陳盡歡 孫建勛 陳新梅
口腔疾病研究國家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院牙體牙髓病科(四川大學(xué)) 成都 610041
轉(zhuǎn)化生長因子-β超家族成員在牙本質(zhì)發(fā)生發(fā)育中的作用
陳盡歡 孫建勛 陳新梅
口腔疾病研究國家重點(diǎn)實(shí)驗(yàn)室 華西口腔醫(yī)院牙體牙髓病科(四川大學(xué)) 成都 610041
轉(zhuǎn)化生長因子(TGF)超家族是一類在細(xì)胞分化、增殖和程序性死亡中參與調(diào)控的重要生長因子,具有相似的蛋白質(zhì)高級(jí)結(jié)構(gòu),其中包括TGF-β、骨形態(tài)發(fā)生蛋白(BMP)和生長分化因子(GDF)、激活蛋白(ACT)和抑制蛋白等,它們通過其相應(yīng)的受體介導(dǎo)轉(zhuǎn)導(dǎo)信號(hào)。牙本質(zhì)是牙體組織結(jié)構(gòu)中的主要支持部分,由成牙本質(zhì)細(xì)胞分泌的基質(zhì)礦化而成。當(dāng)成牙本質(zhì)細(xì)胞分泌胞外基質(zhì)并礦化時(shí),TGF-β參與基質(zhì)形成和礦化的調(diào)控,調(diào)控成牙本質(zhì)細(xì)胞排列;BMP參與調(diào)節(jié)多種轉(zhuǎn)錄因子的表達(dá),介導(dǎo)牙發(fā)生發(fā)育中上皮間質(zhì)的相互作用;GDF在牙發(fā)生發(fā)育時(shí)調(diào)控牙周組織形成;ACT則調(diào)節(jié)細(xì)胞增殖分化,參與免疫應(yīng)答,修復(fù)損傷等。本文就TGF-β超家族成員在牙本質(zhì)發(fā)育中的作用等研究進(jìn)展作一綜述。
轉(zhuǎn)化生長因子; 牙本質(zhì); 牙發(fā)生發(fā)育
轉(zhuǎn)化生長因子(transforming growth factor,TGF)超家族是一類在細(xì)胞分化、增殖和程序性死亡中參與調(diào)控的重要生長因子,具有相似的蛋白質(zhì)高級(jí)結(jié)構(gòu),其中包括TGF-β、骨形態(tài)發(fā)生蛋白(bone morphogenetic protein,BMP)和生長分化
因子(growth differation factor,GDF)等。在牙發(fā)生發(fā)育的不同階段,TGF超家族生長因子與其他多種生長因子共同作用,相互影響,調(diào)節(jié)牙的發(fā)生發(fā)育。
牙本質(zhì)是牙體組織結(jié)構(gòu)中的主要支持部分,由成牙本質(zhì)細(xì)胞分泌的基質(zhì)礦化而成[1-2]。牙本質(zhì)在冠方與上皮來源的釉質(zhì)相鄰,在根方與牙囊來源于的牙骨質(zhì)相連,中心包裹牙髓組織。在牙胚發(fā)生發(fā)育的鐘狀期,鄰近內(nèi)釉上皮凹面的牙乳頭細(xì)胞與分化成熟的成釉細(xì)胞相互作用,先分化為前成牙本質(zhì)細(xì)胞,而后分化為成牙本質(zhì)細(xì)胞[3]。成牙本質(zhì)細(xì)胞合成的1型膠原和非膠原蛋白,自牙乳頭表層分泌至牙乳頭基質(zhì)中。牙本質(zhì)涎磷蛋白(dentin sialophosphoprotein,DSPP)、骨橋蛋白(osteopontin,OPN)、骨鈣蛋白和一些其他生長因子以及基質(zhì)金屬蛋白酶(matrix metalloproteinase,MMP)等非膠原蛋白,在誘導(dǎo)細(xì)胞分化和促進(jìn)牙本質(zhì)礦化過程中起著重要的作用[4]。鈣離子在牙乳頭表層的牙本質(zhì)基質(zhì)中沉積,與有機(jī)成分結(jié)合形成羥磷灰石晶體并逐漸擴(kuò)大融合,促使牙本質(zhì)礦化[2,5]。牙本質(zhì)細(xì)胞由牙尖的斜面向牙頸部分化,直至整個(gè)冠部牙本質(zhì)完全形成。根部牙本質(zhì)形成與冠部相似,在牙冠發(fā)生發(fā)育即將完成時(shí),內(nèi)釉和外釉上皮細(xì)胞頸環(huán)處增生形成的上皮根鞘包裹牙乳頭細(xì)胞向根尖增生;外層牙乳頭細(xì)胞與上皮細(xì)胞基膜接觸,分化出的成牙本質(zhì)細(xì)胞進(jìn)而形成根部牙本質(zhì)[6-7]。
