程 鵬,盧雪峰,杜 花,
BURR G S1,2,3,4,宋少華1,2,3,鮮 鋒1,2,3
(1.中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710061;
2.西安加速器質(zhì)譜中心,西安 710061;3.陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安 710061;4. NSF-Arizona AMS Laboratory, Physics Building, Department of Physics, University of Arizona, Tucson, Arizona 85721, USA)
青海湖老碳效應(yīng)的時(shí)空變化初步研究
程 鵬1,2,3,盧雪峰1,2,3,杜 花1,2,3,
BURR G S1,2,3,4,宋少華1,2,3,鮮 鋒1,2,3
(1.中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安 710061;
2.西安加速器質(zhì)譜中心,西安 710061;3.陜西省加速器質(zhì)譜技術(shù)及應(yīng)用重點(diǎn)實(shí)驗(yàn)室,西安 710061;4. NSF-Arizona AMS Laboratory, Physics Building, Department of Physics, University of Arizona, Tucson, Arizona 85721, USA)
本文通過(guò)對(duì)青海湖周邊的湖水和河流DOC、DIC濃度、14C濃度,以及1F孔不同深度13個(gè)碳酸鹽的14C年代分析,厘清青海湖老碳效應(yīng)空間分布情況。研究表明:在空間上,青海湖DIC和DOC的14C的老碳各條河流分布極不均勻,南邊的老碳效應(yīng)明顯比北邊小,河流的老碳明顯比湖水偏老,引起青海湖沉積物老碳效應(yīng)的原因極有可能是由于北邊主要河流將流域內(nèi)的老碳輸入湖區(qū)引起,并非由于湖水和大氣的交換不暢引起的碳庫(kù)效應(yīng)。在時(shí)間尺度上,碳酸鹽14C的老碳平均值比有機(jī)碳的14C老碳平均值偏老。由于入湖物質(zhì)的變化,在全新世前,有機(jī)碳和碳酸鹽的老碳比全新世后偏老。
青海湖;溶解有機(jī)碳;溶解無(wú)機(jī)碳;14C測(cè)年;碳酸鹽
湖泊沉積物具有高分辨、連續(xù)性、敏感性、干擾性小的特征,成為研究過(guò)去氣候變化的良好載體,而精確、可靠的年代學(xué)是古環(huán)境演變研究的基石。湖泊沉積物定年通常使用陸源植物來(lái)進(jìn)行14C定年,這是由于陸源植物的光合作用利用當(dāng)時(shí)大氣的CO2,其14C濃度和當(dāng)時(shí)大氣中的14C濃度一致,不受沉積水體以及沉積過(guò)程“老碳”和“死碳”的影響,因而陸源植物殘?bào)w被認(rèn)為是較好的14C測(cè)年物質(zhì)。關(guān)于湖相沉積物碳庫(kù)年齡,目前大多是通過(guò)測(cè)定有機(jī)質(zhì)相對(duì)于湖泊紋泥或陸生植物殘?bào)w的年齡偏差來(lái)確定,如德國(guó)Holzmaar湖(Hajdas et al,1995)、瑞士Soppensee湖(Hajdas et al,1993)、 波 蘭 Gosciaz湖(Goslar et al,1995)、俄羅斯貝加爾湖(Natalia et al,2004),日 本 Suigetsu湖(Kitagawa and van der Plicht,1998)、瑪洱湖(劉嘉琪等,1996),但是,湖相沉積物中通常缺乏這類物質(zhì),尤其是在那些封閉的堿性高鹽度湖泊中,保存了較多的“老”碳,導(dǎo)致了湖泊沉積物14C年齡比沉積物形成的實(shí)際年齡偏老的現(xiàn)象(吳艷宏等,2007)。在存在碳庫(kù)效應(yīng)的湖泊中,水體溶解無(wú)機(jī)碳(DIC)的14C或有機(jī)碳濃度(DOC)的14C濃度通常低于同時(shí)期大氣14C濃度(Deevey et al,1954;Hatté and Jull 2007;Yu et al,2007)。湖水中溶解的CO2是湖泊中自養(yǎng)生物合成有機(jī)物質(zhì)的碳來(lái)源。因此,利用湖泊中的有機(jī)碳或者無(wú)機(jī)碳進(jìn)行生命活動(dòng)的生物體,通常會(huì)受到“碳庫(kù)效應(yīng)”的影響而使得年代偏老,為建立高精度的年代框架帶來(lái)極大困難。在我國(guó)干旱、半干旱區(qū)的湖泊多為封閉、半封閉湖泊,湖水多呈堿性且鹽度較高,碳庫(kù)效應(yīng)較為明顯 (Mischke et al,2013)。
