007, 67(7):3106-3116.
[24] Zhou C, Liu J, Tang Y, et al. Coexpression of hypoxia-inducible factor-2α, TWIST2, and SIP1 may correlate with invasion and metastasis of salivary adenoid cystic carcinoma[J]. J Oral Pathol Med, 2012, 41(5):424-431.
[25] Wang SP, Wang WL, Chang YL, et al. p53 controls cancer cell invasion by inducing the MDM2-mediated degradation of Slug[J]. Nat Cell Biol, 2009, 11 (6):694-704.
[26] Tang Y, Liang X, Zhu G, et al. Expression and importance of zinc-finger transcription factor Slug in adenoid cystic carcinoma of salivary gland[J]. J Oral Pathol Med, 2010, 39(10):775-780.
[27] Fernando R I, Litzinger M, Trono P, et al. The T-box transcription factor Brachyury promotes epithelialmesenchymal transition in human tumor cells[J]. J Clin Investig, 2010, 120(2):533- 544.
[28] Shimoda M, Sugiura T, Imajyo I, et al. The T-box transcription factor Brachyury regulates epithelialmesenchymal transition in association with cancer stem-like cells in adenoid cystic carcinoma cells[J]. BMC Cancer, 2012, 12(1):377.
[29] Kobayashi Y, Sugiura T, Imajyo I, et al. Knockdown of the T-box transcription factor Brachyury increases sensitivity of adenoid cystic carcinoma cells to chemo-therapy and radiation in vitro: implicationsfor a new therapeutic principle[J]. Int J Oncol, 2014, 44(4):1107-1117.
[30] Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs[J]. Nat Cell Biol, 2009, 11(12):1487-1495.
[31] Mitani Y, Roberts DB, Fatani H, et al. MicroRNA profiling of salivary adenoid cystic carcinoma: association of miR-17-92 upregulation with poor outcome[J]. PLoS One, 2013, 8(6):e66778.
[32] 梁衍燦, 宇文婷, 梁?jiǎn)⑾? 等. TGF-β1信號(hào)通路相關(guān)的microRNA在唾液腺腺樣囊性癌侵襲轉(zhuǎn)移中的作用[J]. 中國(guó)口腔頜面外科雜志, 2014, 12(4):301- 306. Liang YC, Yu WT, Liang QX, et al. Tgf-β1 signaling pathway related microrna regulates metastasis of salivary adenoid cystic carcinoma[J]. Chin J Oral Maxillofac Surg, 2014, 12(4):301-306.
[33] Sun L, Liu B, Lin Z, et al. MiR-320a acts as a prognostic factor and Inhibits metastasis of salivary adenoid cystic carcinoma by targeting ITGB3[J]. Mol Cancer, 2015, 14:96.
[34] He Q, Zhou X, Li S, et al. MicroRNA-181a suppresses salivary adenoid cystic carcinoma metastasis by targeting MAPK-Snai2 pathway[J]. Biochim Biophys Acta, 2013, 1830(11):5258-5266.
[35] Rojas A, Meherem S, Kim YH, et al. The aberrant methylation of TSP1 suppresses TGF-beta1 activation in colorectal cancer[J]. Int J Cancer, 2008, 123 (1):14-21.
[36] Maruya S, Kurotaki H, Wada R, et al. Promoter methylation and protein expression of the E-cadherin gene in the clinicopathologic assessment of adenoid cystic carcinoma[J]. Mod Pathol, 2004, 17(6):637- 645.
[37] Bell A, Bell D, Weber RS, et al. CpG island methylation profiling in human salivary gland adenoid cystic carcinoma[J]. Cancer, 2011, 117(13):2898-2909.
[38] Zhang CY, Mao L, Li L, et al. Promoter methylation as a common mechanism for inactivating E-cadherin in human salivary gland adenoid cystic carcinoma[J]. Cancer, 2007, 110(1):87-95.
[39] Li J, El-Naggar A, Mao L. Promoter methylation of p16INK4a, RASSF1A, and DAPK is frequent in salivary adenoid cystic carcinoma[J]. Cancer, 2005, 104(4):771-776.
