李泓鈺 黃洪章
中山大學(xué)光華口腔醫(yī)學(xué)院?附屬口腔醫(yī)院口腔頜面外科廣東省口腔醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室 廣州 510055
蝸牛蛋白調(diào)控腭部發(fā)生發(fā)育的機(jī)制
李泓鈺 黃洪章
中山大學(xué)光華口腔醫(yī)學(xué)院?附屬口腔醫(yī)院口腔頜面外科廣東省口腔醫(yī)學(xué)重點(diǎn)實(shí)驗(yàn)室 廣州 510055
蝸牛蛋白(Snail)參與調(diào)控腭部融合過程中腭中縫上皮(MES)細(xì)胞的上皮間質(zhì)轉(zhuǎn)化(EMT)、程序性細(xì)胞死亡(PCD)或存活以及細(xì)胞遷移等生物學(xué)行為,Snail基因失去了轉(zhuǎn)化生長(zhǎng)因子-β3的抑制而表達(dá)水平升高,此時(shí)Snail作為MEE/MES細(xì)胞的存活因子,導(dǎo)致腭中線上皮(MEE)/MES細(xì)胞持續(xù)存在并誘發(fā)腭裂。Snail基因編碼具有鋅指結(jié)構(gòu)的Snail1、Snail2和Snail3等轉(zhuǎn)錄因子,其家族具有相似的結(jié)構(gòu),可以結(jié)合到E-鈣黏蛋白的啟動(dòng)子,抑制其表達(dá),可以在胚胎發(fā)生發(fā)育和腫瘤轉(zhuǎn)移過程中誘導(dǎo)EMT。Snail基因可防止細(xì)胞因?yàn)榇婊钜蜃拥臏p少或PCD因子的積累而死亡,故Snail基因是MEE/MES細(xì)胞的存活因子和細(xì)胞運(yùn)動(dòng)的誘導(dǎo)因子。微小RNA(miRNA)不僅在人類癌細(xì)胞中發(fā)揮著重要的作用,而且在胚胎健康發(fā)育過程中必不可少。miRNA表達(dá)模式的變異和miRNA 在mRNA的結(jié)合位點(diǎn)的結(jié)構(gòu)變異,可能導(dǎo)致顱面發(fā)育變異。本文就Snail基因結(jié)構(gòu)與功能、Snail基因在側(cè)腭突發(fā)育過程中表達(dá)、Snail基因與MEE/MES細(xì)胞的EMT、Snail基因與MEE/MES程序性細(xì)胞死、Snail基因是MEE/MES細(xì)胞的存活因子、微小RNA調(diào)控Snail在MEE/MES消失過程中的作用等研究進(jìn)展作一綜述。
蝸牛蛋白; 腭部發(fā)育; 先天性腭裂; 微小RNA
在哺乳動(dòng)物胚胎腭部發(fā)生發(fā)育過程中,胚胎腭中線上皮(medial edge epithelial,MEE)細(xì)胞進(jìn)入融合期后出現(xiàn)遷移、接觸和黏附,發(fā)展為胚胎腭中縫上皮(medial epithelial seam,MES)細(xì)胞,MEE細(xì)胞隨后完全消失,最終兩側(cè)腭突間質(zhì)(embryonic palatal mesenchymal,EPM)細(xì)胞融合形成完整的腭板[1]。在上述過程中,MES細(xì)胞的消失是腭突成功融合的重要前提條件,否則MES細(xì)胞的持續(xù)存在將導(dǎo)致腭裂[2-3]。MES細(xì)胞存在著程序性細(xì)胞死亡(programmed cell death,PCD)、遷移和上皮間質(zhì)轉(zhuǎn)化(epithelial mesenchymal trans- formation,EMT)等不同形式,但是目前仍然缺乏權(quán)威而且排它性的試驗(yàn)證據(jù)來證明MES細(xì)胞的最終轉(zhuǎn)歸機(jī)制[2]。蝸牛蛋白(Snail)作為轉(zhuǎn)化生長(zhǎng)因子(transforming growth factor,TGF)-β信號(hào)轉(zhuǎn)導(dǎo)通路的遞質(zhì),在個(gè)體發(fā)生發(fā)育、器官纖維化和腫瘤發(fā)生發(fā)展中發(fā)揮著重要的作用。Snail基因參與調(diào)控腭部融合過程中MES細(xì)胞的EMT、PCD或存活以及細(xì)胞遷移等生物學(xué)行為,提示其在腭部健康發(fā)育過程及MES細(xì)胞消失中發(fā)揮著重要的作用[3-5]。本文就Snail基因的結(jié)構(gòu)和Snail基因調(diào)控腭部發(fā)生發(fā)育的機(jī)制等研究進(jìn)展作一綜述。