青海湖(36°32′ — 37°15′N(xiāo),99°36′ — 100°47′E)是我國(guó)最大的內(nèi)陸湖泊,是我國(guó)最大的咸水湖,鹽度為15.18 g · L-1,pH = 9.2,湖區(qū)面積4400 km2,位于青藏高原東北隅,海拔3194 m。青海湖流域(36°15′ — 38°20′N(xiāo),97°50′ — 101°20′E)是一個(gè)四周群山環(huán)繞的封閉式內(nèi)陸盆地,南傍青海南山,北依大通山,東靠日月山、西臨阿木尼尼庫(kù)山,海拔范圍3194 — 5174 m,面積29661 km2。地勢(shì)西北高,東南低,形成三級(jí)夷平面(4200 — 4600 m,3800 — 4000 m,3500 — 3600 m)(中國(guó)科學(xué)院蘭州地質(zhì)研究所,1979)。地貌從低到高有湖濱平原、沖積平原和河谷平原;湖西部和北部河漫灘、三角洲及河流堆積階地發(fā)育,東北部分布有大面積風(fēng)沙堆積;湖邊及低洼地帶有沼澤地;圍湖有沙堤階地。流域土壤母質(zhì)主要有砂巖、碳酸鹽巖、花崗巖、沖洪積物、湖相沉積物及黃土等,主要的土壤類型有7 個(gè)土類,17 個(gè)亞類(王平等,2010)。青藏高原東北部的青海湖地處亞洲內(nèi)陸,東鄰黃土高原,西北連接沙漠戈壁極端干旱區(qū),位于東北季風(fēng)濕潤(rùn)區(qū)和內(nèi)陸干旱區(qū)的過(guò)渡帶上,對(duì)氣候和環(huán)境變化十分敏感。因此,連續(xù)的湖泊記錄可為理解亞洲內(nèi)陸與全球氣候系統(tǒng)演化規(guī)律和機(jī)制提供重要的科學(xué)證據(jù)。14C測(cè)年為古氣候的研究起到了決定性作用,但是湖相沉積物缺少可進(jìn)行碳庫(kù)校正的紋泥層和陸生植物殘?bào)w,導(dǎo)致碳庫(kù)效應(yīng)校正的研究難度更大。不同學(xué)者從不同角度研究碳庫(kù)效應(yīng)并試圖構(gòu)建青海湖古氣候研究的14C年代標(biāo)尺。目前的研究進(jìn)展包括:(1)認(rèn)為青海湖中不存在老碳效應(yīng)。該觀點(diǎn)基于水生植物川蔓藻(Ruppia maritima L.)種子進(jìn)行14C年代標(biāo)尺的建立(Kelts et al,1989;Lister et al,1991); (2)存在碳庫(kù)效應(yīng),汪勇等(2007)通過(guò)硬水效應(yīng)曲線得出的年齡為1549 a;(3)Yu et al(2007)根據(jù)青海湖放射性碳平衡模型得出的碳庫(kù)年齡為1550 a;(4)Shen et al(2005)采用簡(jiǎn)單的深度-年代線性回歸分析得出的碳庫(kù)年齡為1039 a;(5)Jull et al(2014)對(duì)青海湖周邊河流和湖水的DIC、DOC、POC進(jìn)行研究發(fā)現(xiàn)DIC受控于大氣交換,DOC的來(lái)源較為復(fù)雜;(6)針對(duì)湖相沉積物14C老碳校正問(wèn)題,Zhou et al(2014)提出的平均值概念成功分段對(duì)沉積物老碳進(jìn)行校正,并且獲得青海湖3.2萬(wàn)年的可靠的年代標(biāo)尺,該研究為湖湘沉積物的老碳校正提供了很好的方法。
雖然不同學(xué)者從不同角度對(duì)老碳效應(yīng)進(jìn)行研究,但是缺乏現(xiàn)代湖區(qū)周邊的河流和湖水中的DO14C和DI14C的老碳的空間分布與沉積物鉆孔14C的老碳的時(shí)間分布的研究相結(jié)合的研究,本研究將從湖水和周邊河流的DIC和DOC的空間分布入手,然后利用1F孔的碳酸鹽的14C年代,初步青海湖沉積物老碳在空間和時(shí)間上的變化。
1.1 樣品采集
2009年在青海湖周?chē)固屎?、黑馬河、布哈河、泉吉河、沙柳河、哈爾蓋河6條主要河流采集水樣品,在西北和南邊湖岸采集水樣品(圖1),所有的水樣經(jīng)孔徑為0.2 μm Whatman尼龍濾膜現(xiàn)場(chǎng)過(guò)濾到4個(gè)棕色500 mL的玻璃瓶中,密封封裝,帶回實(shí)驗(yàn)室進(jìn)行DIC和DOC的提取和14C分析。 2005年7月,青海湖鉆探項(xiàng)目在海心山附近(36°48′40.7″N,100°08′13.5″E)采集了18.61 m的沉積物柱樣1F(圖1),其中TOC的14C年代已經(jīng)發(fā)表(An et al,2012;Zhou et al,2014),本研究主要分析鉆孔中的碳酸鹽的14C年代。
