徐雪楊超劉坤黃寧鄭謙石冰
1.口腔疾病研究國家重點實驗室 華西口腔醫(yī)院唇腭裂外科(四川大學);2.正畸科 成都 610041
牙槽突裂治療方法的研究進展
徐雪1楊超1劉坤1黃寧2鄭謙1石冰1
1.口腔疾病研究國家重點實驗室 華西口腔醫(yī)院唇腭裂外科(四川大學);2.正畸科 成都 610041
牙槽突裂整復術現(xiàn)已成為唇腭裂序列治療的重要環(huán)節(jié),上頜骨裂隙骨移植在20世紀初就已提出,但至今,對牙槽突裂的治療方法仍存在許多爭議,本文就牙槽突裂整復術的手術時機、植入物選擇、手術方法、術前術后正畸干預等方面的研究進展作一綜述。
牙槽突裂; 植骨術; 手術
自1901年,Eiselsberg首次報道應用自體小指指骨修復牙槽突裂以來,各國學者[1-6]均開始對牙槽突裂整復術進行研究,先后提出了初期牙槽突裂植骨及牙齦骨膜成形術,由于這2種整復方法均影響上頜骨生長發(fā)育,故許多學者不再使用這2種方法。直到20世紀70年代,Boyne和Sands[7-8]提出了移植髂骨松質(zhì)骨來修復牙槽突裂,并提出植骨手術一定要在尖牙萌出前,且用自體髂骨松質(zhì)骨。Boyne和Sands[8]用該方法治療了10例患者,發(fā)現(xiàn)植骨術后有正常的牙槽間隔形成,尖牙萌出,并可通過正畸將尖牙調(diào)整到正常位置。另有其他治療中心[9-14]使用該方法,也取得了較好的效果。自此,在混合牙列期移植髂骨的骨松質(zhì)來修補牙槽突裂,被廣泛使用[15]。
牙槽突裂整復術現(xiàn)已成為唇腭裂序列治療的重要環(huán)節(jié)。上頜骨裂隙骨移植在 20 世紀初就已提出,但半個世紀后才被廣泛認識[16]。至今,對牙
槽突裂的治療方法仍存在許多爭議,本文就牙槽突裂整復術的手術時機、植入物選擇、手術方法、術前術后正畸干預等方面的研究進展作一綜述。
由于行一期植骨的單側唇腭裂患者的大部分植入骨被吸收,牙槽突仍存在裂隙,上頜骨的生長受到抑制,患者前牙反和面中份凹陷畸形的比例較高[17],故多數(shù)學者不提倡一期植骨。
現(xiàn)學者[18]普遍認同在恒牙列建立過程中,面中1/3發(fā)育完成后,年齡在9~11歲,恒尖牙萌出前,尖牙牙根已形成1/2~3/4時,行牙槽突裂植骨術。此時植骨后裂隙兩側的尖牙或側切牙萌出,牙齒萌出和咬合刺激植入骨質(zhì),減少移植骨的吸收;上頜骨橫向及縱向生長迅速階段發(fā)生在6~7歲,8歲時頜骨前部橫向和矢狀向的生長已基本結束,8歲以后進行植骨手術,不會對上頜骨的生長發(fā)育產(chǎn)生不良影響[19]。
近些年學者提出,可將牙槽突裂植骨年齡提前到5~7歲[20],在中切牙和側切牙萌出前進行,從而為中切牙和側切牙的萌出提供骨支持[21-23],但提前行植骨手術是否會影響上頜骨發(fā)育,目前還沒有足夠的研究。
牙槽突裂植入骨質(zhì)通常采用自體骨,如髂骨、顱骨、下頜骨、脛骨、肋骨,也有使用異體胚胎骨和生物材料的報道。適宜供區(qū)的選擇取決于供骨成活和尖牙在植骨區(qū)萌出的難易程度。目前仍首選髂骨作為供骨區(qū),因為髂骨有豐富的純粹骨松質(zhì)的骨源,顆粒狀骨松質(zhì)比塊狀骨松質(zhì)移植表面積大,接觸面大,有利于術后血管化,其取骨方法也較簡便。
使用自體骨移植,組織相容性好,但對于移植骨供區(qū)有一定的損害。近年來,學者們對牙槽突裂植入骨的替代品及生物材料做了很多研究。這些替代品及生物材料的應用可縮短手術時間,減少對患者的損害及其并發(fā)癥的發(fā)生。
Nique等[24]應用異體骨治療牙槽突裂,術后牙槽突裂隙處出現(xiàn)骨性連接,術前未萌出的牙齒長入移植骨內(nèi)。有學者嘗試采用凍干異體骨、脫鈣異體骨以及羥磷灰石、磷酸三鈣等生物材料取代自體骨,并取得較為滿意的效果。但另有學者認為,凍干骨存在延遲創(chuàng)口愈合、使骨移植材料部分丟失以及使前頜骨不穩(wěn)定性延長等并發(fā)癥。
在自體移植骨中加入各種生長因子,能有效減少骨吸收、促進骨生長。Segura-Castillo等[25]在植入的自體骨中加入纖維蛋白黏合劑,3個月后骨吸收率較對照組低,且骨密度較高。Carstens等[26]和Chin等[27]在髂骨的骨松質(zhì)中加入重組人骨形態(tài)發(fā)生蛋白-2(recombinated human bone morphogenetic protein-2,rhBMP-2)后發(fā)現(xiàn),絕大多數(shù)患者裂隙區(qū)形成了骨聯(lián)合,新骨可行使與自身正常骨相同的功能,可促使天然牙萌出和正畸牙移動,且新骨具有與天然骨相同的結構。骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)在體內(nèi)促進人骨髓間充質(zhì)細胞分化的能力遠大于在體外,且將高質(zhì)量濃度的BMP置于羥磷灰石支架材料上,促進骨形成的作用更強[28]。由于rhBMP-2誘導的骨再生過程將由周圍組織的血管提供營養(yǎng),所以血供及缺損范圍對這一技術的應用效果有很大的影響[26]。BMP具有異位成骨性,加大劑量后會促進局部的血液循環(huán),從而在術后早期加劇腫脹的不良反應,所以BMP在生長發(fā)育期的患者中應慎用。BMP臨床應用的時間相對較短,其長期的致瘤性等不良反應尚不清楚[29]。