Snail基因定位于人體染色體20q12.3,全長(zhǎng)5 882 bp,含有3個(gè)外顯子,編碼具有鋅指結(jié)構(gòu)的Snail1(Snaili)、Snail2(Slug)和Snail3(Smuc)等轉(zhuǎn)錄因子[6]。Snail基因家族具有相似的結(jié)構(gòu):高度保守的鋅指結(jié)構(gòu)的C末端DNA結(jié)合區(qū)和高度可變的N末端調(diào)節(jié)區(qū),各成員間結(jié)構(gòu)上的差異主要表現(xiàn)于中間P-S富集區(qū)域[7]。Snail基因作為E-鈣黏蛋白的轉(zhuǎn)錄抑制因子,可以結(jié)合到E-鈣黏蛋白的啟動(dòng)子,抑制其表達(dá),從而在胚胎發(fā)育和腫瘤轉(zhuǎn)移過程中誘導(dǎo)EMT的發(fā)生。E-鈣黏蛋白的下調(diào),可以使細(xì)胞失去上皮細(xì)胞極性,細(xì)胞外基質(zhì)降解,細(xì)胞間連接喪失,使細(xì)胞變得具有遷移性,可從上皮游離下來并遷移到其他部位[7]。在胚胎發(fā)生發(fā)育階段,Snail基因可抑制細(xì)胞周期蛋白D2的轉(zhuǎn)錄和增加P21Cip1/ WAF1的表達(dá)來抑制細(xì)胞周期,同時(shí)Snail基因也有使細(xì)胞具有抵抗生存因子缺失或促PCD因子誘導(dǎo)的細(xì)胞死亡的能力[8]。此外,Snail基因還能通過抑制細(xì)胞-細(xì)胞間緊密連接相關(guān)蛋白的表達(dá)及協(xié)調(diào)基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)等胚胎著床相關(guān)分子的表達(dá),在胚胎著床發(fā)育過程中發(fā)揮重要的作用[9]。
研究[3,10]顯示,在胎齡13.5 d(embryonic day 13.5,E13.5),Snail基因在整個(gè)腭突間質(zhì)都有表達(dá),特別是腭突前份和腭突后份中間區(qū)域的MEE細(xì)胞下的間質(zhì)表達(dá)最明顯;E14.0時(shí),側(cè)腭突后部間質(zhì)中的Snail基因表達(dá)明顯下降;在E14.5,隨著腭突開始融合,側(cè)腭突后部間質(zhì)中的Snail基因的基本消失,只有MES細(xì)胞附近的腭間質(zhì)中少量表達(dá),但此時(shí)開始融合的側(cè)腭突MES細(xì)胞中存在著Snail基因的表達(dá),隨著融合的繼續(xù)進(jìn)行,MES細(xì)胞中的Snail基因表達(dá)消失;在腭突體外器官培養(yǎng)過程中阻止腭突的融合,Snail基因表達(dá)下降,這些說明融合并不是Snail基因下調(diào)的必要條件。雞的腭部存在著生理性不融合,它的腭部表達(dá)的是Snail2基因,Snail2基因在腭突中的表達(dá)比較分散,在上皮和間質(zhì)中均有散在分布[3,11-12]。
Snail基因在個(gè)體發(fā)育、器官纖維化和腫瘤發(fā)生發(fā)展中發(fā)揮著重要的作用。Snail基因參與調(diào)控腭部融合過程MES細(xì)胞的EMT、PCD或存活以及細(xì)胞遷移等生物學(xué)過程,提示其在腭部健康發(fā)育過程及MES細(xì)胞消失發(fā)揮著重要的作用[3-5]。誘導(dǎo)EMT是Snail基因家族成員在脊椎動(dòng)物和哺乳動(dòng)物胚胎發(fā)育過程最廣為人知的功能[6-7],在發(fā)育及腫瘤形成過程中直接抑制E-鈣黏蛋白的表達(dá),是Snail基因誘導(dǎo)EMT的部分原因[7]。Snail是腭部發(fā)育過程中EMT及細(xì)胞存活的關(guān)鍵調(diào)控基因[6-7],其作用機(jī)制可能是Snail基因通過抑制E-鈣黏蛋白的表達(dá)來激活腭突融合過程中MEE細(xì)胞的EMT進(jìn)程。E-鈣黏蛋白的消失導(dǎo)致胚胎腭MES細(xì)胞分解為許多上皮島[4],有助于MES細(xì)胞的降解消失[13],從而促進(jìn)雙側(cè)腭突的融合[3]。
