邱靜怡 萬(wàn)凌云 趙志河 李娟
口腔疾病研究國(guó)家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院正畸科(四川大學(xué)) 成都 610041
內(nèi)外源性應(yīng)力對(duì)間質(zhì)干細(xì)胞成軟骨分化的調(diào)控
邱靜怡 萬(wàn)凌云 趙志河 李娟
口腔疾病研究國(guó)家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院正畸科(四川大學(xué)) 成都 610041
間質(zhì)干細(xì)胞(MSC)來(lái)源的多元性為誘導(dǎo)其成脂向分化、成肌向分化、成骨向分化和成軟骨向分化奠定了生物學(xué)基礎(chǔ),誘導(dǎo)MSC成軟骨向分化受化學(xué)刺激和力學(xué)刺激等因素的調(diào)節(jié)。外源性應(yīng)力和內(nèi)源性應(yīng)力是力學(xué)刺激的兩種基本形式,改變細(xì)胞外基質(zhì)(ECM)硬度、細(xì)胞形態(tài)、ECM納米形貌和細(xì)胞密度等內(nèi)源性應(yīng)力,加載單純壓縮力、壓縮力、聯(lián)合剪切力、牽張力和流體靜壓力等外源性應(yīng)力,均對(duì)MSC成軟骨向分化有不同程度的影響;因此,深入研究?jī)?nèi)外源性力學(xué)刺激調(diào)控MSC成軟骨分化的效應(yīng)及機(jī)制,對(duì)于促進(jìn)軟骨再生和修復(fù),既必要也可行。本文就內(nèi)外源性應(yīng)力對(duì)MSC成軟骨向分化的調(diào)控等研究進(jìn)展作一綜述,旨在為后續(xù)的研究提供參考。
間質(zhì)干細(xì)胞; 力學(xué)刺激; 力學(xué)信號(hào)轉(zhuǎn)導(dǎo); 干細(xì)胞分化; 成軟骨分化
骨關(guān)節(jié)炎是一種以反復(fù)關(guān)節(jié)疼痛和漸進(jìn)性功能障礙為主要臨床表現(xiàn)的中老年常見(jiàn)疾病。至2008年,中國(guó)60歲以上人口逾1.85億,其中罹患骨關(guān)節(jié)炎者達(dá)5 000萬(wàn)并逐年上升[1]。由于軟骨僅靠關(guān)節(jié)滑液提供大部分的營(yíng)養(yǎng),難以自身修復(fù),因此迄今對(duì)骨關(guān)節(jié)炎的治療仍以對(duì)癥治療為主,
為了更好地將MSC應(yīng)用于軟骨組織缺損的修復(fù),大量致力于更高效、穩(wěn)定地誘導(dǎo)MSC成軟骨向分化的研究發(fā)現(xiàn),MSC的分化受多因素調(diào)節(jié),但總體上分為化學(xué)刺激和力學(xué)刺激兩大類。以往誘導(dǎo)MSC成軟骨分化的常規(guī)方法是添加轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF)-β和堿性成纖維細(xì)胞生長(zhǎng)因子等[9],但單純的化學(xué)刺激很難有效地維持其軟骨分化表型[10]。
隨著學(xué)科的交叉與融合,機(jī)體的力學(xué)過(guò)程與生物學(xué)過(guò)程之間的相互關(guān)系被廣泛研究,力學(xué)刺激及隨后的力學(xué)轉(zhuǎn)導(dǎo)過(guò)程在決定干細(xì)胞命運(yùn)、維持其分化表型上的作用得到了證實(shí)[11]。大量學(xué)者通過(guò)加載各種機(jī)械應(yīng)力刺激來(lái)調(diào)控MSC的成軟骨分化過(guò)程,取得了明顯的成效。外源性應(yīng)力和內(nèi)源性應(yīng)力是機(jī)械應(yīng)力刺激的兩種基本形式。通過(guò)改變細(xì)胞外基質(zhì)(extracellular matrix,ECM)硬度、細(xì)胞形態(tài)、ECM納米形貌和細(xì)胞密度等內(nèi)源性應(yīng)力,加載單純壓縮力、壓縮力、聯(lián)合剪切力、牽張力和流體靜壓力等外源性應(yīng)力,均對(duì)MSC成軟骨向分化有不同程度的影響[12-13];因此,深入研究?jī)?nèi)外源性力學(xué)刺激調(diào)控MSC成軟骨分化的效應(yīng)及機(jī)制,對(duì)于促進(jìn)軟骨再生和修復(fù),是必要且可行的。本文就內(nèi)外源性應(yīng)力對(duì)MSC成軟骨向分化的調(diào)控等研究進(jìn)展作一綜述,旨在為后續(xù)的研究提供參考。
ECM是細(xì)胞賴以生存的生物微環(huán)境。ECM可通過(guò)影響細(xì)胞的黏附、鋪展、遷移、增殖、分化和程序性死亡來(lái)調(diào)控細(xì)胞的行為,ECM還可通過(guò)強(qiáng)化ECM配體和細(xì)胞受體間的交互作用,從而調(diào)控MSC向不同方向分化[14];當(dāng)然,這一系列的力學(xué)信號(hào)轉(zhuǎn)導(dǎo)基礎(chǔ)尚不清楚。細(xì)胞生長(zhǎng)環(huán)境力學(xué)特性的改變也會(huì)啟動(dòng)細(xì)胞內(nèi)的力學(xué)轉(zhuǎn)導(dǎo)過(guò)程,這些統(tǒng)稱為內(nèi)源性應(yīng)力或細(xì)胞生成力[15]。越來(lái)越多的研究顯示,以ECM硬度、基質(zhì)地表形貌和細(xì)胞固有形態(tài)為代表的內(nèi)源性應(yīng)力可調(diào)控MSC的分化方向并有助于其表型穩(wěn)定。