1998年,Marx等[30]首次將富含血小板的血漿(platelet-rich plasma,PRP)技術用于腫瘤術后患者的下頜重建。2011年,Marukawa等[31]將PRP混合骨松質(zhì)以及骨髓,移植修復了14例牙槽突裂患者,結果表明,PRP能促進骨再生,PRP混合植骨患者的骨質(zhì)吸收明顯低于單純骨松質(zhì)移植患者。PRP能促進骨修復主要是由其釋放的多種高濃度生長因子的聯(lián)合作用所致。PRP來源于自體,制取容易,富含大量生長因子,在凝血酶作用下易生成凝膠,形成的三維凝膠纖維成為骨誘導的支架結構,提供細胞生長以及成骨分化的細胞外基質(zhì),為骨成熟提供良好的環(huán)境。
使用患者自身骨髓基質(zhì)干細胞(bone marrow derived stroma cell,BMSC)修復牙槽突裂,可以在體內(nèi)形成穩(wěn)定的組織工程化骨組織,無明顯的骨吸收現(xiàn)象,臨床治療效果穩(wěn)定[32],且減少了患者的創(chuàng)傷及術后疼痛。BMSC亦已應用于臨床修復牙槽裂骨缺損[33-34]。
組織工程支架材料為細胞在裂隙區(qū)的生長、分化、黏附、移行提供了支架。理想的支架材料應具有良好的生物相容性和降解性,能引導成骨細胞和血管長入,具有良好的骨傳導作用和一定的骨誘導作用,多孔結構能適應一定范圍的應力變化。羥磷灰石有較好的生物相容性,能促進骨祖細胞分化為成骨細胞[35],但由于其不可吸收并缺乏形變,會妨礙牙的萌出及正畸治療所需要的骨移動[27,36],愈合期受力時容易移位[37]。用生物活性玻璃類材料修復牙槽突裂,術后尖牙可向移植區(qū)移動萌出[38],但有些病例的移植人工骨材料與自體骨界限明顯,未能很好地融合。此外,也有用其他支架材料,如PRP中的纖維蛋白原、可吸收牛膠原基質(zhì)[39]、β-磷酸三鈣陶瓷(tricalcium phosphate ceramic,TCPC)[40]等修復牙槽突裂的病例報道。人工合成的多聚物的代謝產(chǎn)物影響細胞代謝,易導致植骨區(qū)炎癥及支架過早降解。
各手術方法的不同主要集中在瓣的設計上,相同的是要將帶有附著齦的黏骨膜瓣覆蓋在植骨區(qū)邊緣,因為這樣可為裂隙區(qū)附近牙齒提供正常的牙周環(huán)境。常用的牙槽突裂植骨術有Turvey等[10]的唇側和腭側雙切口術式和Abyholm等[9]的唇側單切口術式。目前,國內(nèi)外常用的牙槽突裂植骨術切口設計存在以下不足:1)牙槽骨斷端腭側骨邊緣暴露不充分;2)唇側黏膜剩余組織量少,需要大范圍松弛切口,減張縫合或利用轉移瓣關閉創(chuàng)面;3)牙槽突植骨床鼻底平面和腭側平面交界處暴露不充分;4)植骨術后裂隙處前庭溝變淺,紅唇變短。故楊超和石冰[41]于2012年提出了腭側入路修復牙槽突裂的術式:沿牙槽突腭側裂隙兩側做切口,再從腭側裂隙牙槽嵴頂沿兩側齦乳頭做水平切口,在裂隙兩側形成2個蒂在后的腭瓣;沿裂隙牙槽突裂兩端唇側附著齦向兩側做水平切開約2個牙位,并將唇側切口與腭側切口在牙槽突頂聯(lián)通;在牙槽突裂隙斷端側壁,自前下至后上切開,形成2個蒂在后的裂隙鼻腔瓣。腭瓣關閉腭側裂隙,唇瓣關閉唇側裂隙,兩側鼻腔瓣向上翻轉關閉鼻底,縫合裂隙兩側腭瓣和唇瓣尖端以關閉牙槽突裂面,形成理想的梯形袋。楊超等[42]認為該術式有如下優(yōu)點:1)無張力狀態(tài)下關閉裂隙;2)唇側輔助切口范圍局限,避免損傷牙胚;3)植骨范圍暴露充分,植入骨量充分,避免唇腭側黏膜組織對植入骨的擠壓;4)解剖范圍局限,不會改變唇系帶附著的位置,不會出現(xiàn)前庭溝變淺,紅唇變短的現(xiàn)象。
隨著學者們對牙槽突裂植入骨的替代品及生物材料研究的不斷深入,許多骨替代品及生物材料相繼應用于臨床治療。用骨替代品及生物材料修復牙槽突裂與用自體骨修復牙槽突裂的區(qū)別在于,自體骨取出后直接移植入牙槽突裂隙區(qū),而骨替代品及生物材料需行植入前的預處理。目前常用的是rhBMP-2和組織工程成骨材料(tissueengineered osteogenic material,TEOM)。
以rhBMP-2修復牙槽突裂需用載體,現(xiàn)載體常為膠原海綿。將rhBMP-2與蒸餾水混合成1.5 g·L-1的濃度,將膠原海綿浸入該溶液20 min[29,43],膠原海綿中含3.2~4.2 mg rhBMP-2[44],然后將浸有rhBMP-2的膠原海綿置于牙槽突裂隙內(nèi),關閉軟組織,封閉裂隙。也有報道[45]在術前3 h將rhBMP-2制成50 μg·mL-1或250 μg·mL-1的凝膠,于4 ℃保存?zhèn)溆茫g中植入牙槽突裂隙。美國食品藥品監(jiān)督管理局已批準將其應用于臨床[46]。
TEOM由PRP和自體間質(zhì)干細胞組成[34],PRP中含血小板衍生生長因子(platelet-derived growth factor,PDGF)、胰島素樣生長因子(insulin-like growth factor,IGF)、成纖維細胞生長因子(fibroblast growth factor,F(xiàn)GF)、內(nèi)皮細胞生長因子、表皮生長因子等眾多生長因子[47],可以誘導骨形成,從全血中提取PRP,術前將PRP與骨髓基質(zhì)細胞(marrow stroma cell,MSC)和氯化鈣混合成凝膠,術中將該凝膠與髂骨骨松質(zhì)混合,植入牙槽突裂隙區(qū),上覆PRP膜,關閉軟組織,手術完成。
