任靜宜劉歆嬋丁燁于洪強(qiáng)周延民于維先
1.吉林大學(xué)口腔醫(yī)院種植中心;2.吉林省牙發(fā)育及頜骨重塑與再生省重點(diǎn)實(shí)驗(yàn)室 長春 130021
細(xì)胞自噬和炎癥反應(yīng)的相互調(diào)控與牙周炎
任靜宜1劉歆嬋1丁燁1于洪強(qiáng)1周延民1于維先2
1.吉林大學(xué)口腔醫(yī)院種植中心;
2.吉林省牙發(fā)育及頜骨重塑與再生省重點(diǎn)實(shí)驗(yàn)室 長春 130021
細(xì)胞自噬在真核細(xì)胞中廣泛存在,其通路可將細(xì)胞內(nèi)衰老損傷的蛋白質(zhì)和細(xì)胞器等細(xì)胞成分運(yùn)送至溶酶體進(jìn)行降解、清除并循環(huán)利用降解后的營養(yǎng)物質(zhì)。炎癥反應(yīng)是機(jī)體應(yīng)答組織損傷和病原微生物感染等有害刺激的一種保護(hù)性反應(yīng),過度的炎癥反應(yīng)會(huì)導(dǎo)致組織損傷和疾病;而自噬可通過降解DNA、活性氧族等內(nèi)源性刺激來抑制炎性小體聚集,降解白細(xì)胞介素(IL)-1β前體來抑制IL-1β等促炎因子的分泌。牙周致病菌的毒力因子參與牙周組織的破壞,通過其自身攜帶或釋放的脂多糖、肽聚糖和細(xì)菌DNA等與宿主細(xì)胞的Toll樣受體(TLR)等相互作用誘發(fā)組織局部炎性細(xì)胞浸潤和釋放炎癥因子,導(dǎo)致牙周炎。在牙周局部組織中,病原相關(guān)分子模式和損傷相關(guān)分子模式通過與TRL或核苷酸結(jié)合寡聚化結(jié)構(gòu)域蛋白樣受體相互作用,在激活先天免疫反應(yīng)時(shí)誘發(fā)自噬,而自噬同時(shí)可通過負(fù)向調(diào)控TLR信號來影響炎癥反應(yīng)。本文就自噬與炎癥反應(yīng)的相互調(diào)控作用和自噬與牙周炎的相關(guān)性等研究進(jìn)展作一綜述,旨在揭示牙周炎等炎癥性疾病的發(fā)病機(jī)制,為其治療探索新的途徑。
自噬; 炎癥; Toll樣受體; 牙周炎
自噬在真核細(xì)胞中廣泛存在,自噬通路可以將細(xì)胞內(nèi)衰老損傷的蛋白質(zhì)、細(xì)胞器等細(xì)胞成分運(yùn)送至溶酶體進(jìn)行降解、清除并循環(huán)利用降解后的營養(yǎng)物質(zhì)。炎癥反應(yīng)是機(jī)體應(yīng)答組織損傷和病原微生物感染等有害刺激的一種保護(hù)性反應(yīng)[1],而過度的炎癥反應(yīng)會(huì)導(dǎo)致組織損傷和疾??;因此當(dāng)病原微生物激活宿主免疫反應(yīng)時(shí),必須在多個(gè)水平上調(diào)控炎癥反應(yīng)。自噬與炎癥反應(yīng)之間存在著密切的聯(lián)系[2]。模式識別受體(pattern recognition receptor,PRR)包括Toll 樣受體(Toll-like receptor,TLR)和核苷酸結(jié)合寡聚化結(jié)構(gòu)域蛋白(nucleotide-binding oligomerization domain,NOD)樣受體(NOD-like receptor,NLR)通過識別病原相關(guān)分子模式(pathogen associated molecular pattern,PAMP)或損傷相關(guān)分子模式(damage associated molecular pattern,DAMP)等外源性或內(nèi)源性配體,導(dǎo)致受體活化,進(jìn)而引起多蛋白質(zhì)的信號轉(zhuǎn)導(dǎo)級聯(lián)反應(yīng),分泌促炎因子,激活適應(yīng)性免疫應(yīng)答。自噬對TLR信號和炎癥反應(yīng)有明顯的負(fù)向調(diào)控作用,而NLR和TLR等模式識別受體介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路激活可誘導(dǎo)自噬,自噬與炎癥性疾病聯(lián)系密切。