音猬蛋白(sonic hedgehog,SHH)和無翅型小鼠乳房腫瘤病毒整合位點(diǎn)(WNT)家族信號(hào)轉(zhuǎn)導(dǎo)通路相關(guān)蛋白以及成纖維細(xì)胞生長因子超家族成員等生長因子對(duì)上皮與間質(zhì)間的相互作用進(jìn)行調(diào)控。這些生長因子除了影響細(xì)胞的增殖和分化外,還在胚胎發(fā)生發(fā)育、細(xì)胞外基質(zhì)形成、組織形成和重建、組織結(jié)構(gòu)代謝以及腫瘤形成等方面發(fā)揮作用[8-9]。其中,TGF超家族的不同成員在牙本質(zhì)發(fā)生發(fā)育的不同時(shí)段中表達(dá)不同[10]。
2.1 TGF超家族成員及其結(jié)構(gòu)
TGF超家族成員包括TGF-β、BMP、GDF、激活蛋白(activin,ACT)和抑制蛋白以及在胚胎發(fā)生中參與性別分化的副中腎管抑制物質(zhì)和抗副中腎管激素,節(jié)蛋白和肌肉生長抑制蛋白等[11]。TGF超家族蛋白具有相同的二聚體結(jié)構(gòu):其N末端有一段信號(hào)肽序列,緊鄰生物活性區(qū)有4個(gè)氨基酸組成的蛋白酶加工位點(diǎn),C末端包含9個(gè)保守的半胱氨酸生物活性區(qū),兩個(gè)單體通過分子間的二硫鍵形成二聚體[11-12]。很多不同類型的細(xì)胞都能合成TGF-β超家族成員,但血小板和大部分細(xì)胞合成的TGF-β多為無活性的潛活形式,前體形成后在需要時(shí)通過蛋白酶水解或者構(gòu)象變化即被活化。BMP通常以活性形式分泌,其活性受到卵泡抑制蛋白和頭蛋白以及抑制型Smad蛋白和cas相互作用鋅指蛋白等多種胞外抑制劑的控制[13]。
2.2 TGF超家族成員的信號(hào)轉(zhuǎn)導(dǎo)通路
TGF超家族生長因子通過其相應(yīng)的受體介導(dǎo)轉(zhuǎn)導(dǎo)信號(hào)。以TGF-β為例,經(jīng)典的信號(hào)轉(zhuǎn)導(dǎo)通路通過Smad蛋白介導(dǎo),由TGF-β1型受體(TGF-β1 receptor,TGF-βR1)和2型受體(TGF-βR2)共同作用以轉(zhuǎn)導(dǎo)信號(hào)[14-15]。TGF-β信號(hào)分子首先與TGF-βR2結(jié)合,再與TGF-βR1結(jié)合形成三元復(fù)合物異二聚體[14]。TGF-βR2的絲氨酸-蘇氨酸激酶對(duì)TGF-βR1的磷酸化作用轉(zhuǎn)導(dǎo)至受體介導(dǎo)型Smad蛋白(R-Smad),介導(dǎo)磷酸化信號(hào)轉(zhuǎn)導(dǎo)至下游細(xì)胞膜基板,結(jié)合活化的Smad4蛋白形成復(fù)合物,轉(zhuǎn)運(yùn)至細(xì)胞核并通過與細(xì)胞轉(zhuǎn)錄激活因子或抑制因子結(jié)合,從而調(diào)節(jié)目的基因表達(dá)[16]。經(jīng)典信號(hào)轉(zhuǎn)導(dǎo)通路根據(jù)細(xì)胞生長因子與對(duì)應(yīng)的1型受體結(jié)合后激發(fā)活化的R-Smad信號(hào)分子不同分為兩條通路,通路一:BMP2、4~10以及GDF1、3、5~7等與其相應(yīng)1型受體結(jié)合后激活的R-Smad 1、5、8通路;通路二:TGF-β,ACT,GDF8、9、11,BMP3,節(jié)蛋白,肌肉生長抑制蛋白等結(jié)合相應(yīng)的1型受體后激活的R-Smad2、3通路[10,17-18]。與Smad4結(jié)合,活化為這兩種途徑的中心環(huán)節(jié)。