在20世紀,學者們普遍認為牙槽突裂植骨術前應行術前擴弓,然后行牙槽突裂植骨手術,術后植入骨可穩(wěn)定擴弓后不穩(wěn)定的上頜骨弓,并防止骨段塌陷[48-51],且術前擴弓可減少尖牙阻生概率。對牙槽突裂兩斷端錯位的患者,應術前糾正錯位的骨段[52],因為術后很難將錯位的骨段調(diào)整到正常位置。有研究[53]表明,行牙槽突裂植骨術前擴弓的患者,植骨成功率高達91%。近來,有學者[22]提倡術后行擴弓,而術前不擴弓,因為術后擴弓產(chǎn)生的力可以對植骨塊產(chǎn)生牽拉作用,更有利于植入骨的成活及成骨。且術前擴弓導致的裂隙越寬,就需要越多的骨組織和軟組織封閉裂隙,使植骨的成功率難以保證。而對于雙側完全性唇裂伴腭裂及牙槽突裂的患者,術前應用弓絲來穩(wěn)定前頜骨,術中將弓絲取下,術畢再將弓絲重新放入以穩(wěn)定前頜骨[54]。
由于裂隙側切牙可能向裂隙內(nèi)傾斜而影響植骨術入路,故應在術前4~5個月行術前正畸以糾正傾斜的切牙,為手術提供良好的入路。但也有學者認為,術前不需移動裂隙附近的牙齒,因為裂隙區(qū)附近的牙齒牙根周圍骨質(zhì)菲薄,移動牙齒易導致骨開裂或骨開窗,而術后移動裂隙區(qū)附近牙齒對植入骨的刺激,利于植入骨成活及成骨,且不會導致牙根移出牙槽骨外。
對于術后開始正畸治療的時間,各學者看法并未統(tǒng)一。一般認為牙槽突裂術后應用正畸方法繼續(xù)穩(wěn)定牙弓3~6個月,再行正畸牽引或擴弓治療。但Craven等[55]認為,植骨術后穩(wěn)定牙弓6周即可行正畸牽引,此時若尖牙未正位萌出,則正畸牽引尖牙至裂隙區(qū)植骨處。Precious[22]認為,應在術后2~3月再行正畸擴弓。da Silva Filho等[52]和Habel等[56]認為,術后用弓絲穩(wěn)定牙弓3個月,然后才可行正畸治療。
植骨術療效評價主要是從植骨區(qū)骨量恢復的情況、鼻唇外形的矯正程度、尖牙向植骨區(qū)移動萌出情況、口鼻瘺關閉情況和植骨部位唇頰溝深度等方面進行。在這些評價指標中,裂隙處的骨量恢復情況是最重要的指標,現(xiàn)一般采用二維影像學方法進行評價[57]。
Bergland等[11]于1986年提出通過比較植入牙槽骨間隙的高度與正常牙槽骨高度的比例來評價植骨效果,分為:Ⅰ型,與正常牙槽嵴高度一致;Ⅱ型,達到正常牙槽嵴高度的3/4以上;Ⅲ型,少于正常牙槽嵴高度的3/4;Ⅳ型,缺損區(qū)無骨橋形成。這一方法是現(xiàn)在被廣泛接受的金標準,但該方法對鼻底部植骨評價不足,于是Hynes 和Earley[58]對Bergland標準進行改進,提出了改良的Bergland評價標準為:Ⅰ型為正常牙槽嵴高度,Ⅱ型為植入骨的牙槽嵴高度達到總的牙槽高度(即鼻底到釉牙骨質(zhì)界的高度)的3/4以上,Ⅲ型為植入骨的牙槽嵴高度少于總的牙槽高度(即鼻底到釉牙骨質(zhì)界的高度)的3/4,Ⅳ型為牙槽突裂裂隙內(nèi)沒有植入骨的骨橋存在。
Witherow等[59]認為,Bergland的評價方法過于依賴尖牙的萌出,于是針對尖牙未完全萌出的混合牙列期患者提出了Chelsea標準,根據(jù)植骨的位置以及骨量,分為6級:A,裂隙區(qū)近遠中牙體釉牙骨質(zhì)界間有骨橋形成,且75%以上根面被骨質(zhì)覆蓋;B,裂隙區(qū)近遠中牙體釉牙骨質(zhì)界間有骨橋形成,且從釉牙骨質(zhì)界起25%以上根面被骨質(zhì)覆蓋;C,裂隙區(qū)從根方起至少75%根面有骨橋形成;D,裂隙區(qū)從根方起至少50%根面有骨橋形成;E,裂隙區(qū)根方或冠方無骨橋形成,僅中份有骨橋存在;F,裂隙區(qū)從根方起僅25%或少于25%根面有骨橋形成。該方法可在混合牙列期對裂隙部位牙槽突高度及形態(tài)進行評估,同時對于骨橋的具體位置及量進行記錄。但也有學者認為,裂隙部位鄰近牙根面所覆蓋骨質(zhì),尤其是近中中切牙根面覆蓋骨質(zhì),多為天然骨,而非移植骨,這些骨給植骨術的評估帶來一定的誤差。
牙片、咬合片及全景片等二維檢查方法均無統(tǒng)一標準,投照角度無法固定,易使圖像放大畸變,許多解剖結構重疊,難以判斷結構間的三維關系,無法反映術后骨質(zhì)空間及體積的變化,而且二維影像學檢查往往夸大了植骨的效果[60-62]。于是,近年出現(xiàn)了以三維CT為媒介來判定牙槽突裂植骨術后效果。
如何進行CT測量,目前尚無公認的方法。van der Meij等[63-64]對患者裂隙部位進行CT掃描,并根據(jù)骨性解剖標志從裂隙中心區(qū)域選定3個層面,將該3個層面術后即刻圖像與術后1年影像相比較,通過影像面積變化計算術后1年移植骨的存留比例,以評價植骨術的療效。Feichtinger等[65]和Kawakami等[66]亦采用與此相似的方法,將裂隙區(qū)分層測量來評估植骨術后效果。
盡管三維CT比二維X線片能提供立體、清晰的圖像,但是由于其輻射量大、照射時間長、清晰度不能滿足口腔檢查的要求,近年來,錐形束CT越來越多的被應用于口腔臨床檢查以及研究中。錐形束CT檢查的體素可達0.125 mm[11,67],分辨率可以達到2.0 lp·mm-3,一次錐形束CT檢查的放射劑量相當于拍攝一張全景片,照射時間短,故可廣泛推廣。
Oberoi等[68]定義了一個矢狀位的矩形植骨范圍,并且在每張矢狀圖像上測量骨組織圖像的面積以及缺隙的面積,將所有有關植骨區(qū)的截面再次進行重建,即可算出骨組織的體積及未充填的體積,從而得出骨質(zhì)的充填率,通過對比手術后不同時間點的充填率來評價手術的效果。