圖1 采樣點(diǎn)Fig.1 Location of sampling site
1.2 實(shí)驗(yàn)室分析
1.2.1 DIC的提取
(1)迅速將200 — 300 mL水樣倒入三頸瓶中,將真空調(diào)到低真空狀態(tài),緩慢打開(kāi)三頸瓶前閥門(mén),保持壓力表數(shù)值在 20 torr以下,此時(shí)瓶中的水開(kāi)始沸騰,關(guān)掉三頸瓶前的閥門(mén)。
(2)用注射筒吸取15 mL濃磷酸,注入水樣中,此時(shí)溶解的碳酸根和碳酸氫根離子將以CO2的形式揮發(fā)出來(lái),使用液氮-酒精冷阱冷凍CO2中的水汽和其他雜質(zhì),液氮冷阱冷凍收集CO2氣體。
1.2.2 DOC的提取
DOC的提取主要采用冷凍抽提濃縮(圖2),提取前先用濃鹽酸將石英DOC反應(yīng)器反復(fù)清洗,然后用蒸餾水清洗至中性,在DOC反應(yīng)器中加入800 — 900 mL水樣品,加入濃磷酸25 mL;將反應(yīng)器連接到真空冷凝器上,緩慢抽真空,用加溫器在反應(yīng)器底部保持60℃左右;讓真空冷凝器不斷抽取反應(yīng)器中的水(1 — 2 d);當(dāng)反應(yīng)器內(nèi)剩余5 mL左右水,打開(kāi)反應(yīng)器閥門(mén)加入1.6 g的KMnO4,迅速抽真空,然后關(guān)閉反應(yīng)器閥門(mén),70℃水浴反應(yīng)過(guò)夜;使用液氮-酒精冷阱冷凍CO2中的水汽和其他雜質(zhì),液氮冷阱冷凍收集CO2氣體。如果收集的氣體略帶微黃色,在真空系統(tǒng)內(nèi)反復(fù)純化,將氣體轉(zhuǎn)移到Zn和CuO反應(yīng)器中純化一個(gè)小時(shí) (Burr et al,2001)。
圖2 DOC冷凍抽提濃縮裝置(根據(jù)Burr et al(2001)修改)Fig.2 Schematic illustration of the evaporation system (Modifi ed from Burr et al (2001))
1.2.3 沉積物無(wú)機(jī)碳酸鹽酸解
選用青海湖的無(wú)機(jī)碳酸鹽作為測(cè)年物質(zhì),其化學(xué)前處理步驟如下:
將70 mg左右烘干的樣品裝入特制的酸解叉形指管(圖3)中,加入85%H3PO415 mL,在線抽真空。當(dāng)真空達(dá)到1×10-5torr時(shí)關(guān)閉酸解管并取下,倒入H3PO4,將酸解管放在70℃電熱板上反應(yīng)三個(gè)小時(shí),然后,再一次將酸解管套在真空線上抽真空,當(dāng)真空達(dá)到1×10-5torr時(shí),酒精-液氮冷阱純化并收集CO2氣體。
1.2.4 石墨靶合成
將收集的CO2氣體在西安加速器質(zhì)譜中心的24靶位半自石墨靶合成系統(tǒng)上采用Zn/Fe(Slota et al,1987)合成石墨:
兩種反應(yīng)循環(huán)進(jìn)行,最后所有的CO2轉(zhuǎn)化為石墨。Zn粉部位和Fe粉部位分別使用400℃和600℃反應(yīng)溫度,以確保最快的反應(yīng)速度和高產(chǎn)率(周衛(wèi)健和張潔,2001)。
圖3 酸解叉形管示意圖Fig.3 Schematic illustration of the acid hydrolysis unit
1.2.5 樣品測(cè)量
合成好的石墨在西安加速器質(zhì)譜中心3MV加速器上進(jìn)行測(cè)量(Zhou et al,2006),數(shù)據(jù)報(bào)道采用Stuiver建議的格式(Stuiver and Polach,1977)。
2.1 青海湖周邊的河流和湖水DIC分布
河流的DIC的平均濃度為2.09 ± 0.33 mmol · L-1,而湖水DIC的平均濃度為1.74 ± 0.22 mmol · L-1,河流的DIC濃度高于湖水,湖水的DIC的14C年代為現(xiàn)代,而河流除了倒淌河為現(xiàn)代之外,其余河流DIC的14C都較老,尤其是哈爾蓋河DIC的14C最老,達(dá)到3050 ± 30 a BP,從河流的地理位置分布可以看出南邊的倒淌河和黑馬河DIC的濃度和14C的年代都比北邊的河流低(表1)。DIC變化和DIC的14C年代之間并沒(méi)有明顯的相關(guān)性。
表1 青海湖周邊的河流和湖水DIC濃度和14C結(jié)果Tab.1 Results of concentration and14C age of DIC in Lake Qinghai and infl owing rivers