[40] Zhang CY, Zhao YX, Xia RH, et al. RASSF1A promoter hypermethylation is a strong biomarker of poor survival in patients with salivary adenoid cystic carcinoma in a Chinese population[J]. PLoS One, 2014, 9(10):e110159.
[41] Kishi M, Nakamura M, Nishimine M, et al. Genetic and epigenetic alteration profiles for multiple genes in salivary gland carcinomas[J]. Oral Oncol, 2005, 41(2):161-169.
[42] Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell[J]. Nat Med, 1997, 3(7): 730-737.
[43] Mani SA, Guo W, Liao MJ, et al. The epithelialmesenchymal transition generates cells with properties of stem cells[J]. Cell, 2008, 133(4):704-715.
[44] Chang B, Li S, He Q, et al. Deregulation of Bmi-1 is associated with enhanced migration, invasion and poor prognosis in salivary adenoid cystic carcinoma [J]. Biochim Biophys Acta, 2014, 1840(12):3285- 3291.
[45] Tang YL, Fan YL, Jiang J, et al. C-kit induces epithelial-mesenchymal transition and contributes to salivary adenoid cystic cancer progression[J]. Oncotarget, 2014, 5(6):1491-1501.
[46] Tang Y, Liang X, Zheng M, et al. Expression of c-kit and Slug correlates with invasion and metastasis of salivary adenoid cystic carcinoma[J]. Oral Oncol, 2010, 46(4):311-316.
[47] Phuchareon J, van Zante A, Overdevest JB, et al. c-Kit expression is rate-limiting for stem cell factormediated disease progression in adenoid cystic carcinoma of the salivary glands[J]. Transl Oncol, 2014, 7(5):537-545.
(本文編輯 張玉楠)
Research progress on the mechanism of epithelial-mesenchymal transition in salivary adenoid cystic carcinoma
Wu Jiashun, Tang Yaling. (State Key Laboratory of Oral Diseases, Dept. of Oral Pathology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
This study was supported by National Natural Science Foundation of China(81272961, 81572650).
Salivary adenoid cystic carcinoma(SACC) is one of the most malignant tumors in salivary adenoid tissue with a feature of perineural invasion, lung metastasis, which grows slowly but easily trends to invasion and has a poor prognosis. In recent years domestic and foreign scholars have done a lot of researches about epithelial-mesenchymal transition(EMT) in SACC, for revealing the mechanism of its development, invasion and metastasis and exposing new therapy. This review elucidated the EMT mechanism in SACC.
salivary adenoid cystic carcinoma; epithelial-mesenchymal transition; regulating mechanism
R 780.2
A
10.7518/gjkq.2016.04.013
2016-01-22;
2016-02-23
國(guó)家自然科學(xué)基金(81272961,81572650)
吳家順,碩士,Email:scuwu2015@163.com
湯亞玲,教授,博士,Email:tangyaling@scu.edu.cn蛋白的增加[1-3]。EMT是一種哺乳動(dòng)物胚胎發(fā)育過(guò)程中必需的生理現(xiàn)象,神經(jīng)嵴細(xì)胞遷移形成神經(jīng)管,心瓣膜、顱面結(jié)構(gòu)以及肌肉骨的發(fā)育均與EMT密切相關(guān),同時(shí)EMT在促進(jìn)組織重塑、創(chuàng)傷的愈合發(fā)揮著重要的作用[1-2]。EMT還與腫瘤的發(fā)生發(fā)展密切相關(guān),它不僅能夠使得細(xì)胞的骨架發(fā)生改建,破壞細(xì)胞間的黏附分子,獲得遷移和運(yùn)動(dòng)能力,增加腫瘤的侵襲,而且在發(fā)生EMT后腫瘤細(xì)胞凋亡受到抑制,同時(shí)對(duì)免疫系統(tǒng)殺傷及化療藥物的抵抗性增加,這很可能與EMT能夠誘導(dǎo)產(chǎn)生以及維持腫瘤干細(xì)胞特性密切相關(guān)[4-7]。近年來(lái)的研究證實(shí),EMT能促進(jìn)SACC的發(fā)生發(fā)展、侵襲和轉(zhuǎn)移,增加腫瘤對(duì)化療藥物的抗性,并且與SACC預(yù)后不良密切相關(guān)[4]。