吳軍和王國民[69]利用錐形束CT,將牙槽突裂隙假定為長方體,將該長方體在三維方向進行分割(在X軸方向及Z軸方向均分為3等分,將Y軸方向均分為4等分),分割后形成不同平面,再根據(jù)平面上是否有骨橋,來判斷植入骨的量并進行定位分析。此外,吳軍等[70]還利用錐形束CT,將不同垂直高度上的裂隙的橫斷面進行截圖,然后進行人工圈定,記算不同層面上裂隙的橫斷面的面積,然后將不同高度的值和面積的值來計算牙槽突裂的缺損體積。
牙槽突裂隙寬度、裂隙類型、術者、植骨時機、植入骨密度、植入骨與宿主骨關系、植骨區(qū)黏膜封閉情況、口腔衛(wèi)生等均對牙槽突裂植骨效果有一定影響。
多數(shù)學者觀察單、雙側牙槽突裂隙植骨的術后效果發(fā)現(xiàn),單側裂術后植骨效果較雙側裂好[63,71]。但也有學者[54]研究表明雙側裂術后植骨效果較單側裂好。
一般認為,在混合牙列期行牙槽突裂植骨手術,術后效果較好,成功率較高[23,72-73]。有研究發(fā)現(xiàn),若以植骨后形成骨橋的高度高于牙槽嵴的3/4為成功標準,那么在裂隙側尖牙萌出前植骨的成功率為96%,尖牙萌出后植骨的成功率約85%。故在裂隙側尖牙萌出前植骨效果較好[11,74-75]。
植入骨是否負重是影響骨重建最重要的因素,在植骨區(qū)域行正畸干預或種植牙修復可減少植入骨的吸收。正畸移動裂隙區(qū)附近牙根入裂隙區(qū)或未萌牙在植骨區(qū)萌出,不僅對植入骨有功能性刺激,并且利于植入骨成骨,防止植入骨吸收[76]。Feichtinger等[65]的研究表明,植骨區(qū)缺乏應力刺激將導致1年內(nèi)骨質(zhì)吸收可高達95%,而骨植入有負重的區(qū)域可減少吸收,且可以增加骨密度。Takahashi等[77]的長期隨訪研究發(fā)現(xiàn),在植骨區(qū)種植牙能夠保持植入骨質(zhì)不被吸收。將骨植入無負重的區(qū)域,會導致骨吸收增加[78]。Feichtinger等[79]通過三維CT行術前、術后的比較后發(fā)現(xiàn),1年后有尖牙萌出的患者的移植骨吸收在67%左右;尖牙與側切牙同時萌出的患者,移植骨吸收只有13%,而沒有牙萌出的患者,移植骨吸收達90%。
植入骨與裂隙區(qū)的骨及骨膜緊密接觸可使宿主骨及骨膜中的血液和成骨細胞滲透到植入骨中,假如植入骨與植骨床接觸不緊密,即會影響成骨的效果[54]。
植入骨的改建發(fā)生在植入骨與宿主骨的交界面,植入骨與宿主骨間不穩(wěn)定會影響成骨,并會引起骨吸收和感染。雙側裂植骨區(qū)的血供差、氧分壓低會使成骨延遲甚至阻止骨形成[80]。此外,雙側裂植骨區(qū)局部條件差,軟組織缺乏,導致張力增加,易引起植入骨暴露,繼而影響植骨效果。但也有報道稱,即使創(chuàng)口部分裂開,也僅有表層暴露的骨顆粒脫落,在有輕度感染時,植入骨能較好地存活[19]。
此外,植入骨的密度跟術后骨質(zhì)吸收的關系密切,>3.0 g·cm-3的植骨密度成功率高[81],裂隙窄的患者較裂隙寬的患者術后效果好,激素及營養(yǎng)失衡、先天性疾?。ㄈ鏣urner綜合征)會減慢或阻止骨形成。而無張力封閉鼻底,封閉口鼻瘺;無張力、嚴密封閉受區(qū)創(chuàng)面;保持口腔衛(wèi)生,均可以減少術后植入骨的吸收。
早期的初期骨移植采取廣泛硬腭解剖,圍繞和穿過犁骨前頜骨縫合以及內(nèi)置骨移植,常繼發(fā)面中部后縮、牙弓形態(tài)差等。初期骨移植不僅影響上頜骨矢狀向生長[82],而且影響其垂直向[83-84]及水平向[2,4,85]生長。不論在行初期唇裂整復術的同時還是初期腭裂整復術的同時行牙齦骨膜成形術,均會導致患兒上頜骨發(fā)育嚴重受限[86-87],增加后期需行Le Fort Ⅰ截骨的比率[88],于是許多治療中心停止開展牙槽突裂植骨術。但有學者[4,89-90]認為,在初期植骨術中若不損傷犁骨-前頜骨縫,則無明顯上頜骨發(fā)育障礙,不需行正頜手術。Rosenstein等[91-93]對初期骨移植進行了術式改良,結果顯示:骨移植對面中部生長無明顯影響,沒有降低上頜骨的生長潛力,患者結合正畸治療即可形成較好的咬合關系。Trotman等[82]研究發(fā)現(xiàn),盡管行一期植骨的患者的上頜骨凸度較未植骨患者的明顯降低,但下頜骨代償性地向后下方旋轉,掩飾了面中部的發(fā)育不足[94],下頜骨良好的代償作用可以降低前牙反率[83],患者并未出現(xiàn)上下頜骨間骨性Ⅲ類關系[3]。
牙齦骨膜成形術后,成骨量在10%~100%之間[7-8],口鼻瘺發(fā)生率較高,且影響上頜骨生長發(fā)育[4-6,95-97],故許多學者不再使用該術式。
對于混合牙列中后期的二期植骨術,多數(shù)學者認為其對上頜骨矢狀向及垂直向發(fā)育均無不利影響[19,97-99],僅影響牙槽突裂隙周圍局部牙槽骨的形態(tài)[100]。Enemark等[14]的研究結果示,尖牙萌出前植骨組的前上面高明顯較未植骨組減少。但尖牙的萌出能刺激牙槽嵴骨質(zhì)的沉積,增加上頜骨的垂直高度[99]。
[1] Kriens O. Primary osteoplasty in patients with clefts of lip, alveolus and palate[J]. Acta Otorhinolaryngol Belg, 1968, 22(6):687-696.