1.1 ECM硬度
ECM硬度是細(xì)胞微環(huán)境中最重要的內(nèi)源性應(yīng)力來(lái)源。細(xì)胞通過(guò)細(xì)胞骨架黏附于ECM表面形成黏附斑;而ECM硬度的改變可解聚黏附斑的肌動(dòng)蛋白-肌球蛋白纖維張力,改變細(xì)胞與基質(zhì)之間的黏附力并將其轉(zhuǎn)化為化學(xué)刺激,完成內(nèi)源性力學(xué)轉(zhuǎn)導(dǎo)過(guò)程。Engler等[16]構(gòu)建了由1型膠原蛋白表面修飾且硬度區(qū)間不同的PAAm凝膠培養(yǎng)基,在化學(xué)刺激相同時(shí),ECM硬度決定MSC的分化方向:當(dāng)ECM的硬度與腦組織硬度相同時(shí)(約1 kPa),可誘導(dǎo)MSC成神經(jīng)元向分化;當(dāng)ECM的硬度與骨骼肌硬度相同時(shí)(約10 kPa),可以誘導(dǎo)MSC成肌向分化;當(dāng)ECM的硬度與膠質(zhì)骨硬度相同時(shí)(約100 kPa),可誘導(dǎo)MSC成骨向分化。更值得關(guān)注的是,ECM硬度刺激對(duì)MSC分化表型的維持作用。在特定ECM硬度刺激誘導(dǎo)的前7 d,MSC即出現(xiàn)相對(duì)應(yīng)的初始分化表型,若在此時(shí)加入其他分化方向的轉(zhuǎn)錄因子,MSC將轉(zhuǎn)向化學(xué)誘導(dǎo)方向分化;然而在ECM硬度刺激持續(xù)誘導(dǎo)3周后,任何轉(zhuǎn)錄因子的加入都無(wú)法改變其已有的分化方向[11,16];因此在長(zhǎng)時(shí)間誘導(dǎo)的情況下,內(nèi)源性力學(xué)刺激對(duì)MSC分化方向的調(diào)控作用更加持續(xù),對(duì)分化表型的維持更加穩(wěn)定,具有更廣闊的應(yīng)用前景。
ECM硬度對(duì)干細(xì)胞成骨、成肌、成神經(jīng)分化都具有明確的調(diào)控及維持效應(yīng),那么ECM硬度能否調(diào)控MSC成軟骨分化呢?2011年,Park等[17]分別在ECM硬度值為1 kPa的1型膠原蛋白凝膠上及ECM硬度約為2 GPa的1型膠原蛋白沖洗過(guò)的培養(yǎng)皿上分別培養(yǎng)MSC,以系統(tǒng)探究ECM硬度對(duì)MSC分化的影響。結(jié)果顯示:MSC在軟基質(zhì)中培養(yǎng)后,軟骨細(xì)胞標(biāo)志物2型膠原蛋白及脂肪細(xì)胞標(biāo)志物脂蛋白脂肪酶表達(dá)均上調(diào);在添加TGF-β后,MSC在軟基質(zhì)上向成軟骨方向分化的趨勢(shì)進(jìn)一步增加,而成脂向受到抑制,在較硬基質(zhì)(15 kPa)上則成肌向分化。2012年,Toh等[18]運(yùn)過(guò)氧化氫對(duì)透明質(zhì)酸-酪胺酸偶聯(lián)物的交聯(lián)度進(jìn)行調(diào)控,得到了ECM硬度值為5.4、9.5、11.8 kPa的三種基質(zhì)并且發(fā)現(xiàn),MSC在ECM硬度為5.4 kPa的較軟基質(zhì)中,黏多糖和2型膠原蛋白明顯增多,即MSC在此ECM硬度區(qū)間為成軟骨向分化。Kwon等[19]發(fā)現(xiàn),即使不添加成軟骨誘導(dǎo)因子,MSC在低硬度(約1 kPa)的磺化培養(yǎng)基上培養(yǎng)后,諸如2型膠原蛋白α1、聚集蛋白聚糖和Sox9等成軟骨標(biāo)志物的表達(dá)也明顯高于硬基質(zhì)。Xue等[20]的研究也得出了相同的結(jié)果。以上研究充分說(shuō)明,ECM硬度可調(diào)控MSC的成軟骨分化。
目前,越來(lái)越多的研究[21-24]顯示,力學(xué)信號(hào)通過(guò)整聯(lián)蛋白、細(xì)胞骨架系統(tǒng)和RhoA通路調(diào)控MSC的增殖和分化。ECM硬度通過(guò)改變細(xì)胞骨架張力纖維的結(jié)構(gòu),調(diào)節(jié)其張應(yīng)力的大??;而細(xì)胞骨架張應(yīng)力的改變,可激活RhoA和Rho相關(guān)的卷曲蛋白激酶(Rho-associated coiled-coil protein kinase,ROCK)信號(hào)轉(zhuǎn)導(dǎo)通路來(lái)調(diào)節(jié)細(xì)胞的分化方向,RhoA和ROCK兩者之間存在著大量偶聯(lián)的正負(fù)反饋調(diào)節(jié)機(jī)制。同時(shí),Hippo信號(hào)轉(zhuǎn)導(dǎo)通路的經(jīng)典信號(hào)分子酵母相關(guān)蛋白和TAZ(tafazzin)被認(rèn)為參與ECM調(diào)控細(xì)胞分化命運(yùn)的過(guò)程[25]。
1.2 細(xì)胞形態(tài)及ECM的納米形貌