2.2 青海湖周邊的河流和湖水DOC分布
河流的DOC的平均濃度為0.25 ± 0.23 mmol · L-1,湖水的DOC為0.20 ± 0.04 mmol · L-1,河流的DOC濃度略高于湖水,除了倒淌河以外,河流DOC的年代老于湖泊的DOC。從河流的地理位置分布可知,南邊河流的DOC濃度高于北邊,南邊河流的DOC濃度在0.29 — 0.70 mmol · L-1變化,變化幅度較大,倒淌河高達(dá)0.7 mmol · L-1,北邊的河流DOC濃度在0.09 — 0.17 mmol · L-1變化,變化幅度較北邊小,沙柳河濃度最高,達(dá)到0.17 mmol · L-1。南邊河流DOC的14C年代較北邊年輕,南邊的倒淌河14C年代240 ± 30 a BP是最年輕的,北邊的DOC的14C年齡最老為哈爾蓋河。湖水DOC的年代較河水年輕(表2)。DOC變化和DOC的14C年代之間并沒(méi)有明顯的相關(guān)性變化。
2.3 青海湖周邊的河流和湖水DI14C和DO14C分布和老碳來(lái)源
青海湖水補(bǔ)給來(lái)源是河水,其次是湖底的泉水和降水。湖周大小河流有70余條,呈明顯的不對(duì)稱分布。湖北岸、西北岸和西南岸河流多,流域面積大,支流多;湖東南岸和南岸河流少,流域面積少,多為季節(jié)性河流,徑流量亦小。流入青海湖的河流有50多條,主要有布哈河、沙流河、哈爾蓋河等,上述河流徑流量占青海湖流域徑流量的83%(圖4)。
表2 青海湖周邊的河流和湖水DOC濃度和14C結(jié)果Tab.2 The results of concentration and14C age of DOC in Lake Qinghai and infl owing rivers
圖4 青海湖流域河流流量(青海省工程咨詢中心,2001)Fig.4 The main rivers discharge in the drainage basin of Qinghai Lake (Engineering Consulting Center of Qinghai Province, 2001)
青海湖南邊河流較少,主要為倒淌河和黑馬河,河流流量較小,南邊區(qū)域主要以草場(chǎng)為主,草場(chǎng)下部為泥炭層,泥炭層滲出的腐殖質(zhì)經(jīng)河流攜帶流入湖中,較高濃度的腐殖質(zhì)使得河流的DOC濃度含量較其他高,攜帶較多年輕的DOC,由于流經(jīng)草地,并無(wú)石灰?guī)r地質(zhì)區(qū)域,DIC的含量較低,由于只占河流總流量的0.2%,對(duì)青海湖DOC和DIC的貢獻(xiàn)量有限。
在青海湖北邊區(qū)域,主要山脈溝谷,分布有廣大的冰川,冰融水補(bǔ)給該區(qū)域內(nèi)的主要河流,使得河流的流量較大,占到98%以上,為青海湖主要的水源補(bǔ)給區(qū)域,河流攜帶大量泥沙,DOC含量較低,但是DIC含量較高,表明該區(qū)域內(nèi)有大量的石灰石基巖存在(范璞和馬寶林,1996),河流攜帶較老的DOC和DIC進(jìn)入湖區(qū),但是湖水的DIC為現(xiàn)代,表明河水匯入湖區(qū)之后和大氣進(jìn)行快速交換,北邊的較老的DOC進(jìn)入湖區(qū)之后,由于快速的交換,也變年輕。
青海湖不同深度的DIC中δ13C研究表明,巨大的青海湖湖水與大氣CO2有充足的交換時(shí)間,兩者碳同位素接近平衡狀態(tài)。青海湖自然開(kāi)放的湖水具有均一的δ13CDIC組成,主要受控于大氣CO2和水體的交換(汪進(jìn)等,2013),且接近同位素平衡。湖中DIC、水草和鰉魚(yú)14C年齡和湖水的14C年齡一致也證明大氣中14CO2和水體能進(jìn)行充分交換,因此引起青海湖沉積物老碳的原因極有可能是由于北邊主要河流將流域內(nèi)的老碳輸入湖區(qū)引起。
2.4 青海湖1F孔無(wú)機(jī)碳酸14C年代
共獲得1F孔13個(gè)碳酸鹽的14C年代樣品,除了在幾個(gè)層位出現(xiàn)年齡倒置,其14C年齡隨深度變化,有很好序列(表3)。
無(wú)機(jī)碳酸鹽的14C年代比TOC年代偏老,平均偏老7000 多年,其中605 cm以下偏老較為嚴(yán)重,最老達(dá)到21950 a;605 cm以上,老碳較為年輕,最年輕達(dá)到265 a。