[2] Robertson NR, Jolleys A. Effects of early bone grafting in complete clefts of lip and palate[J]. Plast Reconstr Surg, 1968, 42(5):414-421.
[3] Rehrmann AH, Koberg WR, Koch H. Long-term postoperative results of primary and secondary bonegrafting in complete clefts of lip and palate[J]. Cleft Palate J, 1970, 7:206-221.
[4] Friede H, Johanson B. A follow-up study of cleft children treated with primary bone grafting. 1. Orthodontic aspects[J]. Scand J Plast Reconstr Surg, 1974, 8(1/2):88-103.
[5] Matic DB, Power SM. The effects of gingivoperiosteoplasty following alveolar molding with a pinretained Latham appliance versus secondary bone grafting on midfacial growth in patients with unilateral clefts[J]. Plast Reconstr Surg, 2008, 122(3):863- 870; discussion 871-873.
[6] Power SM, Matic DB. Gingivoperiosteoplasty following alveolar molding with a Latham appliance versus secondary bone grafting: the effects on bone production and midfacial growth in patients with bilateral clefts[J]. Plast Reconstr Surg, 2009, 124(2): 573-582.
[7] Boyne PJ, Sands NR. Secondary bone grafting of residual alveolar and palatal clefts[J]. J Oral Surg, 1972, 30(2):87-92.
[8] Boyne PJ, Sands NR. Combined orthodontic-surgical management of residual palato-alveolar cleft defects [J]. Am J Orthod, 1976, 70(1):20-37.
[9] Abyholm FE, Bergland O, Semb G. Secondary bone grafting of alveolar clefts. A surgical/orthodontic treatment enabling a non-prosthodontic rehabilitation in cleft lip and palate patients[J]. Scand J Plast Reconstr Surg, 1981, 15(2):127-140.
[10] Turvey TA, Vig K, Moriarty J, et al. Delayed bone grafting in the cleft maxilla and palate: a retrospective multidisciplinary analysis[J]. Am J Orthod, 1984, 86(3):244-256.
[11] Bergland O, Semb G, Abyholm FE. Elimination of the residual alveolar cleft by secondary bone grafting and subsequent orthodontic treatment[J]. Cleft Palate J, 1986, 23(3):175-205.
[12] Lilja J, M?ller M, Friede H, et al. Bone grafting at the stage of mixed dentition in cleft lip and palate patients[J]. Scand J Plast Reconstr Surg Hand Surg, 1987, 21(1):73-79.
[13] Paulin G, Astrand P, Rosenquist JB, et al. Intermediate bone grafting of alveolar clefts[J]. J Craniomaxillofac Surg, 1988, 16(1):2-7.
[14] Enemark H, Sindet-Pedersen S, Bundgaard M. Longterm results after secondary bone grafting of alveolar clefts[J]. J Oral Maxillofac Surg, 1987, 45(11):913- 919.
[15] Murthy AS, Lehman JA. Evaluation of alveolar bone grafting: a survey of ACPA teams[J]. Cleft Palate Craniofac J, 2005, 42(1):99-101.
[16] Lexer E. The classic: the use of free osteoplasty together with trials on arthrodesis and joint transplantation[J]. Clin Orthop Relat Res, 2008, 466(8):1771- 1776.
[17] Robertson NR, Jolleys A. An 11-year follow-up of the effects of early bone grafting in infants born with complete clefts of the lip and palate[J]. Br J Plast Surg, 1983, 36(4):438-443.
[18] 石冰. 唇腭裂修復外科學[M]. 成都: 四川大學出版社, 2004:391-404. Shi B. Surgery of cleft lip and palate repair[M]. Chengdu: Sichuan University Publishing House, 2004:391-404.
[19] Daskalogiannakis J, Ross RB. Effect of alveolar bone grafting in the mixed dentition on maxillary growth in complete unilateral cleft lip and palate patients[J]. Cleft Palate Craniofac J, 1997, 34(5):455-458.
[20] Ozawa T, Omura S, Fukuyama E, et al. Factors influencing secondary alveolar bone grafting in cleft lip and palate patients: prospective analysis using CT image analyzer[J]. Cleft Palate Craniofac J, 2007, 44 (3):286-291.
[21] Lilja J, Kalaaji A, Friede H, et al. Combined bone grafting and delayed closure of the hard palate in patients with unilateral cleft lip and palate: facilitation of lateral incisor eruption and evaluation of indicators for timing of the procedure[J]. Cleft Palate Craniofac J, 2000, 37(1):98-105.
[22] Precious DS. A new reliable method for alveolar bone grafting at about 6 years of age[J]. J Oral Maxillofac Surg, 2009, 67(10):2045-2053.
[23] Enemark H, Jensen J, Bosch C. Mandibular bone graft material for reconstruction of alveolar cleft defects: long-term results[J]. Cleft Palate Craniofac J, 2001, 38(2):155-163.
[24] Nique T, Fonseca RJ, Upton LG, et al. Particulate allogeneic bone grafts into maxillary alveolar cleftsin humans: a preliminary report[J]. J Oral Maxillofac Surg, 1987, 45(5):386-392.
[25] Segura-Castillo JL, Aguirre-Camacho H, González-Ojeda A, et al. Reduction of bone resorption by the application of fibrin glue in the reconstruction of the alveolar cleft[J]. J Craniofac Surg, 2005, 16(1):105- 112.