ECM是細(xì)胞生長(zhǎng)微環(huán)境中的重要組成部分,在細(xì)胞鋪展、遷移、增殖、分化的過(guò)程中,細(xì)胞會(huì)受到來(lái)自ECM的多種力學(xué)刺激,如拉應(yīng)力、壓應(yīng)力、流體剪切力、滲透壓力信號(hào)的刺激,細(xì)胞可以識(shí)別微環(huán)境中這些微小甚至是納米級(jí)別的力學(xué)改變,從而轉(zhuǎn)變自身的細(xì)胞形態(tài)。早在1978年Folkman等[26]就發(fā)現(xiàn),細(xì)胞形態(tài)是細(xì)胞生長(zhǎng)增殖及生理特性的重要調(diào)節(jié)器,同時(shí)細(xì)胞形態(tài)可影響胚胎初期的生長(zhǎng)發(fā)育及干細(xì)胞的分化方向。細(xì)胞形狀的改變可以改變細(xì)胞內(nèi)的力學(xué)信號(hào)轉(zhuǎn)導(dǎo)過(guò)程,從而對(duì)心肌細(xì)胞的生長(zhǎng)產(chǎn)生影響[27],而ECM改變所帶來(lái)的細(xì)胞形態(tài)變化也是毛細(xì)血管內(nèi)皮細(xì)胞生長(zhǎng)分化變異的誘因之一[28]。深入的研究[29-30]證實(shí),人工合成的ECM可以改變細(xì)胞形態(tài),調(diào)控MSC成軟骨向定向分化;且在局限的區(qū)域內(nèi)培養(yǎng)細(xì)胞,細(xì)胞形狀對(duì)細(xì)胞分化的調(diào)控作用要大于ECM硬度對(duì)其的影響。引起細(xì)胞形態(tài)改變的內(nèi)外源性因子與決定細(xì)胞分化方向的信號(hào)通路間存在著偶聯(lián)效應(yīng),同時(shí)細(xì)胞形態(tài)變化也會(huì)引起細(xì)胞生長(zhǎng)微環(huán)境中應(yīng)力刺激及滲透壓等的變化,這些改變也激活了部分細(xì)胞分化信號(hào)轉(zhuǎn)導(dǎo)通路,使細(xì)胞獲得了不同的分化趨勢(shì)[31-34]。
1.3 細(xì)胞密度
在體外誘導(dǎo)MSC成軟骨分化時(shí),為了還原軟骨胚胎發(fā)育時(shí)的細(xì)胞聚集狀態(tài),需要大約107個(gè)每毫升的MSC高接種密度,以便進(jìn)一步提高軟骨再生修復(fù)的成功率及效率。研究[23]顯示,高細(xì)胞接種密度促進(jìn)MSC的成脂、成軟骨向分化,而低細(xì)胞接種密度則有利于MSC成骨向分化。Xue等[20]發(fā)現(xiàn),ECM硬度與細(xì)胞密度間也有交互作用,兩者結(jié)合,共同決定了MSC的分化方向:當(dāng)細(xì)胞密度高達(dá)每平方厘米20 000個(gè)時(shí),MSC的培養(yǎng)環(huán)境無(wú)論軟硬,其細(xì)胞形態(tài)及相關(guān)表達(dá)分子的測(cè)定數(shù)據(jù)均無(wú)明顯差異;而當(dāng)細(xì)胞接種密度低至每平方厘米1 000個(gè)時(shí),MSC在軟性基質(zhì)中的成軟骨分化標(biāo)志分子與硬性基質(zhì)中相比較有所上調(diào)。該研究結(jié)果與上文所提及的軟基質(zhì)硬度促進(jìn)MSC成軟骨向分化的眾多研究結(jié)果相符,而這些研究結(jié)果也說(shuō)明,適當(dāng)?shù)募?xì)胞接種密度有利于ECM產(chǎn)生更多的促M(fèi)SC成軟骨向分化的功能蛋白,從而使MSC分化早期細(xì)胞與完全成熟的軟骨細(xì)胞更加相似。
除了內(nèi)源性應(yīng)力之外,作為一種更加直接的刺激方式,外源性力學(xué)刺激對(duì)關(guān)節(jié)軟骨的形成和維持也起著重要的作用。一直以來(lái),學(xué)者們?yōu)榱烁玫匮芯坎煌W(xué)刺激在軟骨組織工程中的應(yīng)用,開發(fā)了不同種類的生物反應(yīng)裝置,以求最大程度的模擬生物體內(nèi)關(guān)節(jié)的受力狀態(tài)。學(xué)者們運(yùn)用動(dòng)態(tài)壓縮力、循環(huán)流體靜壓力、周期性牽張力和層流剪切力等從單軸向和多軸向進(jìn)行力學(xué)加載,從而模擬軟骨在的關(guān)節(jié)內(nèi)的復(fù)雜力學(xué)環(huán)境,以此研究機(jī)械性外力對(duì)MSC成軟骨分化的影響。
2.1 壓縮力
關(guān)節(jié)組織在機(jī)械運(yùn)動(dòng)過(guò)程中會(huì)不斷對(duì)軟骨組織產(chǎn)生壓縮力,故而壓縮力對(duì)軟骨分化的影響一直是研究者探索的熱點(diǎn)。近年來(lái)大量的研究[35-38]也不斷地證實(shí),壓縮力對(duì)MSC成軟骨分化的調(diào)控有重要作用。該調(diào)控過(guò)程與多種影響因素有關(guān),其中研究最廣的是加力時(shí)間點(diǎn)。