自噬的形成分為4個(gè)階段:首先是獨(dú)立膜結(jié)構(gòu)的形成,然后這一膜結(jié)構(gòu)延長擴(kuò)大并自身融合形成一個(gè)雙層的膜結(jié)構(gòu)稱為自噬體,自噬體與溶酶體融合和自噬體成熟階段[3-5]。自噬通路中的核心分子是由自噬相關(guān)基因(autophagy associated gene,Atg)表達(dá)的自噬相關(guān)蛋白。自噬通路在外界刺激如營養(yǎng)剝奪等條件下可被激活,抑制哺乳動(dòng)物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)并激活自噬通路;然而在營養(yǎng)充足的條件下,mTOR可以通過抑制ULK1激酶的激活(ULK1為酵母菌Atg1的哺乳動(dòng)物同源物)來阻斷自噬通路。其中,ULK1復(fù)合物由ULK1絲氨酸/蘇氨酸蛋白激酶、Atg13和FIP200(FIP200為酵母菌Atg17的哺乳動(dòng)物同源物)等構(gòu)成,對于引發(fā)自噬具有重要的作用[6]。
在自噬獨(dú)立膜結(jié)構(gòu)的延長階段和膜結(jié)構(gòu)包繞內(nèi)容物的完成階段,至少需要兩種遍在蛋白(俗稱泛素)樣偶合物:一種為Atg12-Atg5偶合物,它可以與Atg16L1結(jié)合成復(fù)合物形成自噬體前體結(jié)構(gòu);另一種為磷脂酰乙醇胺-微管相關(guān)蛋白1輕鏈3 (microtubule-associated protein 1 light chain 3,MAP1LC3)偶合物[7],MAP1LC3又簡稱LC3,與哺乳動(dòng)物Atg8同源物γ-氨基丁酸A型受體相關(guān)蛋白(γ-aminobutyric-acid-type-A-receptor-associated protein,GABARAP)可被蛋白酶Atg4裂解。磷脂酰乙醇胺經(jīng)Atg7和Atg3介導(dǎo)可與被裂解的LC3-2和GABARAP結(jié)合,然后這一脂化的LC3-2與新形成的自噬體膜結(jié)構(gòu)連接,分布于自噬體內(nèi)外表面[8]。Atg8連同內(nèi)膜結(jié)構(gòu)在自噬溶酶體形成的過程中一同被降解,但LC3-2仍然保留在成熟的自噬體中,直到自噬體與溶酶體融合并在調(diào)控自噬方面發(fā)揮作用[9]。
敲除小鼠細(xì)胞中的自噬基因Atg7或Atg5后,小鼠出現(xiàn)自發(fā)性無菌性肺部炎癥,其特征為炎癥細(xì)胞募集、黏膜下層增厚、杯狀細(xì)胞化生和膠原質(zhì)量增多,這種炎癥反應(yīng)主要由白細(xì)胞介素(interleukin,IL)-18導(dǎo)致,是炎性小體激活的結(jié)果;注射脂多糖(lipopolysaccharide,LPS)后與對照組比較,自噬缺失的小鼠肺部和血清中的促炎因子水平明顯增高,死亡率也同時(shí)增高,這一研究揭示了自噬為肺部炎癥負(fù)向調(diào)控者的重要角色[10]。自噬在負(fù)向調(diào)控炎癥反應(yīng)中發(fā)揮著重要的作用,自噬通路與炎癥反應(yīng)存在多個(gè)交叉,二者之間聯(lián)系密切[11]。自噬通路及自噬蛋白亦在調(diào)控炎癥信號中發(fā)揮著關(guān)鍵性的作用[12]。TLR和NLR作為模式識別受體家族的重要成員,可通過識別PAMP和DAMP等外源性或內(nèi)源性的配體引發(fā)多蛋白質(zhì)的信號轉(zhuǎn)導(dǎo)級聯(lián)反應(yīng),分泌促炎因子,激活適應(yīng)性免疫應(yīng)答。近來關(guān)于自噬在多種細(xì)胞中調(diào)控DAMP如腺苷三磷酸(adenosine triphosphate,ATP)、高速泳動(dòng)族蛋白盒(high mobility group box,HMGB)1以及DNA的釋放和降解等方面的研究已引起學(xué)者[13]的關(guān)注。例如,自噬可在巨噬細(xì)胞中誘發(fā)內(nèi)吞的內(nèi)源性HMGB1降解[14],表明自噬能夠通過降解內(nèi)源性的信號分子來抑制TLR誘發(fā)的炎癥反應(yīng)。