通過(guò)An et al(2012)和Zhou et al(2014)獲得青海湖1F孔不同深度可靠年代:在深度1 —499 cm,可靠年代計(jì)算公式為y = 23.354x + 134.5;在深度為499 — 901 cm,計(jì)算公式為:y = (19.973x + 2830.8)-1143;在深度為901 — 1860 cm,計(jì)算公式為:y = (12.666x + 10794)-2523,其中x為深度。通過(guò)以上公式可以計(jì)算出1F孔不同深度的可靠年代,碳酸鹽的14C與對(duì)應(yīng)深度的可靠年代之差,即為碳酸鹽14C的所受的老碳年代,見(jiàn)表4。
表3 1F孔碳酸鹽的14C年代Tab.3 The14C results of carbonate in 1F core
表4 青海湖1F孔碳酸鹽在不同深度的可靠年代和老碳值Tab.4 The reliable14C age and old carbon age of carbonate at different depth in Qinghai Lake
從圖5可以看出整個(gè)深度內(nèi),碳酸鹽老碳并非一個(gè)恒定的值,是隨著深度變化的。并且在1 — 480 cm老碳平均值為990 a,最低值為374 a出現(xiàn)在477 cm,480 — 1773 cm老碳的突然增加,平均值為18851 a,最高為 25097 a,出現(xiàn)在1550 cm。
圖5 碳酸鹽老碳隨深度變化情況Fig.5 The carbonate of14C data with depth in 1F core
從圖6可知,3.2萬(wàn)年以來(lái)有機(jī)碳和碳酸鹽的老碳并非一個(gè)恒定值,而是隨著時(shí)間不斷變化,且不斷減小,并且相對(duì)于有機(jī)碳,碳酸鹽的變化幅度較大,全新世以后有機(jī)碳的平均老碳為135 a(Zhou et al,2014),而通過(guò)計(jì)算獲得1F孔全新世碳酸鹽的平均老碳為990 a,全新世以前,有機(jī)碳的老碳為1833 a,而碳酸鹽的平均老碳為18851 a。在全新世前后,不論是有機(jī)碳和碳酸鹽老碳的變化呈現(xiàn)巨大的差異,是否可以指示其物質(zhì)來(lái)源的變化?青海湖古氣候研究表明,該地區(qū)在全新世以前,氣候整體較為干冷,粒度較粗,鉆孔中大量黃土的堆積(An et al,2012),末次冰期(~32 — 19.8 ka)期間,青海湖的沉積物粒度和化學(xué)組成與流域風(fēng)成黃土基本一致,且十分均一穩(wěn)定;更重要的是,該時(shí)段僅發(fā)現(xiàn)蒿屬(Artemisia)、麻黃屬(Ephedra)和藜科(Chenopodiaceae)這些沙漠和草原性孢粉,不存在水生植物孢子和湖相介形類殼體等。這些特征表明,在末次冰期時(shí),青海湖流域十分干旱,主要接收了風(fēng)塵黃土堆積,為一干湖盆(Jin et al,2015);全新世以后,氣候整體較為濕暖,粒度較細(xì),水成較多,青海湖才真正成為現(xiàn)今的湖泊,至今不再干涸過(guò)(Jin et al,2015),其物質(zhì)來(lái)源于河流的輸入。
圖6 1F鉆孔有機(jī)碳和碳酸鹽不同年代的老碳Fig.6 The old carbon of TOC and carbonate exist in 1F core
(1)水樣品在實(shí)驗(yàn)過(guò)程中多次的轉(zhuǎn)移,極有可能受到空氣中碳的污染。用冷凍抽提濃縮技術(shù)對(duì)青海湖河流和湖水的中DOC進(jìn)行提取并運(yùn)用于加速器14C測(cè)年,該方法能更大程度的避免在水樣品在轉(zhuǎn)移過(guò)程中的受到外來(lái)碳的污染。
(2)在空間上,青海湖DIC和DOC的14C的老碳各條河流分布極不均勻,南邊的老碳效應(yīng)明顯比北邊小,河流的老碳明顯比湖水偏老,引起青海湖沉積物老碳效應(yīng)的原因極有可能是由于北邊主要河流將流域內(nèi)的老碳輸入湖區(qū)引起;在時(shí)間尺度上,碳酸鹽14C的老碳和有機(jī)碳的14C老碳并非一個(gè)恒定的值,而是隨著時(shí)間變化,碳酸鹽14C的老碳平均值比較有機(jī)碳的14C老碳平均值偏老,并且估計(jì)由于入湖物質(zhì)的變化,全新世前的有機(jī)碳和碳酸鹽的老碳比全新世后的偏老。
致謝:感謝美國(guó)亞尼桑那大學(xué)Tim教授在實(shí)驗(yàn)工作中的指導(dǎo)。
范 璞, 馬寶林. 1996.青海湖和近代環(huán)境的演化和預(yù)測(cè)[Z]. [Fan P, Ma B L. 1996. The evolution of the Qinghai Lake and modern environment and forecast [Z].]