Li等[39-40]發(fā)現(xiàn)化學(xué)刺激8 d后,延遲動(dòng)態(tài)壓縮力對(duì)MSC成軟骨分化誘導(dǎo)明顯,且其作用與化學(xué)誘導(dǎo)相似。Thorpe等[41]也發(fā)現(xiàn)對(duì)細(xì)胞加載動(dòng)態(tài)壓縮力的時(shí)間重要性,在細(xì)胞分化早期加載動(dòng)態(tài)壓縮力反而會(huì)抑制細(xì)胞向軟骨和肌等分化。也有研究[42]顯示,延遲動(dòng)態(tài)壓縮力對(duì)人MSC(human mesenchymal stem cell,hMSC)成軟骨分化有促進(jìn)作用??梢?jiàn),在正式的力學(xué)加載前通過(guò)化學(xué)誘導(dǎo)方法使細(xì)胞軟骨表型和ECM初步建立,更有利于其后續(xù)軟骨基質(zhì)特異性基因的表達(dá)。延遲動(dòng)態(tài)壓縮力可能是通過(guò)增強(qiáng)細(xì)胞內(nèi)源性化學(xué)因子活性、激活其下游信號(hào),從而與化學(xué)誘導(dǎo)起協(xié)同作用,誘導(dǎo)細(xì)胞成軟骨分化的[39]。另外,動(dòng)態(tài)壓縮力還可促進(jìn)MSC軟骨分化早期細(xì)胞增殖和活性,這也是干細(xì)胞分化的先決條件[43]。此外,在動(dòng)態(tài)壓縮力作用下培養(yǎng)體系的局部空間位置,也對(duì)MSC成軟骨分化相關(guān)基因表達(dá)、ECM的形成有影響[38]。壓應(yīng)力調(diào)控MSC成軟骨分化是一種復(fù)雜的力—化學(xué)—生物學(xué)過(guò)程,仍有許多影響因素還不清楚,其詳細(xì)的分子機(jī)制尚待深入研究。盡管以上研究結(jié)果都支持了單純壓縮力對(duì)MSC成軟骨分化的誘導(dǎo)作用,但因機(jī)體內(nèi)軟骨組織受力組成復(fù)雜,單純壓縮力難以真實(shí)模擬軟骨細(xì)胞的力學(xué)模型,故有研究者對(duì)此力加載模型進(jìn)行了改進(jìn)。
2.2 壓縮力聯(lián)合剪切力
機(jī)體進(jìn)行關(guān)節(jié)運(yùn)動(dòng)時(shí),會(huì)同時(shí)產(chǎn)生壓縮力和剪切力;因此單純地加載其中任何一種機(jī)械力到細(xì)胞培養(yǎng)體系上,都無(wú)法完全模擬關(guān)節(jié)的真實(shí)力學(xué)運(yùn)動(dòng),也無(wú)法為MSC形成軟骨向分化提供足夠的力學(xué)刺激信號(hào)[44];但表面剪切力可以促進(jìn)關(guān)節(jié)內(nèi)液體流動(dòng),進(jìn)而有利于生物力學(xué)信號(hào)的傳導(dǎo)和營(yíng)養(yǎng)物質(zhì)代謝產(chǎn)物的交換,影響成軟骨的分化。
2011年,Sch?tti等[44]將表面剪切力重疊于循環(huán)軸向壓縮力,在培養(yǎng)基不添加任何生長(zhǎng)因子的條件下作用于人骨髓MSC發(fā)現(xiàn),基質(zhì)黏多糖合成增加且隨時(shí)間變化合成量相對(duì)恒定,同時(shí)軟骨相關(guān)基因及其蛋白質(zhì)表達(dá)上調(diào)。他們以為相較于單軸向力學(xué)作用,多軸向的聯(lián)合力學(xué)加載也許可以更長(zhǎng)時(shí)間地維持干細(xì)胞表達(dá)成軟骨分化標(biāo)志物。此外,在細(xì)胞成軟骨分化早期誘導(dǎo)階段,添加化學(xué)誘導(dǎo)劑或采用多軸向力學(xué)刺激,均對(duì)干細(xì)胞定向分化有引導(dǎo)作用。在此基礎(chǔ)之上,Zahedmanesh 等[45]發(fā)現(xiàn),聯(lián)合應(yīng)力中壓縮主應(yīng)變是MSC成軟骨分化最重要的調(diào)控者之一,但單軸向壓縮力并不足以誘導(dǎo)細(xì)胞成軟骨分化,仍需在壓縮力和剪切力形成的多軸向載荷共同作用下才能實(shí)現(xiàn)誘導(dǎo)。相似地,Sch?tti等[44]也認(rèn)為在聯(lián)合應(yīng)力作用時(shí),軟骨相關(guān)基因才可以上調(diào),在此過(guò)程中剪切力才是關(guān)鍵的一項(xiàng)力學(xué)因素。雖然不同學(xué)者對(duì)于聯(lián)合應(yīng)力中的關(guān)鍵應(yīng)力有著不同觀點(diǎn),但不可否認(rèn)的是,二者中任何一種應(yīng)力的缺失都不足以決定干細(xì)胞軟骨分化命運(yùn)。
還有一些因素可能會(huì)影響多軸向力對(duì)MSC成軟骨分化的作用,譬如化學(xué)誘導(dǎo)劑質(zhì)量濃度、聯(lián)合加載力的頻率振幅等。Li等[46]發(fā)現(xiàn)在聯(lián)合加載力學(xué)刺激14 d后,未添加軟骨誘導(dǎo)劑的hMSC組2型膠原、黏多糖等表達(dá)明顯上調(diào),1 g·L-1低質(zhì)量濃度TGF-β1誘導(dǎo)組僅有黏多糖表達(dá)升高,而10 g·L-1高質(zhì)量濃度TGF-β1組則會(huì)掩飾力學(xué)刺激對(duì)MSC成軟骨分化的促進(jìn)。同一研究[47]還發(fā)現(xiàn),在7 d天化學(xué)誘導(dǎo)和7 d壓縮力聯(lián)合剪切力加載后,加載力頻率越高、振幅越大,hMSC成軟骨分化相關(guān)基因及其蛋白質(zhì)等表達(dá)越高。
2.3 牽張力