Saitoh等[15]發(fā)現(xiàn),Atg16L1基因缺陷的巨噬細(xì)胞可以過度激活半胱氨酸天冬酰胺特異蛋白酶(cysteinyl aspartale specific protease,caspase)-1分泌高水平的IL-1β、IL-18,以應(yīng)答LPS對TLR4的刺激。也有研究[16]證實(shí),單核細(xì)胞過度分泌IL-1β與線粒體穩(wěn)定性的降低,線粒體內(nèi)容物釋放到細(xì)胞基質(zhì)中和自噬體降解有關(guān),敲除Atg7基因的自噬缺陷細(xì)胞會(huì)損傷線粒體,導(dǎo)致線粒體在細(xì)胞基質(zhì)中的滯留時(shí)間延長和IL-1β水平增高,自噬功能缺陷導(dǎo)致單核細(xì)胞中線粒體介導(dǎo)的核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體家族熱蛋白結(jié)構(gòu)域(nucleotidebinding oligomerization domain-like-receptor family pyrin domain,NLRP)3炎癥小體激活,從而導(dǎo)致IL-1β過度分泌。這些結(jié)果表明,自噬可調(diào)控IL-1β 和IL-18等促炎因子的分泌。IL-1β和IL-18是以一種無生物活性的前體形式產(chǎn)生的。以IL-1β為例,具有生物活性的IL-1β產(chǎn)生的經(jīng)典通路至少需要2個(gè)信號,起始信號為PAMP,如LPS;或DAMP,如HMGB1等來激活pro-IL-1轉(zhuǎn)錄。第二信號如活性氧類(reactive oxygen species,ROS)、線粒體DNA、ATP、蛋白聚集和溶酶體破裂等,將會(huì)引起炎性小體聚集和激活。炎性小體是一種多蛋白質(zhì)復(fù)合物,可激活caspase-1并促進(jìn)IL-1β和IL-18等重促炎因子的成熟和釋放;但是TLR自身并不能激活caspase-1,TLR需要通過細(xì)胞外ATP等刺激NLRP3炎性小體的形成來激活caspase-1,這一過程涉及了鉀離子外流及溶酶體功能損傷。在Atg16L1基因缺陷的細(xì)胞中,caspase-1依賴于Toll和白細(xì)胞介素-1受體結(jié)構(gòu)域的適配蛋白誘導(dǎo)的干擾素(Toll/ interleukin-1 receptor domain-containing adaptor protein inducing interferon,TRIF)-β介導(dǎo)產(chǎn)生的ROS激活,而不依賴于細(xì)胞外ATP[14]。TRIF-β介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路通過ROS來激活NLRP3炎性小體,然而Atg16L1介導(dǎo)的自噬可有效地抑制ROS的產(chǎn)生,因此自噬可負(fù)向調(diào)控IL-1β。一方面自噬可通過降解DNA、ROS等多種內(nèi)源性刺激來阻斷TLR引發(fā)炎性小體聚集,從而抑制pro-IL-1被加工處理成為成熟的細(xì)胞因子;另一方面自噬可直接降解pro-IL-1β來抑制IL-1β的分泌[17]。
通過調(diào)控IL-1β的分泌,自噬進(jìn)而可調(diào)控IL-23等炎癥因子的產(chǎn)生[18-19]。IL-23是IL-12家族細(xì)胞因子之一,它能協(xié)同IL-1α、IL-1β或IL-18誘導(dǎo)輔助性T細(xì)胞17從幼稚的CD4T細(xì)胞分化增殖,同時(shí)還可以誘導(dǎo)γδT細(xì)胞和其他的固有淋巴細(xì)胞分泌IL-17[20-21]。IL-17、IL-23均與一系列的自身免疫性疾病,如多發(fā)性硬化癥和銀屑病等密切相關(guān)。在人類與大鼠的巨噬細(xì)胞和樹突細(xì)胞(dendritic cell,DC)中,抑制自噬會(huì)導(dǎo)致IL-23分泌增加,相反激活自噬可發(fā)揮負(fù)向調(diào)控作用[16]。IL-1β可促進(jìn)IL-23分泌[17],自噬可能是通過調(diào)控IL-1β的分泌進(jìn)而影響IL-23的。在自噬缺陷的人類巨噬細(xì)胞中,IL-23依賴于核因子(nuclear factor,NF)-κΒ信號產(chǎn)生并能夠被IL-1中和抗體抑制。由于IL-1、IL-18和IL-23均能影響T細(xì)胞產(chǎn)生IL-17[22],因此通過自噬調(diào)控這些細(xì)胞因子可影響IL-17的分泌。抑制大鼠DC的自噬通路,經(jīng)LPS刺激可產(chǎn)生更高水平的IL-1β和IL-23,可在體外有效誘導(dǎo)γδT細(xì)胞分泌IL-17、IL-22以及干擾素-γ[17]。Castillo等[23]發(fā)現(xiàn),Atg5基因缺陷的大鼠骨髓細(xì)胞可分泌更高水平的IL-1α、IL-12p70和IL-17以及半胱氨酸-X-半胱氨酸趨化因子配體1來應(yīng)答結(jié)核分支桿菌感染;故自噬可通過影響固有免疫細(xì)胞中T細(xì)胞的分化并調(diào)控多種促炎因子的分泌來負(fù)向調(diào)控炎癥反應(yīng)。