劉嘉琪, 劉東生, 儲(chǔ)國(guó)強(qiáng), 等. 1996. 瑪洱湖與紋泥年代學(xué)[J].第四紀(jì)研究, (4): 353 – 358. [Liu J Q, Liu T S, Chu G Q, et al. 1996. Maar lake and varve chronology [J]. Quaternary Science, (4): 353 – 358.]
青海省工程咨詢中心. 2001.青海湖流域生態(tài)環(huán)境保護(hù)及規(guī)劃 [R]: 15 – 125. [Engineering Consulting Center of Qinghai Province. 2001. Eological environment protection and planning in Lake Qinghai Basin [R]: 15 – 125.]
汪 進(jìn), 金章東, 張 飛. 2013. 有機(jī)質(zhì)分解對(duì)青海湖溶解無(wú)機(jī)碳同位素(δ13CDIC)的影響以及指示意義——來(lái)自沉積物捕獲器的研究[J]. 地球環(huán)境學(xué)報(bào), 4(3): 1322 – 1327. [Wang J, Jin Z D, Zhang F. 2013. Effect of organic-matter degradation on dissolved inorganic stable carbon isotopic composition (δ13CDIC) and its implications in Lake Qinghai: A time-series sediment trap study [J]. Journal of Earth Environment, 4(3): 1322 – 1327.]
王 平, 曹軍驥, 吳 楓. 2010. 青海湖流域表層土壤環(huán)境背景值及其影響因素[J]. 地球環(huán)境學(xué)報(bào), 1(3): 189 – 199. [Wang P, Cao J J, Wu F. 2010. Environmental background values and its impact factors of topsoil within the Lake Qinghai catchment, Northeast Tibetan Plateau, China [J]. Journal of Earth Environment, 1(3): 189 – 199.]
汪 勇, 沈 吉, 吳 建, 等.2007. 湖泊沉積物14C年齡硬水效應(yīng)校正初探——以青海湖為例[J]. 湖泊科學(xué), 19(5): 504 – 508. [Wang Y, Shen J, Wu J, et al. 2007. Hard water effect correction of lacustrine sediment ages using the relationship between14C levels in lake waters and in the atomosphere: the case of Lake Qinghai [J]. Journal of Lake Sciences, 19(5): 504 – 508.]
吳艷宏, 王蘇民, 周力平, 等. 2007. 岱海14C測(cè)年的現(xiàn)代碳庫(kù)效應(yīng)研究[J]. 第四紀(jì)地質(zhì), 27(4): 507 – 510. [Wu Y H, Wang S M, Zhou L P, et al. 2007. Modern reservoir age for14C dating in Daihai Lake [J]. Quaternary Science, 27(4): 507 – 510.]
中國(guó)科學(xué)院蘭州地質(zhì)研究所. 1979. 青海湖綜合考察報(bào)告[M]. 北京: 科學(xué)出版社: 74 – 76. [Lanzhou Institute of Geology, Chinese Academy of Sciences. 1979. Qinghai Lake comprehensive inspection report [M]. Beijing: Science Press: 74 – 76.]
周衛(wèi)健, 張 潔. 2001. 超靈敏小型回旋加速器質(zhì)譜計(jì)14C測(cè)年的樣品制備和制樣系統(tǒng)[J]. 核技術(shù), 23: 236 – 243. [Zhou W J, Zhang J. 2001. The sample preparation at AMS14C dating [J]. Nuclear Techniques, 23: 236 – 243.]