TGF-β3可誘導(dǎo)腭部發(fā)育過程中MES細(xì)胞EMT和細(xì)胞遷移[4],這可能緣于TGF-β信號(hào)轉(zhuǎn)導(dǎo)通路激活了Snail基因表達(dá)[3,14]。TGF-β3可以通過淋巴細(xì)胞樣增強(qiáng)因子-1首先結(jié)合磷酸化的細(xì)胞信號(hào)轉(zhuǎn)導(dǎo)分子Smad2與Smad4,再結(jié)合到E-鈣黏蛋白的啟動(dòng)子上,抑制細(xì)胞間E-鈣黏蛋白的轉(zhuǎn)錄,促發(fā)腭突融合過程EMT的發(fā)生[4-5]。TGF-β3也可以通過非依賴于Smad信號(hào)轉(zhuǎn)導(dǎo)通路使P38促絲裂原激活蛋白激酶、重組人促絲裂原激活蛋白激酶-細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2、細(xì)胞外信號(hào)調(diào)節(jié)激酶1/2磷酸化,激活Snail1和Snail2基因表達(dá),直接抑制E-鈣黏蛋白的轉(zhuǎn)錄水平,與依賴于Smad的信號(hào)轉(zhuǎn)導(dǎo)通路共同促發(fā)腭突融合過程中的EMT發(fā)生[4-5]。
TGF-β3可以通過扭曲基因(Twist)1與E2A (E12/E47)一起形成Twist1/E47二聚體結(jié)合到Snail1基因的啟動(dòng)子E3區(qū),激活Snail1基因表達(dá),調(diào)節(jié)E-鈣黏蛋白在腭突融合過程中的表達(dá)下降[13]。Kitase等[15]發(fā)現(xiàn),諾考達(dá)唑可以干擾微管聚合過程,使細(xì)胞周期停留在G2/M期,微管紊亂可以阻斷TGF-β3/Smad2信號(hào)轉(zhuǎn)導(dǎo)通路的信號(hào)轉(zhuǎn)導(dǎo),干擾Snail基因?qū)EE細(xì)胞中E-鈣黏蛋白的負(fù)調(diào)節(jié)和原癌基因c-myc對(duì)它的正調(diào)節(jié),導(dǎo)致MEE細(xì)胞黏附復(fù)合體積累,干擾腭突融合過程中EMT的發(fā)生。
上述研究提示,腭突融合過程需要Snail基因的轉(zhuǎn)錄與表達(dá),Snail基因可能通過下調(diào)E-鈣黏蛋白基因的轉(zhuǎn)錄與表達(dá),使雙側(cè)腭突MEE/MES細(xì)胞發(fā)生EMT,隨后MEE/MES細(xì)胞消失,腭突發(fā)生融合。
Snail基因家族成員在胚胎發(fā)育過程中也通過PCD和調(diào)節(jié)細(xì)胞運(yùn)動(dòng)性來保護(hù)細(xì)胞[9]。TGF-β3誘導(dǎo)的EMT和PCD按順序聯(lián)合作用,使MES/MEE細(xì)胞經(jīng)歷細(xì)胞周期阻滯、細(xì)胞遷移和PCD,從而使MES細(xì)胞完全降解并形成完整的腭部[16]。MES細(xì)胞降解可能包含了腭突EMT的轉(zhuǎn)化,隨后MES細(xì)胞遷移離開腭上皮中縫或者發(fā)生PCD,TGF-β3可能通過磷脂酰肌醇-3-激酶/糖原合成酶激酶-3β信號(hào)轉(zhuǎn)導(dǎo)通路調(diào)節(jié)MEE細(xì)胞轉(zhuǎn)化、遷移或PCD過程中Snail1的基因表達(dá)[13]。Murray等[11]發(fā)現(xiàn)在Snail2基因敲除的小鼠,50%的發(fā)生繼發(fā)性腭裂,但是在Snail2-/-+Snail1+/-小鼠中,100%的小鼠出現(xiàn)了繼發(fā)性腭裂。他們認(rèn)為,Snail1和Snail2基因兩者間在腭突增殖發(fā)育過程中有冗余功能,Snail1基因在MES細(xì)胞中的表達(dá)下降,導(dǎo)致PCD減少。