TLR和NLR通過與PAMP或DAMP等內(nèi)外源性配體的結(jié)合來刺激免疫系統(tǒng)[24-25],引發(fā)炎癥反應(yīng)。其中TLR2、TLR4和TLR9均可誘發(fā)自噬。免疫復(fù)合物DNA可激活TLR9,可通過細(xì)胞吞噬和自噬通路共同誘導(dǎo)漿細(xì)胞樣DC(plasmacytoid dendritic cell,PDC)分泌1型干擾素[26]。Xu等[27]發(fā)現(xiàn),TLR4可激活VPS34-依賴的細(xì)胞質(zhì)LC3聚集,LC3聚集標(biāo)志著自噬體的形成,可通過增強(qiáng)自噬來清除巨噬細(xì)胞中吞噬的分支桿菌。在該研究中,LC3的聚集依賴于TRIF信號轉(zhuǎn)導(dǎo)通路,而不依賴于髓樣分化因子(myeloid differentiation factor,MyD)88信號轉(zhuǎn)導(dǎo)通路。Delgado等[28]發(fā)現(xiàn),TLR的配基也可通過MyD88信號轉(zhuǎn)導(dǎo)通路來誘發(fā)自噬,而且有助于巨噬細(xì)胞清除細(xì)胞內(nèi)病原體。另有研究[29]發(fā)現(xiàn),TLR2激活的細(xì)胞外信號調(diào)節(jié)激酶對于誘發(fā)自噬和清除單核細(xì)胞增生李斯特菌十分重要。
MyD88或TRIF信號轉(zhuǎn)導(dǎo)通路與Beclin-1(酵母菌Atg6哺乳動(dòng)物同源物)的相互作用可調(diào)控TLR誘發(fā)的自噬,其中Beclin-1是自噬體形成的一個(gè)關(guān)鍵性誘發(fā)者[30]。TLR4可以誘發(fā)自噬和招募Beclin-1,通過與Beclin-1之間的相互作用減少Beclin-1與B細(xì)胞淋巴瘤(B-cell lymphoma,BCL)2結(jié)合,然而腫瘤壞死因子受體相關(guān)因子(tumor necrosis factor receptor-associated factor,TRAF)6可調(diào)控TLR適配蛋白與Beclin-1之間的相互作用[31]。Beclin-1與TRAF6的相互作用,是通過Beclin-1中的兩個(gè)TRAF6結(jié)合模體來促進(jìn)Beclin-1中的BCL2同源(homology,BH)3結(jié)構(gòu)域的聚遍在蛋白化并誘發(fā)隨后自噬體的形成[29]。K63位于Beclin-1中的BH3結(jié)構(gòu)域上,是K63連接遍在蛋白的主要部位。遍在蛋白分解酶A20可減少Beclin-1 中K63的聚遍在蛋白化程度,從而限制自噬對TLR信號的應(yīng)答;因此,TRAF6對于TLR誘發(fā)的自噬似乎是一個(gè)關(guān)鍵性的調(diào)節(jié)因子。TLR3和TLR4觸發(fā)自噬的下游信號需要熱休克蛋白90與Beclin-1的相互調(diào)控作用[32]。在TLR信號轉(zhuǎn)導(dǎo)通路中,mTOR可能參與了磷脂酰肌醇-3-激酶-蛋白激酶B信號轉(zhuǎn)導(dǎo)通路中的下游信號轉(zhuǎn)導(dǎo)。mTORC1可負(fù)向調(diào)控TLR激活的NF-κΒ信號和傳統(tǒng)DC中的IL-12的產(chǎn)生,同時(shí)也可正向調(diào)控IL-10的產(chǎn)生[33]。在PDC中,TLR9誘發(fā)干擾素-α的產(chǎn)生也需要mTORC1參與[34]。盡管mTOR是自噬的一個(gè)主要調(diào)控者,但其在TLR所誘發(fā)的自噬中的作用機(jī)制還不清楚。雖然迄今TLR誘發(fā)自噬的確切的信號機(jī)制尚不清楚,但包括轉(zhuǎn)化生長因子-β活化激酶(transforming growth factor-β activated kinase binding protein,TAB)1激活以及TAB2、3調(diào)控Beclin-1等機(jī)制均可能與TLR誘發(fā)自噬有關(guān)。