非經(jīng)典信號(hào)轉(zhuǎn)導(dǎo)通路是指一些TGF-β超家族成員介導(dǎo)的細(xì)胞作用或功能并不依賴于經(jīng)典的Smad信號(hào)轉(zhuǎn)導(dǎo)通路。有些響應(yīng)TGF-β的細(xì)胞,轉(zhuǎn)錄中介因子1可代替Smad4并以依賴TGF-β直接刺激的方式與Smad2、3聚合并轉(zhuǎn)導(dǎo)信號(hào),這一通路在紅細(xì)胞的分化中發(fā)揮著重要的作用[19]。在有些情況下,TGF-β家族能激活包括細(xì)胞外信號(hào)調(diào)節(jié)蛋白激酶、C-Jun氨基端激酶、P38信號(hào)轉(zhuǎn)導(dǎo)通路的促分裂素原活化蛋白激酶鏈在內(nèi)的信號(hào)轉(zhuǎn)導(dǎo)通路以及Rho-相關(guān)卷曲螺旋形成蛋白激酶-1、磷脂酰肌醇-3-激酶/蛋白激酶B和蛋白磷酸酶等轉(zhuǎn)導(dǎo)信號(hào)。另外,BMP2型受體也可以直接調(diào)控人單絲氨酸蛋白激酶-1[20]。
3.1 TGF-β及其在牙本質(zhì)形成中的作用
TGF-β是一類細(xì)胞分泌的由兩個(gè)結(jié)構(gòu)相同或相近相對(duì)分子質(zhì)量為1.25×104的亞單位借二硫鍵連接的二聚體,是結(jié)構(gòu)和功能高度保守的多肽生長因子[12]。TGF-β亞家族主要包括TGF-β1~3三種同族物,其生物活性相似,氨基酸序列具有高度的同源性。TGF-β mRNA及其蛋白質(zhì)在牙胚發(fā)生的不同時(shí)期,包括從蕾狀期早期到根部牙本質(zhì)形成,均有表達(dá)[7]。TGF-β1從蕾狀期開始在口腔上皮中表達(dá),之后進(jìn)入外胚間質(zhì),最后定位于其中的成牙本質(zhì)細(xì)胞層。當(dāng)成牙本質(zhì)細(xì)胞分泌胞外基質(zhì)并開始礦化時(shí),TGF-β1表達(dá)較強(qiáng)并通過自分泌和旁分泌參與基質(zhì)形成和礦化的調(diào)控[5,21-22],還可通過調(diào)控緊密連接蛋白的表達(dá)來調(diào)控成牙本質(zhì)細(xì)胞排列[23]。
TGF-β1可以提高細(xì)胞的堿性磷酸酶活性,調(diào)節(jié)細(xì)胞活化,提高牙本質(zhì)涎蛋白、OPN表達(dá)以及1型膠原蛋白分泌和礦化,而牙本質(zhì)涎蛋白、牙本質(zhì)磷蛋白等蛋白質(zhì)也可以反過來維持TGF-β1的活性[22,24-25]。不同質(zhì)量濃度的TGF-β1對(duì)基質(zhì)形成和吸收的影響不同。Tgf-β1基因敲除小鼠可出現(xiàn)牙體磨耗嚴(yán)重,礦化不足并伴有炎癥等發(fā)育異常;而Tgf-β1基因過表達(dá)的小鼠則表現(xiàn)為牙本質(zhì)形成缺陷,礦化減少,牙本質(zhì)小管分支增多,牙本質(zhì)胞外基質(zhì)成分在牙髓中異常沉積[26-27]。
在成牙本質(zhì)細(xì)胞分化,基質(zhì)分泌、礦化,根部牙本質(zhì)形成過程中的間質(zhì)層均可檢測到Tgf-β1基因表達(dá);外源性的TGF-β2可誘導(dǎo)牙本質(zhì)細(xì)胞分泌牙本質(zhì)基質(zhì),從而刺激牙本質(zhì)形成,但Tgf-β1基因過量表達(dá)會(huì)使野生雄性小鼠牙本質(zhì)彈性模量降低,而對(duì)于雌性小鼠這種影響并不明顯;在Tgf-β1基因敲除的小鼠中,神經(jīng)嵴細(xì)胞來源的間質(zhì)TGF-β信號(hào)轉(zhuǎn)導(dǎo)受阻,影響成牙本質(zhì)細(xì)胞的終末成熟分化,成牙本質(zhì)細(xì)胞1型膠原纖維和DSPP的分泌均降低,牙根發(fā)生發(fā)育不良[27-30]。
3.2 BMP在牙本質(zhì)發(fā)育中的作用