[26] Carstens MH, Chin M, Li XJ. In situ osteogenesis: regeneration of 10-cm mandibular defect in porcine model using recombinant human bone morphogenetic protein-2(rhBMP-2) and Helistat absorbable collagen sponge[J]. J Craniofac Surg, 2005, 16(6):1033-1042.
[27] Chin M, Ng T, Tom WK, et al. Repair of alveolar clefts with recombinant human bone morphogenetic protein(rhBMP-2) in patients with clefts[J]. J Craniofac Surg, 2005, 16(5):778-789.
[28] Shimakura Y, Yamzaki Y, Uchinuma E. Experimental study on bone formation potential of cryopreserved human bone marrow mesenchymal cell/hydroxyapatite complex in the presence of recombinant human bone morphogenetic protein-2[J]. J Craniofac Surg, 2003, 14(1):108-116.
[29] Dickinson BP, Ashley RK, Wasson KL, et al. Reduced morbidity and improved healing with bone morphogenic protein-2 in older patients with alveolar cleft defects[J]. Plast Reconstr Surg, 2008, 121(1): 209-217.
[30] Marx RE, Carlson ER, Eichstaedt RM, et al. Plateletrich plasma: growth factor enhancement for bone grafts[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 85(6):638-646.
[31] Marukawa E, Oshina H, Iino G, et al. Reduction of bone resorption by the application of platelet-rich plasma(PRP) in bone grafting of the alveolar cleft[J]. J Craniomaxillofac Surg, 2011, 39(4):278-283.
[32] 柴崗, 張艷, 胡曉潔, 等. 自體骨髓基質(zhì)干細胞在齒槽裂骨缺損修復中的應用[J]. 中華整形外科雜志, 2006, 22(6):409-411. Chai G, Zhang Y, Hu XJ, et al. Repair alveolar cleft bone defects with bone marrow stromal cells[J]. Chin J Plast Surg, 2006, 22(6):409-411.
[33] Gimbel M, Ashley RK, Sisodia M, et al. Repair of alveolar cleft defects: reduced morbidity with bone marrow stem cells in a resorbable matrix[J]. J Craniofac Surg, 2007, 18(4):895-901.
[34] Hibi H, Yamada Y, Ueda M, et al. Alveolar cleft osteoplasty using tissue-engineered osteogenic material[J]. Int J Oral Maxillofac Surg, 2006, 35(6): 551-555.
[35] LeGeros RZ. Properties of osteoconductive biomaterials: calcium phosphates[J]. Clin Orthop Relat Res, 2002(395):81-98.
[36] Feinberg SE, Weisbrode SE, Heintschel G. Radiographic and histological analysis of tooth eruption through calcium phosphate ceramics in the cat[J]. Arch Oral Biol, 1989, 34(12):975-984.
[37] Letic-Gavrilovic A, Piattelli A, Abe K. Nerve growth factor beta(NGF beta) delivery via a collagen/hydroxyapatite(Col/HAp) composite and its effects on new bone ingrowth[J]. J Mater Sci Mater Med, 2003, 14 (2):95-102.
[38] 袁奎封, 來慶國, 綦成, 等. 倍骼生修復牙槽突裂的初步臨床觀察[J]. 上海口腔醫(yī)學, 2004, 13(5):465 468. Yuan KF, Lai QG, Qi C, et al. Clinical study of bioglass for repairing alveolar cleft[J]. Shanghai J Stomatol, 2004, 13(5):465-468.
[39] Pradel W, Tausche E, Gollogly J, et al. Spontaneous tooth eruption after alveolar cleft osteoplasty using tissue-engineered bone: a case report[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 105(4):440-444.
[40] Hossain MZ, Kyomen S, Tanne K. Biologic responses of autogenous bone and beta-tricalcium phosphate ceramics transplanted into bone defects to orthodontic forces[J]. Cleft Palate Craniofac J, 1996, 33(4):277- 283.
[41] 楊超, 石冰. 牙槽突裂植骨術的技術改進與初步評價[J]. 中國實用口腔科雜志, 2012, 5(6):327-332. Yang C, Shi B. Technology improvement and the preliminary evaluation of alveolar bone graft[J]. Chin J Pract Stomatol, 2012, 5(6):327-332.
[42] 楊超, 石冰, 劉坤, 等. 腭側入路牙槽突裂植骨術的初步應用與評價[J]. 華西口腔醫(yī)學雜志, 2013, 31 (1):30-33. Yang C, Shi B, Liu K, et al. Initial study and evaluation on alveolar bone graft by palate side approach [J]. West Chin J Stomatol, 2013, 31(1):30-33.
[43] Alonso N, Tanikawa DY, Freitas Rda S, et al. Evaluation of maxillary alveolar reconstruction using a resorbable collagen sponge with recombinant human bone morphogenetic protein-2 in cleft lip and palate patients[J]. Tis Eng Part C Meth, 2010, 16(5):1183- 1189.
[44] Canan LW Jr, da Silva Freitas R, Alonso N, et al. Human bone morphogenetic protein-2 use for maxillary reconstruction in cleft lip and palate patients[J]. J Craniofac Surg, 2012, 23(6):1627-1633.
[45] Neovius E, Lemberger M, Docherty Skogh AC, et al. Alveolar bone healing accompanied by severe swelling in cleft children treated with bone morphogenetic protein-2 delivered by hydrogel[J]. J Plast Reconstr Aesthet Surg, 2013, 66(1):37-42.
[46] van Hout WM, Mink van der Molen AB, Breugem CC, et al. Reconstruction of the alveolar cleft: can growth factor-aided tissue engineering replace autologous bone grafting? A literature review and systematic review of results obtained with bone morphogenetic protein-2[J]. Clin Oral Investig, 2011, 15(3): 297-303.
[47] Foster TE, Puskas BL, Mandelbaum BR, et al. Platelet-rich plasma: from basic science to clinical applications[J]. Am J Sports Med, 2009, 37(11):2259- 2272.
[48] Matthews D. Rapid expansion in clefts[J]. Plast Reconstr Surg, 1975, 56(4):396-401.
[49] Capelozza Filho L, De Almeida AM, Ursi WJ. Rapid maxillary expansion in cleft lip and palate patients [J]. J Clin Orthod, 1994, 28(1):34-39.