研究[48]顯示,牽張力是膝關(guān)節(jié)半月板的主要受力形式,因此探索周期性牽張力學(xué)在軟骨組織工程中的作用勢(shì)在必行。Friedl等[49]通過(guò)將周期張應(yīng)力加載于hMSC 3 d后,即檢測(cè)到軟骨分化早期相關(guān)分子的表達(dá)上調(diào)。還有研究[50]發(fā)現(xiàn),不同的牽張力加載周期會(huì)對(duì)MSC的成軟骨分化產(chǎn)生影響:在MSC成軟骨分化早期,加載4 d左右相對(duì)短時(shí)間的周期性張應(yīng)力,可促進(jìn)蛋白質(zhì)和蛋白多糖的合成;當(dāng)周期性張應(yīng)力時(shí)間延長(zhǎng)至12 d時(shí),僅促進(jìn)蛋白質(zhì)合成;而更長(zhǎng)時(shí)間的力學(xué)加載則明顯促進(jìn)1型膠原的合成。Baker等[48]將周期性牽張力加載在接種有MSC的納米纖維支架上,也獲得了相似的研究結(jié)果??梢?jiàn),牽張力刺激的作用時(shí)間長(zhǎng)短,在一定程度上影響著干細(xì)胞的成軟骨分化過(guò)程。
2.4 流體靜壓力
關(guān)節(jié)區(qū)運(yùn)動(dòng)后,因蛋白多糖的鎖水作用,關(guān)節(jié)滑液中的部分水分將儲(chǔ)存于軟骨基質(zhì)中,致使軟骨組織內(nèi)的流體靜壓力升高[35];但不同流體靜壓力對(duì)MSC成軟骨分化的影響不盡相同[51-55]。有學(xué)者[52]認(rèn)為,流體靜壓力對(duì)MSC成軟骨基因表達(dá)及基質(zhì)合成幾乎沒(méi)有影響。也有學(xué)者[51]對(duì)來(lái)源不同的豬骨髓MSC長(zhǎng)期加載10 MPa、1 Hz以及1 h每天、5 d每周循環(huán)流體靜壓力發(fā)現(xiàn),不同來(lái)源組間檢測(cè)結(jié)果不同。他們推測(cè),這一過(guò)程存在一定的個(gè)體依賴性。有學(xué)者[56]則發(fā)現(xiàn),分別加載動(dòng)態(tài)流體靜壓力和靜態(tài)流體靜壓力,前者明顯促進(jìn)MSC成軟骨相關(guān)基質(zhì)合成和基因表達(dá),后者則表現(xiàn)為細(xì)胞軟骨相關(guān)基質(zhì)的丟失。
盡管如此,眾多研究者仍對(duì)流體靜壓力對(duì)MSC成軟骨分化的促進(jìn)作用給予了肯定。有研究者[53]在無(wú)化學(xué)誘導(dǎo)的培養(yǎng)體系下,采用7.5 MPa、1 Hz、4 h每天循環(huán)流體靜壓力作用于人脂肪來(lái)源的MSC,7 d后試驗(yàn)組中的Sox9、聚集蛋白聚糖、軟骨低聚物基質(zhì)蛋白等成軟骨相關(guān)分子增多。也有研究者[54]利用特殊的加壓裝置[56],通過(guò)壓力泵調(diào)控培養(yǎng)瓶氣壓以模擬間斷動(dòng)態(tài)流體靜壓力,進(jìn)行每天12 h間斷加力,7 d后的檢測(cè)數(shù)據(jù)證實(shí)了MSC的成軟骨向分化。還有研究[57]不僅證實(shí)了流體靜壓力促進(jìn)豬MSC的成軟骨分化,同時(shí)還發(fā)現(xiàn)流體靜壓力與ECM硬度間的相互作用也對(duì)細(xì)胞分化有影響。ECM的成熟硬化會(huì)抑制軟骨基質(zhì)形成和軟骨相關(guān)基因的表達(dá),外源性流體靜壓力可以阻斷這個(gè)過(guò)程并抑制其影響,從而維持軟骨分化表型。這也進(jìn)一步說(shuō)明了內(nèi)外源性應(yīng)力在MSC成軟骨向分化的過(guò)程中存在偶聯(lián)效應(yīng),二者共同作用有利于MSC更高效的成軟骨向分化并維持其表型穩(wěn)定。
綜上所述,隨著組織工程學(xué)技術(shù)的進(jìn)步,越來(lái)越多的研究者發(fā)現(xiàn)力學(xué)刺激對(duì)MSC成軟骨分化有誘導(dǎo)作用,以ECM硬度、ECM形態(tài)、ECM密度為代表的內(nèi)源性應(yīng)力,以單純壓縮力、壓縮力聯(lián)合剪切力、牽張力、流體靜壓力等為代表的外源性應(yīng)力均可在適當(dāng)?shù)臈l件下對(duì)MSC成軟骨向分化有促進(jìn)作用。既然單純的內(nèi)源性應(yīng)力或外源性應(yīng)力都難以誘導(dǎo)出達(dá)到軟骨組織修復(fù)要求的軟骨組織,那么后續(xù)的研究可著眼二者的偶聯(lián)作用,多條件、多方向?qū)SC進(jìn)行成軟骨向誘導(dǎo)。相信成功高效誘導(dǎo)高純度的軟骨修復(fù)組織指日可待。
[1] 李寧華, 薛慶云, 張毅, 等. 中國(guó)6個(gè)城市4 577名中老年人手骨關(guān)節(jié)炎流行病學(xué)調(diào)查[J]. 中國(guó)組織工程研究與臨床康復(fù), 2008, 12(33):6546-6549. Li NH, Xue QY, Zhang Y, et al. Epidemiology survey of hand osteoarthritis in 4 577 middle-aged and elderly persons from six cities of china[J]. J Clin Rehabilitat Tissue Eng Res, 2008, 12(33):6546- 6549.
[2] Huey DJ, Hu JC, Athanasiou KA. Unlike bone, cartilage regeneration remains elusive[J]. Science, 2012, 338(6109):917-921.