TLR信號除了參與傳統(tǒng)的自噬通路,還介導(dǎo)一種非傳統(tǒng)的自噬通路[35]。在非傳統(tǒng)自噬通路中,被吞噬的底物如TLR配體酵母聚糖顆粒等能使自噬體標(biāo)志物L(fēng)C3快速募集到吞噬體表面,但這些LC3陽性的吞噬體不會(huì)出現(xiàn)傳統(tǒng)自噬體特征性的雙層膜結(jié)構(gòu)[33]。與TLR誘發(fā)的傳統(tǒng)自噬相比較,TLR誘發(fā)的非傳統(tǒng)自噬可通過協(xié)助吞噬體與溶酶體的融合進(jìn)而加速吞噬底物的酸化與降解;因此,這種非傳統(tǒng)自噬通路可迅速地將細(xì)菌運(yùn)送至溶酶體,進(jìn)一步證明了自噬可通過多種機(jī)制來識別并降解病原微生物。自噬還可與其他的固有免疫反應(yīng)共同作為抵抗病原微生物感染的第一道防線,在抵抗感染性疾病中具有重要的作用。
除TLR信號外,NLR信號也可以誘發(fā)自噬。NOD1和NOD2作為NLR家族中的重要成員,可被細(xì)菌肽聚糖降解產(chǎn)物激活誘發(fā)自噬。在志賀菌感染期間,NOD1和NOD2被募集至細(xì)菌侵入部位,同時(shí)將Atg16L1也招募至此處,引發(fā)自噬協(xié)助清除細(xì)菌。同時(shí)NOD1或NOD2的刺激會(huì)引發(fā)更高水平的自噬[36]。Irving等[37]證實(shí)了NOD1可以直接識別革蘭陰性菌肽聚糖,可以促進(jìn)受體相互作用蛋白(receptor-interacting protein,RIP)2依賴自噬的發(fā)生和炎癥反應(yīng)來應(yīng)答細(xì)菌感染。NLRX1是一種線粒體定位NLR蛋白,可經(jīng)由線粒體抗病毒信號(mitochondrial antiviral signaling,MAVS)- DDX58通路負(fù)向調(diào)控炎癥因子的產(chǎn)生,同時(shí)DDX58對自噬也有負(fù)向調(diào)控作用。與 NLRX1對DDX58的抑制作用一致,Lei等[38]發(fā)現(xiàn),NLRX1可促進(jìn)病毒誘發(fā)的自噬。這一作用是通過與另一種線粒體蛋延伸因子(Tu translation elongation factor,mitochondrial,TUFM)也可稱為EF-TuMT、COXPD4和P43的相互作用發(fā)生的,TUFM也可以減少DDX58激活的細(xì)胞因子并且可以增強(qiáng)自噬,而且TUFM可以與Atg12-Atg5-Atg16L1相互作用形成一個(gè)分子復(fù)合物來調(diào)控自噬,因此,NLRX1與TUFM可協(xié)同增強(qiáng)自噬;反之,Nod2-/-和Ripk2-/-基因小鼠在病毒感染中表現(xiàn)出自噬缺失,同時(shí)出現(xiàn)NLRP3炎癥小體激活增強(qiáng)和IL-18分泌增多[39]。這些結(jié)果均表明,NLR在調(diào)控自噬方面所發(fā)揮的重要作用。
牙周致病菌的多種毒力因子可直接參與牙周組織的破壞,并通過其自身攜帶或釋放的LPS、肽聚糖和細(xì)菌DNA等與宿主細(xì)胞的TLR等相互作用,激活先天免疫系統(tǒng),誘發(fā)組織局部炎性細(xì)胞浸潤和釋放炎癥因子,導(dǎo)致牙周炎。在牙周局部組織中,PAMP和DAMP通過與TRL或NLR相互作用,在激活先天免疫反應(yīng)時(shí)誘發(fā)自噬,而自噬同時(shí)可通過負(fù)向調(diào)控TLR信號來影響炎癥反應(yīng)。牙周病患者齦溝液中存在高質(zhì)量濃度的HMGB1[40],HMGB1作為DAMP家族的一員,可與TRL4結(jié)合觸發(fā)炎癥反應(yīng)[41],與自噬蛋白Beclin-1直接作用并在自噬的調(diào)控中發(fā)揮重要的作用[42]。在牙周炎患者的外周血單核細(xì)胞中,通過線粒體ROS介導(dǎo)的信號轉(zhuǎn)導(dǎo)通路表現(xiàn)出細(xì)胞自噬增強(qiáng);同時(shí)在牙齦成纖維細(xì)胞中,牙齦卟啉單胞菌產(chǎn)生的LPS可通過ROS誘發(fā)自噬[43]。相對于健康成年人而言,在牙周炎患者的外周血單核細(xì)胞中,自噬基因的表達(dá)水平升高,線粒體產(chǎn)生更高水平的ROS。用牙齦卟啉單胞菌產(chǎn)生的LPS處理的人牙齦成纖維細(xì)胞,LC3和ATG12的轉(zhuǎn)錄及表達(dá)明顯增多;同時(shí),自噬通路的阻斷會(huì)導(dǎo)致ROS的積累,進(jìn)而激活NLRP3炎癥小體[44]。此外,自噬還可能通過對IL-1和IL-17等細(xì)胞因子的調(diào)控對牙周炎起到一定的保護(hù)作用。同時(shí),牙周炎作為一種慢性炎癥性疾病,自噬可能與牙周炎相關(guān)的其他疾病如心血管疾病和糖尿病等有關(guān);但是,牙周炎與自噬通路之間復(fù)雜而密切的相互作用關(guān)系目前尚不清楚,有待進(jìn)一步的研究與探討。