BMP和GDF同為TGF-β超家族成員,其結(jié)構(gòu)和功能相似,具有7個(gè)隔開的半胱氨酸殘基的典型結(jié)構(gòu)。唯一的例外是BMP1,其基因與果蠅tolloid基因同源,編碼一種蛋白酶。這種蛋白酶的結(jié)構(gòu)與其他超家族成員不同,是通過裂解BMP的拮抗蛋白和從其他BMP前體復(fù)合物中釋放BMP而發(fā)揮作用的[31]。
BMP對(duì)于牙的生長發(fā)育起著重要的作用,參與調(diào)節(jié)多種轉(zhuǎn)錄因子的表達(dá),介導(dǎo)牙發(fā)生發(fā)育中上皮間質(zhì)的相互作用[32]。在鐘狀晚期可檢測到多種BMP在成釉細(xì)胞和牙乳頭細(xì)胞間轉(zhuǎn)導(dǎo),通過調(diào)控不同分下游信號(hào)分子影響成牙本質(zhì)細(xì)胞分化及牙本質(zhì)形成[33-34]。譬如,BMP4在牙本質(zhì)細(xì)胞形成過程中轉(zhuǎn)入成釉細(xì)胞層,BMP7在宿主胚胎第18周到出生后從內(nèi)釉上皮層轉(zhuǎn)入牙本質(zhì)細(xì)胞層,BMP5亦從宿主胚胎18周開始在前成釉細(xì)胞層持續(xù)表達(dá)[7]。BMP主要通過調(diào)節(jié)SHH、成對(duì)樣同源結(jié)構(gòu)域轉(zhuǎn)錄因子和肌節(jié)同源型結(jié)構(gòu)域家族的表達(dá)影響上皮間質(zhì)的相互作用[29,34],從而影響成牙本質(zhì)細(xì)胞的終末分化。當(dāng)前期牙本質(zhì)細(xì)胞完成分化并分泌牙本質(zhì)基質(zhì),BMP4表達(dá)明顯下調(diào)[35]。
BMP4還調(diào)節(jié)上皮根鞘細(xì)胞的增殖和分化,從而影響根部牙本質(zhì)的形成。輕度抑制K14-頭蛋白小鼠的BMP信號(hào)轉(zhuǎn)導(dǎo),可導(dǎo)致部分牙冠和牙根發(fā)生發(fā)育缺陷,即BMP對(duì)牙體硬組織和根部形成具有重要的作用。除此之外,BMP2、4、7可誘導(dǎo)成熟的成牙本質(zhì)細(xì)胞產(chǎn)生修復(fù)性牙本質(zhì)。在Bmp2敲除的小鼠中,由于成骨細(xì)胞特異性轉(zhuǎn)錄因子、1型膠原和Dspp基因表達(dá)降低,成牙本質(zhì)細(xì)胞成熟不全,無法分化為可分泌形成成熟牙本質(zhì)小管形態(tài)的活性細(xì)胞,導(dǎo)致牙本質(zhì)形成缺陷[36]。Xia等[37]發(fā)現(xiàn),牙本質(zhì)中的BMP2對(duì)于乳牙牙髓干細(xì)胞分化為成牙本質(zhì)細(xì)胞有不可或缺的誘導(dǎo)作用。
GDF與BMP除了有TGF-Β超家族的共同結(jié)構(gòu)外,還具有特殊的胱氨酸結(jié)構(gòu)。GDF主要在骨骼、肌腱和韌帶發(fā)生發(fā)育中起重要作用[31]。在牙體發(fā)生發(fā)育中,GDF的某些因子在牙胚成牙本質(zhì)細(xì)胞層和小鼠牙髓中表達(dá),但GDF對(duì)牙體發(fā)生發(fā)育的影響主要在于調(diào)控牙周組織形成,對(duì)于牙本質(zhì)的形成和修復(fù)的影響則有待進(jìn)一步研究[38-39]。
3.3 激活蛋白和抑制蛋白
ACT是由βA和βΒ兩種基因產(chǎn)物組成的二聚體,包括ACTA(βA:βA),ACTB(βΒ:βΒ)和ACTAB(βA:βΒ)。抑制蛋白與ACT結(jié)構(gòu)功能高度相關(guān),其中一部分為與ACT結(jié)構(gòu)一樣或相近的βΒ亞單位,另一部分是抑制蛋白特異性的α亞單位,與BA亞單位的功能幾乎完全相反[40]。最早發(fā)現(xiàn),ACT可調(diào)節(jié)卵泡刺激蛋白的合成和分泌;后期發(fā)現(xiàn),ACT還可調(diào)節(jié)細(xì)胞增殖分化,參與免疫應(yīng)答,修復(fù)損傷等[41]。