[3] Parvizi M, Plantinga JA, van Speuwel-Goossens CA, et al. Development of recombinant collagen-peptidebased vehicles for delivery of adipose-derived stromal cells[J]. J Biomed Mater Res A, 2016, 104(2):503- 516.
[4] Chiang ER, Ma HL, Wang JP, et al. Multi-lineage differentiation and angiogenesis potentials of pigmented villonodular synovitis derived mesenchymal stem cells-pathological implication[J]. J Orthop Res, 2016, 34(3):395-403.
[5] Park YB, Seo S, Kim JA, et al. Effect of chondrocyte-derived early extracellular matrix on chondrogenesis of placenta-derived mesenchymal stem cells[J]. Biomed Mater, 2015, 10(3):035014.
[6] in’t Anker PS, Noort WA, Scherjon SA, et al. Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential[J]. Haematologica, 2003, 88(8):845-852.
[7] Moniri MR, Sun XY, Rayat J, et al. TRAIL-engineered pancreas-derived mesenchymal stem cells: characterization and cytotoxic effects on pancreatic cancer cells[J]. Cancer Gene Ther, 2012, 19 (9):652-658.
[8] Gardner OF, Archer CW, Alini M, et al. Chondrogenesis of mesenchymal stem cells for cartilage tissue engineering[J]. Histol Histopathol, 2013, 28 (1):23-42.
[9] Pittenge MF, Macka AM, Bec SC, et al. Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999(5411):143-147.
[10] Altman GH, Horan RL, Martin I, et al. Cell differentiation by mechanical stress[J]. FASEB J, 2002, 16(2):270-272.
[11] Even-Ram S, Artym V, Yamada KM. Matrix control of stem cell fate[J]. Cell, 2006, 126(4):645-647.
[12] Chen CS. Mechanotransduction-a field pulling together[J]. J Cell Sci, 2008, 121(Pt 20):3285-3292.
[13] Liu Z, Tan JL, Cohen DM, et al. Mechanical tugging force regulates the size of cell-cell junctions[J]. Proc Natl Acad Sci USA, 2010, 107(22):9944-9949.
[14] Daley WP, Peters SB, Larsen M. Extracellular matrix dynamics in development and regenerative medicine[J]. J Cell Sci, 2008, 121(Pt 3):255-264.
[15] Guilak F, Cohen D, Estes B, et al. Control of stem cell fate by physical interactions with the extracellular matrix[J]. Cell Stem Cell, 2009(1):17-26.
[16] Engler AJ, Sen S, Lee Sweeney H, et al. Matrix elasticity directs stem cell lineage specification[J]. Cell, 2006(4):677-689.
[17] Park JS, Chu JS, Tsou AD, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β[J]. Βiomaterials, 2011,32(16):3921-3930.