[1] Martins JD, Liberal J, Silva A, et al. Autophagy and inflammasome interplay[J]. DNA Cell Biol, 2015, 34(4):274-281.
[2] Deretic V. Autophagy as an innate immunity paradigm: expanding the scope and repertoire of pattern recognition receptors[J]. Curr Opin Immunol, 2012, 24(1):21-31.
[3] Hamasaki M, Yoshimori T. Where do they come from? Insights into autophagosome formation[J]. FEBS Lett, 2010, 584(7):1296-1301.
[4] Mizushima N, Yoshimori T, Ohsumi Y. The role of Atg proteins in autophagosome formation[J]. Annu Rev Cell Dev Biol, 2011, 27:107-132.
[5] Parkhitko AA, Favorova OO, Henske EP. Autophagy: mechanisms, regulation, and its role in tumorigenesis[J]. Biochemistry Mosc, 2013, 78(4):355- 367.
[6] Mehrpour M, Esclatine A, Beau I, et al. Autophagy in health and disease. 1. Regulation and significance of autophagy: an overview[J]. Am J Physiol, Cell Physiol, 2010, 298(4):C776-C785.
[7] Harris J. Autophagy and cytokines[J]. Cytokine, 2011, 56(2):140-144.
[8] Kraft C, Martens S. Mechanisms and regulation of autophagosome formation[J]. Curr Opin Cell Biol, 2012, 24(4):496-501.
[9] Arroyo DS, Gaviglio EA, Peralta Ramos JM, et al. Autophagy in inflammation, infection, neurodegeneration and cancer[J]. Int Immunopharmacol, 2014, 18(1):55-65.
[10] Abdel Fattah E, Bhattacharya A, Herron A, et al. Critical role for IL-18 in spontaneous lung inflammation caused by autophagy deficiency[J]. J Immunol, 2015, 194(11):5407-5416.
[11] Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity[J]. Nat Rev Immunol, 2013, 13(10):722-737.
[12] Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation[J]. Nature, 2011, 469 (7330): 323-335.