[50] Robertson NR, Fish J. Some observations on rapid expansion followed by bone grafting in cleft lip and palate[J]. Cleft Palate J, 1972, 9:236-245.
[51] Bajaj AK, Wongworawat AA, Punjabi A. Management of alveolar clefts[J]. J Craniofac Surg, 2003, 14 (6):840- 846.
[52] da Silva Filho OG, Boiani E, de Oliveira Cavassan A, et al. Rapid maxillary expansion after secondary alveolar bone grafting in patients with alveolar cleft [J]. Cleft Palate Craniofac J, 2009, 46(3):331-338.
[53] Newlands LC. Secondary alveolar bone grafting in cleft lip and palate patients[J]. Br J Oral Maxillofac Surg, 2000, 38(5):488-491.
[54] Semb G. Alveolar bone grafting[J]. Front Oral Biol, 2012, 16:124-136.
[55] Craven C, Cole P, Hollier L Jr, et al. Ensuring success in alveolar bone grafting: a three-dimensional approach[J]. J Craniofac Surg, 2007, 18(4):855-859.
[56] Habel A, Sell D, Mars M. Management of cleft lip and palate[J]. Arch Dis Child, 1996, 74(4):360-366.
[57] 陸斌, 周龍. 牙槽突裂植骨的術后評價[J]. 中國實用口腔科雜志, 2012, 5(6):336-340. Lu B, Zhou L. Post-operative evaluation of alveolar cleft bone grafting[J]. Chin J Pract Stomatol, 2012, 5(6):336-340.
[58] Hynes PJ, Earley MJ. Assessment of secondary alveolar bone grafting using a modification of the Bergland grading system[J]. Br J Plast Surg, 2003, 56(7):630-636.
[59] Witherow H, Cox S, Jones E, et al. A new scale to assess radiographic success of secondary alveolar bone grafts[J]. Cleft Palate Craniofac J, 2002, 39(3): 255-260.
[60] Lee C, Crepeau RJ, Williams HB, et al. Alveolar cleft bone grafts: results and imprecisions of the dental radiograph[J]. Plast Reconstr Surg, 1995, 96(7):1534- 1538.
[61] Rosenstein SW, Long RE Jr, Dado DV, et al. Comparison of 2-D calculations from periapical and occlusal radiographs versus 3-D calculations from CAT scans in determining bone support for cleftadjacent teeth following early alveolar bone grafts[J]. Cleft Palate Craniofac J, 1997, 34(3):199-205.
[62] Iino M, Ishii H, Matsushima R, et al. Comparison of intraoral radiography and computed tomography in evaluation of formation of bone after grafting for repair of residual alveolar defects in patients with cleft lip and palate[J]. Scand J Plast Reconstr Surg Hand Surg, 2005, 39(1):15-21.
[63] van der Meij AJ, Baart JA, Prahl-Andersen B, et al. Bone volume after secondary bone grafting in unilateral and bilateral clefts determined by computed tomography scans[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2001, 92(2):136-141.
[64] van der Meij Aj, Baart JA, Prahl-Andersen B, et al. Outcome of bone grafting in relation to cleft width in unilateral cleft lip and palate patients[J]. Oral SurgOral Med Oral Pathol Oral Radiol Endod, 2003, 96(1):19-25.
[65] Feichtinger M, Zemann W, Mossb?ck R, et al. Three-dimensional evaluation of secondary alveolar bone grafting using a 3D-navigation system based on computed tomography: a two-year follow-up[J]. Br J Oral Maxillofac Surg, 2008, 46(4):278-282.
[66] Kawakami S, Hiura K, Yokozeki M, et al. Longitudinal evaluation of secondary bone grafting into the alveolar cleft[J]. Cleft Palate Craniofac J, 2003, 40 (6):569-576.
[67] Koberg WR. Present view on bone grafting in cleft palate. (A review of the literature)[J]. J Maxillofac Surg, 1973, 1(4):185-193.
[68] Oberoi S, Chigurupati R, Gill P, et al. Volumetric assessment of secondary alveolar bone grafting using cone beam computed tomography[J]. Cleft Palate Craniofac J, 2009, 46(5):503-511.
[69] 吳軍, 王國民. 牙槽突裂植骨術后植入骨的定位分析[J]. 華西口腔醫(yī)學雜志, 2010, 28(2):181-184. Wu J, Wang GM. Identify the position of bone bridge after alveolar cleft bone grafting[J]. West Chin J Stomatol, 2010, 28(2):181-184.
[70] 吳軍, 王國民, 錢玉芬, 等. 牙槽突裂植骨術后的植骨效果評價[J]. 華西口腔醫(yī)學雜志, 2008, 26(3): 284-286. Wu J, Wang GM, Qian YF, et al. Evaluation of bone volume of alveolar cleft before and after bone graft [J]. West Chin J Stomatol, 2008, 26(3):284-286.
[71] Denny AD, Talisman R, Bonawitz SC. Secondary alveolar bone grafting using milled cranial bone graft: a retrospective study of a consecutive series of 100 patients[J]. Cleft Palate Craniofac J, 1999, 36 (2):144-153.
[72] Kalaaji A, Lija J, Friede H. Bone grafting at the stage of mixed and permanent dentition in patients with clefts of the lip and primary palate[J]. Plast Reconstr Surg, 1994, 93(4):690-696.
[73] Trindade IK, Mazzottini R, Silva Filho OG, et al. Long-term radiographic assessment of secondary alveolar bone grafting outcomes in patients with alveolar clefts[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2005, 100(3):271-277.
[74] Hall HD, Posnick JC. Early results of secondary bone grafts in 106 alveolar clefts[J]. J Oral Maxillofac Surg, 1983, 41(5):289-294.
[75] Jia YL, James DR, Mars M. Bilateral alveolar bone grafting: a report of 55 consecutively-treated patients [J]. Eur J Orthod, 1998, 20(3):299-307.
[76] Giudice G, Gozzo G, Sportelli P, et al. The role of functional orthodontic stress on implants in residual alveolar cleft[J]. Plast Reconstr Surg, 2007, 119(7): 2206-2217.
[77] Takahashi T, Inai T, Kochi S, et al. Long-term followup of dental implants placed in a grafted alveolar cleft: evaluation of alveolar bone height[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2008, 105 (3):297-302.