ACTβA基因在牙胚階段表達(dá),對(duì)牙發(fā)生發(fā)育和牙列的形成有重要的作用。其相關(guān)基因突變的小鼠除上頜磨牙外余牙均缺失,而萌出的上頜磨牙未見明顯異常。上頜磨牙牙胚中的ACTBA相關(guān)下游基因如遠(yuǎn)端較小的同源異形盒1~2等表達(dá)異常,提示可能在上頜磨牙發(fā)生發(fā)育中有ACTBA的補(bǔ)償基因或其他通路進(jìn)行調(diào)解[41]。
TGF-β超家族信號(hào)參與調(diào)節(jié)牙胚早期形成,牙本質(zhì)形成及牙根的發(fā)育,對(duì)牙發(fā)生發(fā)育具有至關(guān)重要的調(diào)控作用。其家族成員及下游信號(hào)分子對(duì)于牙本質(zhì)的形成和礦化起到了十分關(guān)鍵的作用。調(diào)控轉(zhuǎn)導(dǎo)鏈上的單一或多種因子可影響牙本質(zhì)的形成。闡明其分子機(jī)制,可為牙本質(zhì)發(fā)育疾病及齲損以及外傷性牙體組織損傷修復(fù)奠定重要的研究基礎(chǔ)。
[1] Goldberg M, Kulkarni AB, Young M, et al. Dentin: structure, composition and mineralization[J]. Front Biosci, 2011, 3(2):711-735.
[2] Suzuki S, Haruyama N, Nishimura F, et al. Dentin sialophosphoprotein and dentin matrix protein-1: two highly phosphorylated proteins in mineralized tissues[J]. Arch Oral Biol, 2012, 57(9):1165-1175.
[3] Mitsiadis TA, Daniel G. Cell fate determination during tooth development and regeneration[J]. Birth Defects Res C Embryo Today, 2009, 87(3):199-211.
[4] Fran OB. Odontoblast physiology[J]. Exp Cell Res, 2014, 325(2):65-71.
[5] Ni?o-Barrera JL, Gutiérrez ML, Garzón-Alvarado DA. A theoretical model of dentinogenesis: dentin and dentinal tubule formation[J]. Comput Methods Programs Biomed, 2013, 112(1):219-227.
[6] Huang X, Xu X, Pablo B, et al. Smad4-Shh-Nfic signaling cascade-mediated epithelial-mesenchymal interaction is crucial in regulating tooth root development[J]. J Bone Min Res, 2010, 25(5):1167-1178.
[7] Huang XF, Chai Y. TGF-β signalling and tooth development[J]. Chin J Dent Res Offic J Sci, 2010, 13 (1):7-15.
[8] Ronga M, Fagetti A, Canton G, et al. Clinical applications of growth factors in bone injuries: experience with BMPs[J]. Injury, 2013, 44(Suppl 1): S34-S39.
[9] Chai Y, Maxson RE. Recent advances in craniofacial morphogenesis[J]. Dev Dyn, 2006, 235(9):2353- 2375.