Snail1基因在腭間質(zhì)中高表達(dá),在腭部融合過程中少量的MES細(xì)胞中表達(dá)[3,11]。Snail基因可防止細(xì)胞因?yàn)榇婊钜蜃拥臏p少或PCD因子的積累而死亡,所以Snail基因是MEE/MES細(xì)胞的存活因子和細(xì)胞運(yùn)動(dòng)的誘導(dǎo)因子,而非EMT的誘導(dǎo)因子[7]。在Tgf-β3-/-小鼠胚胎的MES細(xì)胞中,Tgf-β1失去Tgf-β3的抑制后,其補(bǔ)償表達(dá)可以誘導(dǎo)Snail1基因的表達(dá)急劇升高,同時(shí)使PCD減少[7]。由于雞胚腭部沒有Tgf-β3的表達(dá),因此,在雞胚腭部也與Tgf-β3-/-小鼠胚胎腭部一樣,存在Snail2基因的廣泛表達(dá),導(dǎo)致MEE細(xì)胞無法發(fā)生PCD[12]。Snail基因通過2種方式來維持MEE細(xì)胞的存在[3]:1)Snail1基因在野生型小鼠中通過誘導(dǎo)一部分MES細(xì)胞發(fā)生EMT來誘導(dǎo)Tgf-β3調(diào)控MES細(xì)胞的PCD效應(yīng);2)在健康雞胚腭部的Snail2基因及Tgf-β3-/-小鼠中的Snail1基因,在MEE細(xì)胞中作為一種存活因子而非誘導(dǎo)因子誘導(dǎo)EMT的發(fā)生,從而導(dǎo)致MEE細(xì)胞的持續(xù)存在,進(jìn)而分化為角質(zhì)上皮。
微小RNA (microRNA,miRNA)是一類由22個(gè)核苷酸組成的小分子、內(nèi)源性、非編碼RNA,其功能廣泛,在轉(zhuǎn)錄后調(diào)控基因的表達(dá)方面,不僅在人類癌癥中發(fā)揮著重要的作用,而且在胚胎健康發(fā)生發(fā)育過程中同樣必不可少[17-18]。研究[19]證實(shí),miRNA表達(dá)模式的變異和miRNA在mRNA的結(jié)合位點(diǎn)的結(jié)構(gòu)變異,可能導(dǎo)致顱面發(fā)育變異,影響顱面疾病的發(fā)展。繼發(fā)腭等頜面組織發(fā)生發(fā)育的細(xì)胞信號(hào)級(jí)聯(lián)放大通路,精密的分化過程和器官的形態(tài)形成都與miRNA的不同表達(dá)有關(guān)[20]。miRNA可以通過調(diào)控細(xì)胞增殖、黏附、分化和PCD以及EMT進(jìn)而影響頜面部組織器官形成[21]。Mukhopadhyay等[21]發(fā)現(xiàn),有68、72、66個(gè)miRNA分別在胎齡E12、E13、E14時(shí)與頜面發(fā)育密切相關(guān),其中一個(gè)包含了miR20a、miR20b、miR22、miR206、miR362、miR106a、miR152和miR140表達(dá)的基因網(wǎng)絡(luò)可能起著核心的調(diào)控作用,它們與許多生理活動(dòng),如細(xì)胞增殖、上皮細(xì)胞生長(zhǎng)和細(xì)胞存活尤為相關(guān)。迄今有關(guān)miRNA在腭部發(fā)生發(fā)育的作用及其機(jī)制的相關(guān)研究較少,大部分研究都集中在miR200家族及miR140。
在斑馬魚中,miR-140可以靶向抑制血小板衍生生長(zhǎng)因子受體-α介導(dǎo)的神經(jīng)嵴細(xì)胞向口腔外胚層的遷移,該過程對(duì)于繼發(fā)腭的健康形成非常重要[22]。Li等[23]證實(shí),單核苷酸多態(tài)性可影響miR- 140的生成且與非綜合征型腭裂發(fā)生有關(guān)。Li等[24]還發(fā)現(xiàn),miR-17-92簇通過靶向調(diào)控TGF-β信號(hào)轉(zhuǎn)導(dǎo)通路的信號(hào)轉(zhuǎn)導(dǎo)參與小鼠腭胚發(fā)育。miR200家族包括miR200a、miR200b、miR200c、miR141和miR429五個(gè)成員,是維持上皮表型的重要因素,參與調(diào)控EMT以及細(xì)胞分化、程序性死亡及其干細(xì)胞性和多功能性[18,25]。E-鈣黏蛋白以及Smad2和Snail基因在小鼠腭間質(zhì)中表達(dá),而miR200b同時(shí)在間質(zhì)和MEE中表達(dá),當(dāng)腭突接觸以后,miR-200b在融合區(qū)域周圍的腭間質(zhì)中不再表達(dá)[17]。miR200b在細(xì)胞水平和分子水平直接靶向作用于Smad2和Snail,抑制TGF-β介導(dǎo)的調(diào)節(jié)因子,同時(shí)改變腭突融合區(qū)域PCD和增殖水平;當(dāng)miR200b過表達(dá)時(shí),MES始終存在而無法消失,同時(shí)沒有PCD的出現(xiàn)[17]。這可能是由E-鈣黏蛋白持續(xù)表達(dá)所導(dǎo)致的,因?yàn)槠浔磉_(dá)下降能促使MES的PCD;另外一個(gè)原因可能是因?yàn)镾nail基因表達(dá)下降,導(dǎo)致PCD數(shù)量減少[11]。