[18] Toh WS, Lim TC, Kurisawa M, et al. Modulation of mesenchymal stem cell chondrogenesis in a tunable hyaluronic acid hydrogel microenvironment[J]. Biomaterials, 2012, 33(15):3835-3845.
[19] Kwon HJ, Yasuda K. Chondrogenesis on sulfonatecoated hydrogels is regulated by their mechanical properties[J]. J Mech Behav Biomed Mater, 2013, 17:337-346.
[20] Xue R, Li JY, Yeh Y, et al. Effects of matrix elasticity and cell density on human mesenchymal stem cells differentiation[J]. J Orthop Res, 2013, 31(9):1360- 1365.
[21] Du J, Chen X, Liang X, et al. Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity[J]. Proc Natl Acad Sci USA, 2011, 108(23): 9466-9471.
[22] Shih YR, Tseng KF, Lai HY, et al. Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells[J]. J Bone Miner Res, 2011, 26(4): 730-738.
[23] McBeath R, Pirone DM, Nelson CM, et al. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment[J]. Dev Cell, 2004, 6(4): 483-495.
[24] Dupont S, Morsut L, Aragona M, et al. Role of YAP/ TAZ in mechanotransduction[J]. Nature, 2011, 474 (7350):179-183.
[25] Hao J, Zhang Y, Wang Y, et al. Role of extracellular matrix and YAP/TAZ in cell fate determination[J]. Cell Signal, 2014, 26(2):186-191.
[26] Folkman J, Moscona A. Role of cell shape in growth control[J]. Nature, 1978, 273(5661):345-349.
[27] Manasek FJ, Burnside MB, Waterman RE. Myocardial cell shape change as a mechanism of embryonic heart looping[J]. Dev Biol, 1972, 29(4):349-371.
[28] Ingber D. Extracellular matrix and cell shape: potential control points for inhibition of angiogenesis [J]. J Cell Biochem, 1991, 47(3):236-241.
[29] Nalluri SM, Krishnan GR, Cheah C, et al. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells[J]. Mater Sci Eng C Mater Biol Appl, 2015, 54:182-195.
[30] Tee SY, Fu J, Chen CS, et al. Cell shape and substrate rigidity both regulate cell stiffness[J]. Biophys J, 2011, 100(5):L25-L27.
[31] Ingber DE. The mechanochemical basis of cell and tissue regulation[J]. Mech Chem Biosyst, 2004, 1(1):53-68.
[32] Lecuit T, Lenne PF. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis[J]. Nat Rev Mol Cell Biol, 2007, 8(8):633- 644.
[33] McBride SH, Knothe Tate ML. Modulation of stem cell shape and fate A: the role of density and seeding protocol on nucleus shape and gene expression[J]. Tissue Eng Part A, 2008, 14(9):1561-1572.
[34] Neves SR, Tsokas P, Sarkar A, et al. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks[J]. Cell, 2008, 133(4):666-680.
[35] Grad S, Eglin D, Alini M, et al. Physical stimulation of chondrogenic cells in vitro: a review[J]. Clin Orthop Relat Res, 2011, 469(10):2764-2772.
[36] Responte DJ, Lee JK, Hu JC, et al. Biomechanicsdriven chondrogenesis: from embryo to adult[J]. FASEB J, 2012, 26(9):3614-3624.
[37] Mouw JK, Connelly JT, Wilson CG, et al. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells[J]. Stem Cells, 2007, 25(3): 655-663.
[38] Haugh MG, Meyer EG, Thorpe SD, et al. Temporal and spatial changes in cartilage-matrix-specific gene expression in mesenchymal stem cells in response to dynamic compression[J]. Tissue Eng Part A, 2011, 17(23/24):3085-3093.
[39] Li J, Wang J, Zou Y, et al. The influence of delayed compressive stress on TGF-β1-induced chondrogenic differentiation of rat BMSCs through Smad-dependent and Smad-independent pathways[J]. Biomaterials, 2012, 33(33):8395-8405.
[40] Li J, Zhao Z, Yang J, et al. p38 MAPK mediated in compressive stress-induced chondrogenesis of rat bone marrow MSCs in 3D alginate scaffolds[J]. J Cell Physiol, 2009, 221(3):609-617.
[41] Thorpe SD, Buckley CT, Steward AJ, et al. EuropeanSociety of Biomechanics S.M. Perren Award 2012: the external mechanical environment can override the influence of local substrate in determining stem cell fate[J]. J Biomech, 2012, 45(15):2483-2492.
[42] Zhang T, Wen F, Wu Y, et al. Cross-talk between TGF-beta/SMAD and integrin signaling pathways in regulating hypertrophy of mesenchymal stem cell chondrogenesis under deferral dynamic compression [J]. Biomaterials, 2015, 38:72-85.
[43] Wang Y, Wang J, Bai D, et al. Cell proliferation is promoted by compressive stress during early stage of chondrogenic differentiation of rat BMSCs[J]. J Cell Physiol, 2013, 228(9):1935-1942.
[44] Sch?tti O, Grad S, Goldhahn J, et al. A combination of shear and dynamic compression leads to mechanically induced chondrogenesis of human mesenchymal stem cells[J]. Eur Cell Mater, 2011, 22:214-225.
[45] Zahedmanesh H, Stoddart M, Lezuo P, et al. Deciphering mechanical regulation of chondrogenesis in fibrin-polyurethane composite scaffolds enriched with human mesenchymal stem cells: a dual computational and experimental approach[J]. Tissue Eng Part A, 2014, 20(7/8):1197-1212.