An Z S, Colman S M, Zhou W J, et al. 2012. Interplay between the westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka [J]. Scientifi c Reports, 2, doi: 10.1038/ srep00619.
Burr G S, Thomas J M, Reines D, et al. 2001. Sample preparation of dissolved organic carbon in groundwater for AMS14C analysis [J]. Radiocarbon, 43(2A): 183 – 190.
Deevey E S, Gross M S, Huntchinson G E, et al. 1954. The natural14C contents of materials from hard-water lakes [J]. Proceedings of the National Academy of Sciences of United States of America, 40(5): 285 – 288.
Goslar T, Arnold M, Bard E, et al. 1995. High concentration of atmosphere-rich14C during the Younger Dryas cold episode [J]. Nature, 377: 414 – 417.
Hajdas I, Ivy S D, Beer J, et al. 1993. AMS radiocarbon dating and varve chronology of lake Soppensee: 6000 — 1200014C years BP [J]. Climate Dynamics, 9: 107 – 116.
Hajdas I, Zolitschka B, Ivy-Ochs S D, et al. 1995. AMS radiocarbon dating of annually laminated sediments from lake Holzmaar, Germany [J]. Quaternary Science Reviews, 14: 37 – 143.
Hatté C, Jull A J T. 2007. Radiocarbon dating: plant macrofossils [M]// Elias S A. Encyclopedia of Quaternary science. Oxford: Elsevier: 2958 – 2965.
Jin Z D, An Z S, Yu J, et al. 2015. Lake Qinghai sediment geochemistry linked to hydroclimate variability since the last glacial [J]. Quaternary Science Reviews, 122: 63 – 73.
Jull A T, Burr G S, Zhou W J, et al. 2014.14C measurements of dissolved inorganic and organic carbon in Qinghai Lake and infl owing rivers (NE Tibet, Qinghai Plateau), China [J]. Radiocarbon, 56 (3): 1115 – 1127.
Kelts K, Chen K Z, Lister G, et al. 1989. Geological fi ngerprints of climate history: A cooperative study of Lake Qinghai, China [J]. Eclogae Geologicae Helvetiae, 82: 167 – 182.
Kitagawa H, van der Plicht J. 1998. A 40,000-year varve chronology from Lake Suigetsu, Japan: extension of the14C calibration curve [J]. Radiocarbon, 40(1): 505 – 515.
Lister G, Kelts K, Chen K Z, et al. 1991. Closed-basin lake level and the oxygen isotope record for Ostracoda since the latest Pleistocene [J]. Palaeogeography, Palaeoclimatology, Palaeocology, 84(1 / 2 / 3 / 4): 141 – 162.
Mischke S, Weynell M, Zhang C, et al. 2013. Spatial variability of14C reservoir effects in Tibetan Plateau lakes [J]. Quaternary International, 313 / 314: 147 – 155.
Natalia P, Andrzej B, Dieter D, et al. 2004. Extraction and AMS radiocarbon dating of pollen from lake Baikal sediments [J]. Radiocarbon, 46(1): 181 – 187.
Shen J, Liu X Q, Wu S M, et al. 2005. Palaeoclimatic changes in the Qinghai Lake area during the last 18,000 years [J]. Quaternary International, 136: 131 – 140.
Slota P J, Jull A J T, Linick T W, et al. 1987. Preparation of small samples for14C accelerator targets by catalytic reduction of CO2[J]. Radiocarbon, 29(2): 303 – 306.
Stuiver M, Polach H A. 1977. Discussion: reporting of14C data [J]. Radiocarbon, 19(3): 355–363.
Yu S Y, Shen J, Stenven M C. 2007. Modeling the Radiocarbon reservoir effect in lacustrine system [J]. Radiocarbon, 49(3): 1241 – 1254.
Zhou W J, Cheng P, Jull A J T, et al. 2014.14C chronostratigraphy for Qinghai Lake in China [J]. Radiocarbon, 56 (1): 143 – 155.
Zhou W J, Zhao X, Lu X F, et al. 2006. The 3MV multi-element AMS in Xi’an, China: unique features and preliminary tests [J]. Radiocarbon, 48(2): 285 – 293.