[10] Hinck AP. Structural studies of the TGF-β and their receptors-insights into evolution of the TGF-β superfamily[J]. Febs Lett, 2012, 586(14):1860-1870.
[11] Larco JE, Todaro GJ. Growth factors from murine sarcoma virus-transformed cells[J]. Proc Nation Acad Sci, 1978, 75(8):4001-4005.
[12] 嚴(yán)曉華, 章雋宇, 陳曄光. 抑制性Smad蛋白對(duì)TGF- β超家族信號(hào)轉(zhuǎn)導(dǎo)的調(diào)控及其生理意義[J]. 中國細(xì)胞生物學(xué)學(xué)報(bào), 2009, 31(2):135-144. Yan XH, Zhang JY, Chen YG. Regulation and physiological significance of inhibitiory Smad protein to the TGF-T superfamily transduction[J]. Chin J Cell Biol, 2009, 31(2):135-144.
[13] Shi Y, Massagué J. Mechanisms of TGF-β signaling from cell membrane to the nucleus[J]. Cell, 2003, 113(6):685-700.
[14] Massagué J, Weis-Garcia F. Serine/threonine kinase receptors: mediators of transforming growth factor beta family signals[J]. Cancer Surv, 1996, 27:41-64.
[15] Kohei M, Carl H, Peter TD. TGF-Βeta signalling from cell membrane to nucleus through SMAD proteins[J]. Nature, 1997, 390(6659):465-471.
[16] Zhao Β, Chen YG. Regulation of TGF-β signal transduction[J]. Scientifica, 2014, 2014:874065- 874065.
[17] Weiss A, Attisano L. The TGF-β superfamily signaling pathway[J]. Wiley Interdiscip Rev Dev Biol, 2013, 2(1):47-63.
[18] He W, Dorn DC, Erdjument-Bromage H, et al. Hematopoiesis controlled by distinct TIF1γ and Smad4 branches of the TGFβ pathway[J]. Cell, 2006, 125 (5):929-941.
[19] Foletta VC, Lim MA, Soosairajah J, et al. Direct signaling by the BMP type Ⅱ receptor via the cytoskeletal regulator LIMK1[J]. J Cell Biol, 2003, 162 (6):1089-1098.
[20] Oka S, Oka K, Xu X, et al. Cell autonomous requirement for TGF-β signaling during odontoblast differentiation and dentin matrix formation[J]. Mechan Devel, 2007, 124(6):409-415.
[21] Hwang YC, Hwang IN, Oh WM, et al. Influence of TGF-beta1 on the expression of BSP, DSP, TGF-beta1 receptorⅠand Smad proteins during reparative dentinogenesis[J]. J Mol Histol, 2008, 39(2):153- 160.
[22] Tj?derhane L, Koivum?ki S, P??kk?nen V, et al. Polarity of mature human odontoblasts[J]. J Dent Res, 2013, 92(11):1011-1016.
[23] Yucheng L, Xin L, Xiang S, et al. Odontoblast-like cell differentiation and dentin formation induced with TGF-β1[J]. Arch Oral Βiol, 2011, 56(11):1221-1229.
[24] Yamakoshi Y, Kinoshita S, Izuhara L, et al. DPP and DSP are necessary for maintaining TGF-β1 activity in dentin[J]. J Dent Res, 2014, 93(7):671-677.
[25] Thyagarajan T, Sreenath T, Cho A, et al. Reduced expression of dentin sialophosphoprotein is associated with dysplastic dentin in mice overexpressing transforming growth factor-β1 in teeth[J]. J Βio Chem,2001, 276(14):11016-11020.
[26] 朱奇, 樊明文, 陳智, 等. 轉(zhuǎn)化生長因子β2 mRNA在小鼠磨牙牙胚發(fā)育過程中表達(dá)的研究[J]. 口腔醫(yī)學(xué)研究, 2007, 23(4):361-364. Zhu Q, Fan MW, Chen Z, et al. Expression of transforming growth factor-β2 mRNA during mouse molar development[J]. J Oral Sci Res, 2007, 23(4): 361-364.
[27] Denbesten PK, Machule D, Gallagher R, et al. The effect of TGF-beta 2 on dentin apposition and hardness in transgenic mice[J]. Adv Dent Res, 2001, 15 (1):39-41.