[46] Li Z, Kupcsik L, Yao SJ, et al. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway[J]. J Cell Mol Med, 2010, 14(6A):1338-1346.
[47] Li Z, Kupcsik L, Yao SJ, et al. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites[J]. Tissue Eng Part A, 2009, 15(7):1729-1737.
[48] Baker BM, Shah RP, Huang AH, et al. Dynamic tensile loading improves the functional properties of mesenchymal stem cell-laden nanofiber-based fibrocartilage[J]. Tissue Eng Part A, 2011, 17(9/10): 1445-1455.
[49] Friedl G, Schmidt H, Rehak I, et al. Undifferentiated human mesenchymal stem cells (hMSCs) are highly sensitive to mechanical strain: transcriptionally controlled early osteo-chondrogenic response in vitro [J]. Osteoarthr Cartil, 2007, 15(11):1293-1300.
[50] Connelly JT, Vanderploeg EJ, Mouw JK, et al. Tensile loading modulates bone marrow stromal cell differentiation and the development of engineered fibrocartilage constructs[J]. Tissue Eng Part A, 2010, 16(6):1913-1923.
[51] Meyer EG, Buckley CT, Steward AJ, et al. The effect of cyclic hydrostatic pressure on the functional development of cartilaginous tissues engineered using bone marrow derived mesenchymal stem cells[J]. J Mech Behav Biomed Mater, 2011, 4(7):1257-1265.
[52] Zeiter S, Lezuo P, Ito K. Effect of TGF beta1, BMP-2 and hydraulic pressure on chondrogenic differentiation of bovine bone marrow mesenchymal stromal cells[J]. Biorheology, 2009, 46(1):45-55.
[53] Puetzer J, Williams J, Gillies A, et al. The effects of cyclic hydrostatic pressure on chondrogenesis and viability of human adipose- and bone marrowderived mesenchymal stem cells in three-dimensional agarose constructs[J]. Tissue Eng Part A, 2013, 19(1/2):299-306.
[54] Dai J, Wang H, Liu G, et al. Dynamic compression and co-culture with nucleus pulposus cells promotes proliferation and differentiation of adipose-derived mesenchymal stem cells[J]. J Biomech, 2014, 47 (5):966-972.
[55] Steward AJ, Wagner DR, Kelly DJ. The pericellular environment regulates cytoskeletal development and the differentiation of mesenchymal stem cells and determines their response to hydrostatic pressure[J]. Eur Cell Mater, 2013, 25:167-178.
[56] Ye R, Hao J, Song J, et al. Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells [J]. J Cell Biochem, 2014, 115(6):1089-1096.
[57] Kim DH, Kim SH, Heo SJ, et al. Enhanced differentiation of mesenchymal stem cells into NP-like cells via 3D co-culturing with mechanical stimulation[J]. J Biosci Bioeng, 2009, 108(1):63-67.
(本文采編 王晴)
Regulation of external and internal forces on the chondrogenic differentiation of mesenchymal stem cells
Qiu Jingyi, Wan Lingyun, Zhao Zhihe, Li Juan. (State Key Laboratory of Oral Diseases, Dept. of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
This study was supported by National Natural Science Foundation of China(31470904, 31370992) and Sichuan Province Science and Technology Support Project(2014SZ0019).
With advancements in tissue engineering, therapies for osteoarthritis have been developed. Mesenchymal stem cells(MSC) can differentiate into various cell types and be used as an optimum source of cells for tissue engineering to produce an engineered cartilage. However, the efficient and stable stimulation of chondrogenetic differentiation of MSC is a key challenge in cartilage tissue engineering. Further studies have been conducted to investigate mechanical stimulation and to determine the internal and external forces that can stimulate the chondrogenic differentiation of MSC and maintain their phenotypes. This review summarizes the research progress on the effects of internal and external forces on the chondrogenic differentiation of MSC.
mesenchymal stem cell; mechanical stimulation; mechanotransduction; stem cell differentiation;chondrogenesis
Q 256
A
10.7518/gjkq.2016.04.017
2015-12-03;
2016-03-28
國(guó)家自然科學(xué)基金(31470904,31370992);四川省科技支撐計(jì)劃(2014SZ0019)
邱靜怡,碩士,Email:Solaqiu@foxmail.com
趙志河,教授,博士,Email:zhzhao@scu.edu.cn 持續(xù)、有效的軟骨修復(fù)尚無(wú)報(bào)道[2]。間質(zhì)干細(xì)胞(mesenchymal stem cell,MSC)來(lái)源于胚胎發(fā)育的中胚層,具有多向分化潛能和自我更新能力。MSC除了來(lái)自于骨髓之外,在脂肪、滑膜、胎盤、肝、肺、脾和胰腺等組織器官均可獲得此種細(xì)胞[3-7]。MSC來(lái)源的多元性也為專向誘導(dǎo)其成脂向分化、成肌向分化、成骨向分化和成軟骨向分化提供了生物學(xué)基礎(chǔ)。MSC取材容易、遺傳背景穩(wěn)定、體內(nèi)植入反應(yīng)弱、有多向分化潛能、與支架材料生物相容性優(yōu)成為了構(gòu)建工程化軟骨最理想的種子細(xì)胞[8]。