在繼發(fā)腭發(fā)生發(fā)育過程中,TGF-β介導(dǎo)的EMT與miR 205以及mir200家族的全部5個(gè)成員的表達(dá)明顯下調(diào)有關(guān)。同時(shí),誘導(dǎo)miR200表達(dá)上升可阻止TGF-β誘導(dǎo)的EMT[26]。Shin等[17]證實(shí),miR-200b可靶向抑制鋅指E盒子結(jié)合同源蛋白(zinc finger E-box binding homeobox protein,ZEB)1和ZEB2調(diào)控EMT,參與小鼠胚胎腭的發(fā)生發(fā)育;也有研究證實(shí),miR-200b可靶向抑制Smad2和snail,誘導(dǎo)E-鈣黏蛋白表達(dá),參與TGF-β信號(hào)轉(zhuǎn)導(dǎo)通路介導(dǎo)的小鼠胚胎腭發(fā)生發(fā)育過程;因此,以上研究提示miR200可能通過對(duì)Snail基因的調(diào)控,參與MEE/MES消失過程中的PCD或EMT。
Snail基因?qū)棺祫?dòng)物和哺乳動(dòng)物腭部的發(fā)生發(fā)育至關(guān)重要,Snail基因通過EMT、PCD、細(xì)胞遷移和細(xì)胞存活等多種方式,對(duì)腭部的融合、MEE/MES細(xì)胞的消失進(jìn)行精密的時(shí)空調(diào)控。Snail基因在MES細(xì)胞中的短暫表達(dá),可以誘導(dǎo)MES細(xì)胞發(fā)生EMT以及其后的PCD過程,促進(jìn)MES細(xì)胞的消失;但是在Tgf-β3-/-小鼠腭部和雞胚腭部中,Snail基因失去了TGF-β3的抑制而表達(dá)水平升高,此時(shí)Snail不再作為MEE/MES細(xì)胞發(fā)生EMT的誘導(dǎo)因子,而是成為了MEE/MES細(xì)胞的存活因子,導(dǎo)致這些細(xì)胞的持續(xù)存在,腭裂發(fā)生。這說明Snail 和Snail2基因介導(dǎo)的EMT在MEE消失和腭裂發(fā)生過程中起著關(guān)鍵作用,但Snail和Snail2在誘導(dǎo)EMT的同時(shí)亦可抗PCD。miRNA通過抑制目標(biāo)mRNA的表達(dá)和穩(wěn)定性,調(diào)節(jié)目標(biāo)基因的表達(dá),從而使靶基因直接或間接影響腭部的發(fā)生發(fā)育。miR200家族對(duì)于控制腭突融合區(qū)域的PCD和增殖至關(guān)重要,它與Snail之間在MES消失過程中如何精確調(diào)控PCD和EMT以及Snail基因與miR200在其中的作用目前仍不明確。有意思的是,Snail基因可抑制ΔNP63的表達(dá),即Snail/Snail2基因可能抑制MEE上皮中ΔNP63的表達(dá)參與MEE消失[27-28]。ΔNP63、miR-200b和Snail基因調(diào)節(jié)PCD和EMT,參與MEE/ MES細(xì)胞的消失過程值得進(jìn)一步探索。
[1] Ferguson MW. Palate development[J]. Development, 1988, 103(Suppl):41-60.
[2] Vieira AR. Unraveling human cleft lip and palate research[J]. J Dent Res, 2008, 87(2):119-125.
[3] Martínez-Alvarez C, Blanco MJ, Pérez R, et al. Snail family members and cell survival in physiological and pathological cleft palates[J]. Dev Biol, 2004, 265(1):207-218.