[78] Mori S, Sato T, Hara T, et al. Effect of continuous pressure on histopathological changes in denturesupporting tissues[J]. J Oral Rehabil, 1997, 24(1): 37-46.
[79] Feichtinger M, Mossb?ck R, K?rcher H. Evaluation of bone volume following bone grafting in patients with unilateral clefts of lip, alveolus and palate using a CT-guided three-dimensional navigation system[J]. J Craniomaxillofac Surg, 2006, 34(3):144-149.
[80] Lukash FN, Zingaro EA, Salig J. The survival of free nonvascularized bone grafts in irradiated areas by wrapping in muscle flaps[J]. Plast Reconstr Surg, 1984, 74(6):783-788.
[81] Okawachi T. Evaluation of autogenous iliac bone gra fting for alveolar cleft of cleft lip and palate patients [J]. J Jap Cleft Palate Assoc, 2001, 26(1):55-67.
[82] Trotman CA, Long RE Jr, Rosenstein SW, et al. Comparison of facial form in primary alveolar bonegrafted and nongrafted unilateral cleft lip and palate patients: intercenter retrospective study[J]. Cleft Palate Craniofac J, 1996, 33(2):91-95.
[83] Suzuki A, Goto K, Nakamura N, et al. Cephalometric comparison of craniofacial morphology between primary bone grafted and nongrafted complete unilateral cleft lip and palate adults[J]. Cleft Palate Craniofac J, 1996, 33(5):429-435.
[84] Grisius TM, Spolyar J, Jackson IT, et al. Assessment of cleft lip and palate patients treated with presurgical orthopedic correction and either primary bone grafts, gingivoperiosteoplasty, or without alveolar graftingprocedures[J]. J Craniofac Surg, 2006, 17(3):468- 473.
[85] Jolleys A, Robertso NR. A study of the effects of early bone-grafting in complete clefts of the lip and palate—five year study[J]. Brit J Plast Sur, 1972(3): 229-237.
[86] Wang YC, Liao YF, Chen PK. Outcome of gingivoperiosteoplasty for the treatment of alveolar clefts in patients with unilateral cleft lip and palate[J]. Br J Oral Maxillofac Surg, 2013, 51(7):650-655.
[87] Meazzini MC, Tortora C, Morabito A, et al. Alveolar bone formation in patients with unilateral and bilateral cleft lip and palate after early secondary gingivoalveoloplasty: long-term results[J]. Plast Reconstr Surg, 2007, 119(5):1527-1537.
[88] Meazzini MC, Rossetti G, Garattini G, et al. Early secondary gingivo-alveolo-plasty in the treatment of unilateral cleft lip and palate patients: 20 years experience[J]. J Craniomaxillofac Surg, 2010, 38(3): 185-191.
[89] van Aalst JA, Eppley BL, Hathaway RR, et al. Surgical technique for primary alveolar bone grafting[J]. J Craniofac Surg, 2005, 16(4):706-711.
[90] Friede H, Johanson B. Adolescent facial morphology of early bone-grafted cleft lip and palate patients[J]. Scand J Plast Reconstr Surg, 1982, 16(1):41-53.
[91] Rosenstein SW, Monroe CW, Kernahan DA, et al. The case of early bone grafting in cleft lip and cleft palate[J]. Plast Reconstr Surg, 1982, 70(3):297-309.
[92] Rosenstein S, Dado DV, Kernahan D, et al. The case for early bone grafting in cleft lip and palate: a second report[J]. Plast Reconstr Surg, 1991, 87(4): 644-654.
[93] Rosenstein SW, Grasseschi M, Dado DV. A longterm retrospective outcome assessment of facial growth, secondary surgical need, and maxillary lateral incisor status in a surgical-orthodontic protocol for complete clefts[J]. Plast Reconstr Surg, 2003, 111(1):1-16.
[94] Sameshima GT, Smahel Z. Facial growth in adulthood after primary periosteoplasty or primary bone grafting in UCLP[J]. Cleft Palate Craniofac J, 2000, 37(4):379-384.
[95] Matic DB, Power SM. Evaluating the success of gingivoperiosteoplasty versus secondary bone grafting in patients with unilateral clefts[J]. Plast Reconstr Surg, 2008, 121(4):1343-1353; discussion 1368- 1369.
[96] Brusati R, Mannucci N. The early gingivoalveoloplasty. Preliminary results[J]. Scand J Plast Reconstr Surg Hand Surg, 1992, 26(1):65-70.
[97] Levitt T, Long RE Jr, Trotman CA. Maxillary growth in patients with clefts following secondary alveolar bone grafting[J]. Cleft Palate Craniofac J, 1999, 36 (5):398-406.
[98] Semb G. Effect of alveolar bone grafting on maxillary growth in unilateral cleft lip and palate patients [J]. Cleft Palate J, 1988, 25(3):288-295.
[99] Chang HP, Chuang MC, Yang YH, et al. Maxillofacial growth in children with unilateral cleft lip and palate following secondary alveolar bone grafting: an interim evaluation[J]. Plast Reconstr Surg, 2005, 115(3):687-695.
[100] Trotman CA, Papillon F, Ross RB, et al. A retrospective comparison of frontal facial dimensions in alveolar-bone-grafted and nongrafted unilateral cleft lip and palate patients[J]. Angle Orthod, 1997, 67(5): 389-394.
(本文編輯 張玉楠)
Advances in cleft alveolar repair
Xu Xue1, Yang Chao1, Liu Kun1, Huang Ning2, Zheng Qian1, Shi Bing1. (1. State Key Laboratory of Oral Diseases, Dept. of Cleft Lip and Palate Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; 2. State Key Laboratory of Oral Diseases, Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
Cleft alveolar repair have become to be an important role in cleft treatment procedure. Alveolar bone graft was proposed in the early 20th century, but controversies existed in many issues in alveolar repair. This paper makes a review regarding advances in timing of alveolar repair, implantation materials and surgical methods, and etc.
cleft alveolar; bone graft; surgery
R 782.2
A
10.7518/gjkq.2016.04.014
2015-11-12;
2016-03-11
徐雪,博士,Email:xuxue2008hx@163.com
石冰,教授,博士,Email:shibingcn@sina.com