[13] Zhang Q, Kang R, Zeh HJ 3rd, et al. DAMPs and autophagy: cellular adaptation to injury and unscheduled cell death[J]. Autophagy, 2013, 9(4):451-458.
[14] Li W, Zhu S, Li J, et al. EGCG stimulates autophagy and reduces cytoplasmic HMGB1 levels in endotoxin-stimulated macrophages[J]. Biochem Pharmacol, 2011, 81(9):1152-1163.
[15] Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxininduced IL-1beta production[J]. Nature, 2008, 456 (7219):264-268.
[16] van der Burgh R, Nijhuis L, Pervolaraki K, et al. Defects in mitochondrial clearance predispose human monocytes to interleukin-1β hypersecretion[J]. J Βiol Chem, 2014, 289(8):5000-5012.
[17] Harris J, Hartman M, Roche C, et al. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation[J]. J Biol Chem, 2011, 286(11): 9587-9597.
[18] Peral de Castro C, Jones SA, Ní Cheallaigh C, et al. Autophagy regulates IL-23 secretion and innate T cell responses through effects on IL-1 secretion[J]. J Immunol, 2012, 189(8):4144-4153.
[19] Harris KM, Fasano A, Mann DL. Cutting Edge: IL-1 controls the IL-23 response induced by gliadin, the etiologic agent in celiac disease[J]. J Immunol, 2008, 181(7):4457-4460.
[20] Lalor SJ, Dungan LS, Sutton CE, et al. Caspase-1-processed cytokines IL-1beta and IL-18 promote IL-17 production by gammadelta and CD4 T cells that mediate autoimmunity[J]. J Immunol, 2011, 186 (10):5738-5748.
[21] Sutton CE, Lalor SJ, Sweeney CM, et al. Interleukin-1 and IL-23 induce innate IL-17 production from gammadelta T cells, amplifying Th17 responses and autoimmunity[J]. Immunity, 2009, 31(2):331-341.
[22] Cua DJ, Sherlock J, Chen Y, et al. Interleukin-23 rather than interleukin-12 is the critical cytokine for autoimmune inflammation of the brain[J]. Nature, 2003, 421(6924):744-748.
[23] Castillo EF, Dekonenko A, Arko-Mensah J, et al. Autophagy protects against active tuberculosis by suppressing bacterial burden and inflammation[J]. Proc Natl Acad Sci, 2012(46):E3168-E3176.
[24] Krysko DV, Garg AD, Kaczmarek A, et al. Immunogenic cell death and DAMPs in cancer therapy [J]. Nat Rev Cancer, 2012, 12(12):860-875.
[25] Garg AD, Nowis D, Golab J, et al. Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation[J]. Biochim Biophys Acta, 2010, 1805(1):53-71.
[26] Henault J, Martinez J, Riggs J, et al. Noncanonical Autophagy is required for typeⅠinterferon secretion in response to DNA-immune complexes[J]. Immunity, 2012, 37(6):986-997.
[27] Xu Y, Jagannath C, Liu XD, et al. Toll-like receptor 4 is a sensor for autophagy associated with innate immunity[J]. Immunity, 2007, 27(1):135-144.
[28] Delgado MA, Elmaoued RA, Davis AS, et al. Tolllike receptors control autophagy[J]. EMBO J, 2008, 27(7):1110-1121.
[29] Anand PK, Tait SW, Lamkanfi M, et al. TLR2 and RIP2 pathways mediate autophagy of Listeria monocytogenes via extracellular signal-regulated kinase (ERK) activation[J]. J Biol Chem, 2011, 286 (50): 42981-42991.
[30] Shi CS, Kehrl JH. MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages[J]. J Biol Chem, 2008, 283(48):33175-33182.
[31] Shi CS, Kehrl JH. TRAF6 and A20 regulate lysine 63-linked ubiquitination of Beclin-1 to control TLR4-induced autophagy[J]. Sci Signal, 2010, 3 (123):ra42.
[32] Xu C, Liu J, Hsu LC, et al. Functional interaction of heat shock protein 90 and Beclin 1 modulates Tolllike receptor-mediated autophagy[J]. FASEB J, 2011, 25(8):2700-2710.
[33] Ohtani M, Nagai S, Kondo S, et al. Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells[J]. Blood, 2008, 112(3):635-643.
[34] Cao W, Manicassamy S, Tang H, et al. Toll-like receptor-mediated induction of typeⅠ interferon in plasmacytoid dendritic cells requires the rapamycinsensitive PI(3)K-mTOR-p70S6K pathway[J]. Nat Immunol, 2008, 9(10):1157-1164.