[4] Nawshad A, Medici D, Liu CC, et al. TGFbeta3 inhibits E-cadherin gene expression in palate medialedge epithelial cells through a Smad2-Smad4-LEF1 transcription complex[J]. J Cell Sci, 2007, 120(9): 1646-1653.
[5] Jalali A, Zhu X, Liu C, et al. Induction of palate epithelial mesenchymal transition by transforming growth factor β3 signaling[J]. Dev Growth Differ,2012, 54(6):633-648.
[6] Nieto MA. The snail superfamily of zinc-finger transcription factors[J]. Nat Rev Mol Cell Biol, 2002, 3 (3):155-166.
[7] Barrallo-Gimeno A, Nieto MA. The Snail genes as inducers of cell movement and survival: implications in development and cancer[J]. Development, 2005, 132(14):3151-3161.
[8] Vega S. Snail blocks the cell cycle and confers resistance to cell death[J]. Genes Dev, 2004, 18(10): 1131-1143.
[9] Dey SK, Lim H, Das SK, et al. Molecular cues to implantation[J]. Endocr Rev, 2004, 25(3):341-373.
[10] Pungchanchaikul P, Gelbier M, Ferretti P, et al. Gene expression during palate fusion in vivo and in vitro[J]. J Dent Res, 2005, 84(6):526-531.
[11] Murray SA, Oram KF, Gridley T. Multiple functionsof Snail family genes during palate development in mice[J]. Development, 2007, 134(9):1789-1797.
[12] Pérez-Mancera PA, González-Herrero I, Maclean K, et al. SLUG(SNAI2) overexpression in embryonic development[J]. Cytogenet Genome Res, 2006, 114 (1):24-29.
[13] Yu W, Zhang Y, Ruest LB, et al. Analysis of Snail1 function and regulation by Twist1 in palatal fusion [J]. Front Physiol, 2013, 4:12.
[14] Yu W, Ruest LB, Svoboda KK. Regulation of epithelial-mesenchymal transition in palatal fusion [J]. Exp Biol Med, 2009, 234(5):483-491.
[15] Kitase Y, Shuler CF. Microtubule disassembly prevents palatal fusion and alters regulation of the E-cadherin/catenin complex[J]. Int J Dev Biol, 2013, 57(1):55-60.
[16] Ahmed S, Liu CC, Nawshad A. Mechanisms of palatal epithelial seam disintegration by transforming growth factor(TGF) beta3[J]. Dev Biol, 2007, 309 (2):193-207.