[28] Saeki K, Hilton JF, Alliston T. Elevated TGF-β2 signaling in dentin results in sex related enamel defects[J]. Arch Oral Biol, 2007, 52(9):814-821.
[29] Hart TC, Hart PS. Genetic studies of craniofacial anomalies: clinical implications and applications[J]. Orthod Craniofac Res, 2009, 12(3):212-220.
[30] Rider CC, Barbara M. Bone morphogenetic protein and growth differentiation factor cytokine families and their protein antagonists[J]. Biochem J, 2010, 429(4):1-12.
[31] Li L, Lin M, Wang Y, et al. BmprIa is required in mesenchymal tissue and has limited redundant function with BmprIb in tooth and palate development [J]. Dev Biol, 2010, 349(2):451-461.
[32] Arakaki M, Ishikawa M, Nakamura T, et al. Role of epithelial-stem cell interactions during dental cell differentiation[J]. J Biol Chem, 2012, 287(13): 10590-10601.
[33] Irfan S, Pragnya D, Minglian Z, et al. Msx1 and Tbx2 antagonistically regulate Bmp4 expression during the bud-to-cap stage transition in tooth development[J]. Development, 2013, 140(13):2697- 2702.
[34] Feng JQ, Zhang J, Tan X, et al. Identification of Cis-DNA regions controlling Bmp4 expression during tooth morphogenesis in vivo[J]. J Dent Res, 2002, 81(1):6-10.
[35] Yang W, Harris MA, Cui Y, et al. Bmp2 is required for odontoblast differentiation and pulp vasculogenesis[J]. J Dent Res, 2012, 91(1):58-64.
[36] Casagrande L, Demarco FF, Zhang Z, et al. Dentinderived BMP-2 and odontoblast differentiation[J]. J Dent Res, 2010, 89(6):603-608.
[37] Xia D, Sumita Y, Liu Y, et al. GDFs promote tenogenic characteristics on human periodontal ligamentderived cells in culture at late passages[J]. Growth Fact, 2013, 31(5):165-173.
[38] Jung RE, Thoma DS, Hammerle CH. Assessment of the potential of growth factors for localized alveolar ridge augmentation: a systematic review[J]. J Clin Periodontol, 2008, 35(Suppl 8):255-281.
[39] Walton KL, Makanji Y, Harrison CA. New insights into the mechanisms of activin action and inhibition [J]. Mol Cel Endocrinol, 2012, 359(1/2):2-12.
[40] Choi SC, Han JK. Negative regulation of activin signal transduction[J]. Vitam Horm, 2011, 85:79- 104.
[41] Ferguson CA, Tucker AS, Christensen L, et al. Activin is an essential early mesenchymal signal in tooth development that is required for patterning of the murine dentition[J]. Gen Dev, 1998, 12(16): 2636-2649.
(本文采編 王晴)
Roles of transforming growth factor-β superfamily in dentinogenesis
Chen Jinhuan, Sun Jianxun, Chen Xinmei. (State Key Laboratory of Oral Diseases, Dept. of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China)
This study was supported by National Natural Science Fundation of China(81300847).
Transforming growth factor(TGF)-β superfamily is a group of essential growth factors involved in the regulation of cell proliferation, differentiation, and apoptosis. TGF-β, bone morphogenetic protein(ΒMP), growth differentiation factor(GDF), activin(ACT), inhibin and so on, share a set of similar spatial structures of proteins. Dentin, as the important supportive part of tooth structure, is formed with mineralized matrix, which secreted by odontoblasts. During dentin formation, TGF-β1 participates in the regulation of matrix formation, mineralization, and the odontoblasts arrangement; BMP involved in the adjustment of many transcription factors’ expression and mediated epithelialmesenchymal interaction in dentification; while GDF play roles in periodontal development and ACT regulates cell metabolism, inmmune response, damage repairment and so on. This article reviewed the advances on the roles of TGF-β superfamily in dentinogenesis.
transforming growth factor; dentin; dentification and development
Q 51
A
10.7518/gjkq.2016.04.022
2015-10-20;
2016-03-28
國家自然科學(xué)基金(81300847)
陳盡歡,碩士,Email:844048785@qq.com
孫建勛,副教授,博士,Email:jxsun@scu.edu.cn