[35] Sanjuan MA, Dillon CP, Tait SW, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis[J]. Nature, 2007, 450(7173):1253-1257.
[36] Cooney R, Baker J, Brain O, et al. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation[J]. Nat Med, 2010, 16(1):90-97.
[37] Irving AT, Mimuro H, Kufer TA, et al. The immune receptor NOD1 and kinase RIP2 interact with bacterial peptidoglycan on early endosomes to promote autophagy and inflammatory signaling[J]. Cell Host Microbe, 2014, 15(5):623-635.
[38] Lei Y, Wen H, Ting JP. The NLR protein, NLRX1, and its partner, TUFM, reduce type I interferon, and enhance autophagy[J]. Autophagy, 2013, 9(3):432- 433.
[39] Lupfer C, Thomas PG, Anand PK, et al. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection[J]. Nat Immunol, 2013, 14(5):480-488.
[40] Morimoto Y, Kawahara KI, Tancharoen S, et al. Tumor necrosis factor-alpha stimulates gingival epithelial cells to release high mobility-group box 1 [J]. J Periodont Res, 2008, 43(1):76-83.
[41] Tsuda H, Ning Z, Yamaguchi Y, et al. Programmed cell death and its possible relationship with periodontal disease[J]. J Oral Sci, 2012, 54(2):137-149.
[42] Tang D, Kang R, Livesey KM, et al. Endogenous HMGB1 regulates autophagy[J]. J Cell Biol, 2010, 190(5):881-892.
[43] Bullon P, Cordero M, Quiles J, et al. Autophagy in periodontitis patients and gingival fibroblasts: unraveling the link between chronic diseases and inflammation[J]. BMC Medicine, 2012, 10(1):122.
[44] Levine B, Klionsky DJ. Development by selfdigestion: molecular mechanisms and biological functions of autophagy[J]. Dev Cell, 2004, 6(4): 463-477.
(本文采編 王晴)
Interaction of autophagy and inflammation in periodontitis
Ren Jingyi1, Liu Xinchan1, Ding Ye1, Yu Hongqiang1, Zhou Yanmin1, Yu Weixian2. (1. Dept. of Implant Center, Hospital of Stomatology, Jilin University, Changchun 130021, China; 2. Key Laboratory of Mechanism of Tooth Development and Jaw Bone Remodeling and Regeneration in Jilin Province, Changchun 130021, China)
This study was supported by the Funded by the Health Department of Jilin Province(20102045), Project Supported by Jilin Provincial Development and Reform Commission(2013C022-4) and Science and Technology Office of Jilin Province(20150101076JC).
In autophagy, damaged proteins, organelles, and nutrients are transported to lysosomes for degradation, elimination, and recycling. This process is a highly conserved mechanism among eukaryotic cells. Inflammation is a vital protective host response to tissue damage and pathogenic infection. However, excessive inflammation can cause tissue damage and diseases. Autophagy inhibits the assembly of inflammasomes by degrading endogenous stimuli, including DNA and reactive oxygen species. This process also controls interleukin(IL)-1β secretion by targeting pro-IL-1β for degradation. Periodontal pathogens destroy periodontal tissues through the interaction of Toll-like receptor(TLR) with various components, such as lipopolysaccharide, peptidoglycan, and bacterial DNA. As a consequence, inflammatory cells are recruited and inflammatory cytokines are released. In local periodontal tissues, TLR or nucleotide-binding oligomerization domain-like receptor activates innate immune responses, induces autophagy-related pathways, and recognizes pathogen- and damage-associated molecular patterns. Autophagy can also influence inflammatory responses by negatively regulating TLR signals. This review focuses on recent progress in the mutual regulation of autophagy and inflammation. This review also describes the potential relations between autophagy and periodontitis to elucidate disease pathogenesis and to develop new therapies.
autophagy; inflammation; Toll-like receptor; periodontitis
R 781.4
A
10.7518/gjkq.2016.04.019
2015-12-15;
2016-03-24
吉林省衛(wèi)生廳資助項(xiàng)目(20102045);吉林省發(fā)改委資助項(xiàng)目(2013C022-4);吉林省科技廳資助項(xiàng)目(20150101076JC)
任靜宜,碩士,Email:1198423112@qq.com
于維先,教授,博士,Email:yu-wei-xian@163.com