[17] Shin JO, Lee JM, Cho KW, et al. MiR-200b is involved in Tgf-β signaling to regulate mammalian palate development[J]. Histochem Cell Biol, 2012, 137(1):67-78.
[18] Feng X, Wang Z, Fillmore R, et al. MiR-200, a new star miRNA in human cancer[J]. Cancer Lett, 2014, 344(2):166-173.
[19] He X, Eberhart JK, Postlethwait JH. MicroRNAs and micromanaging the skeleton in disease, development and evolution[J]. J Cell Mol Med, 2009, 13 (4):606-618.
[20] Seelan RS, Mukhopadhyay P, Pisano MM, et al. Developmental epigenetics of the murine secondary palate[J]. ILAR J, 2012, 53(3/4):240-252.
[21] Mukhopadhyay P, Brock G, Pihur V, et al. Developmental microRNA expression profiling of murine embryonic orofacial tissue[J]. Birth Defects Res Part A Clin Mol Teratol, 2010, 88(7):511-534.
[22] Eberhart JK, He X, Swartz ME, et al. MicroRNA Mirn140 modulates Pdgf signaling during palatogenesis[J]. Nat Genet, 2008, 40(3):290-298.
[23] Li L, Meng T, Jia Z, et al. Single nucleotide polymorphism associated with nonsyndromic cleft palate influences the processing of miR-140[J]. Am J Med Genet, 2010, 152A(4):856-862.
[24] Li L, Zhu GQ, Meng T, et al. Biological and epidemiological evidence of interaction of infant genotypes at Rs7205289 and maternal passive smoking in cleft palate[J]. Am J Med Genet A, 2011, 155A(12): 2940-2948.
[25] Gill JG, Langer EM, Lindsley RC, et al. Snail and the microRNA-200 family act in opposition to regulate epithelial-to-mesenchymal transition and germ layer fate restriction in differentiating ESCs[J]. Stem Cells, 2011, 29(5):764-776.
[26] Gregory PA, Bert AG, Paterson EL, et al. The miR- 200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J]. Nat Cell Biol, 2008, 10(5):593-601.
[27] Herfs M, Hubert P, Suarez-Carmona M, et al. Regulation of p63 isoforms by snail and slug transcription factors in human squamous cell carcinoma [J]. Am J Pathol, 2010, 176(4):1941-1949.
[28] Higashikawa K, Yoneda S, Tobiume K, et al. Snailinduced down-regulation of DeltaNp63alpha acquires invasive phenotype of human squamous cell carcinoma[J]. Cancer Res, 2007, 67(19):9207-9213.
(本文采編 石冰)
Mechanisms of the transcript factor Snail during palatogenesis
Li Hongyu, Huang Hongzhang. (Dept. of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China)
This study was supported by National Natural Science Foundation of China(81100739).
Snail is involved in epithelial-to-mesenchymal transformation(EMT), programmed cell death(PCD), and medial epithelial seam(MES) cell migration during palatogenesis. The Snail expression becomes upregulated without inhibiting transforming growth factor(TGF)-β3 and causes cleft palate. Snail gene-encoding transcript factors, namely, Snail1, Snail2, and Snail3, can combine with the promoter of E-cadherin and inhibit its expression; these factors then induce EMT during embryogenesis and tumor metastasis. Snail is also a critical factor of MEE/MES cell survival and cell migration. MicroRNA(miRNA) are another important factor in embryogenesis. Variation in the expression pattern and mRNA binding sites of miRNA can lead to craniofacial anomalies. This review introduces the structure, functions, and expression of Snail during palatogenesis. This review also discusses the relation of Snail to EMT, PCD, and cell survival during the disappearance of MEE/MES. This review also describes the mechanisms by which miRNA regulate Snail to control the disappearance of MEE/MES.
Snail; palatogenesis; cleft palate; microRNA
Q 51
A
10.7518/gjkq.2016.04.020
2015-12-03;
2016-04-11
國(guó)家自然科學(xué)基金(81100739)
李泓鈺,碩士,Email:lihongy5@163.com
黃洪章,教授,博士,Email:drhuang52@163.com