The preliminary study of spatio-temporal change of old carbon effect in Lake Qinghai (NE Tibet-Qinghai Plateau), China
CHENG Peng1,2,3, LU Xuefeng1,2,3, DU Hua1,2,3, BURR G S1,2,3,4, SONG Shaohua1,2,3, XIAN Feng1,2,3
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. Xi’an AMS Center, Xi’an 710061, China; 3. Shaanxi Key Laboratory of Accelerator Mass Spectrometry Technology and Application, Xi’an 710061, China; 4. NSF-Arizona AMS Laboratory, Physics Building, Department of Physics, University of Arizona, Tucson, Arizona 85721, USA)
Background, aim, and scope The study of correction of old carbon is key to reliable14C chorology in Qinghai Lake. There have been a number of studies in an attempt to estimate the past old carbon effects based on the cores drilled in Qinghai Lake. Various corrective methods have been employed with differing results. However, most of these chronologies were mainly based on a few14C measurements on short cores and without considering the14C variation of the modern water sample in the drainage basin of Qinghai Lake, which make us lack systemic understanding of the carbon cycle processes occurring in the lake. Materials and methods In this paper, river water samples were collected in main rivers such as Daotang, Heima, Buha, Quanji, Shaliu, Haergai, and Lake water samples were collected at the northwestern and southern lakeshores of Qinghai Lake in October 2009. The dissolvedinorganic carbon (DIC) and dissolved organic carbon (DOC) water samples were then processed at Xi’an AMS Laboratory. Firstly, the DIC samples were placed in a container and acidified with H2PO3on a vacuum line while those DOC samples were processed using the method of vacuum freeze extracting. The carbonate sample in the 1F core was acidified with H2PO3. Secondly, the evolved CO2could be collected cryogenically transported to the storage for the further graphitization with a Zn/Fe catalytic reduction. Finally, the14C were measured at Xi’an AMS Laboratory. Results Our results indicated that the distribution of old carbon of DIC and DOC in the river were not uniform. No matter concentration or14C of DIC in the southern lakeshore was lower than that in the northern lakeshore as limestone was widely distributed. However, concentration of DOC in the southern river was higher than that in the northern river due to humic matter oozed from the grassland, but the14C age was younger in the northern river. In short, for river water sample, the old carbon age was younger in the south than that in the north, for lake water sample,14C age was modern, Furthermore,14C age of a living naked carp (Gymnocypris przewalskii), algae in Qinghai Lake also were modern, indicated that the older14C DIC, which is taken by rivers, have exchanged with atmospheric CO2quickly, when it entered into the lake. So, the older14C DIC in the river wasn’t main factor that result in the old carbon effect in the modern lake. Based on correction of old carbon method described by Zhou et al (2007, 2014), we attained the distribution of old carbon age with time in the carbonate and TOC of 1F core. After a comparative study, the results show that both old carbon age were changeable with time, and kept on decreasing since 32 ka. Compared with the old carbon age of TOC, the variation range of the old carbon age of carbonate got bigger. The average old carbon age of carbonate is 7000 years older than the average old carbon age of TOC. Discussion Before the Holocene period, the old carbon age is older than Holocene period, which indicated material source have changed. Before the Holocene period, the grain size in the core was consistent with that of aeolian loess accumulated in the drainage basin of Qinghai Lake. During this period, a large amount of pollen of cold-resistant and draught-enduring herb plants, especially Artemisia, Riemannian and Chenopodiaceae, were predominated in this region; the aquatic plant pollen and Lacustrine Ostracodes don’t existed in the sediment. All of these features suggested that it was drought in the drainage basin of Qinghai Lake, the climate was dry and cold, and grain size was coarse, the accumulated loess found in the core. In the Holocene period, the climate became wet and warm, the grain size was fine, most of material source derived from river. Conclusions Together with spatial and temporal distribution of the old carbon in the drainage basin of Qinghai Lake, we conclude that, in the space, the old carbon age was younger in the south than that in the north, and was younger in the river than that in the lake. All modern samples in the lake showed14C age were modern, indicated older matter carried by river was main factor. Atmospheric exchange of14C was the main process affecting surface dissolved inorganic carbon (DIC) in the lake, but dissolved organic carbon (DOC) can be explained as a combination of sources. The old carbon of carbonate was very intense and changeable in 1F core. In the timescale, before the Holocene period, the old carbon age was older than Holocene period due to the change of source input. For DOC extraction from water sample, it’s very possible to be contaminated by carbon from atmosphere during the experiment. It can be avoided by using the method of vacuum freeze extracting when we concentrated water sample and extracted DOC in the river and Lake of Qinghai. Recommendations and perspectives Combined the concentration of dissolved organic carbon (DOC), dissolved inorganic carbon (DIC) with14C age, which enabled us to have a better understanding of the spatio-temporal distribution of old carbon effect in the watershed of Qinghai Lake and shed new insights on the carbon cycle processes occurring in the lake.
Qinghai Lake; dissolved inorganic carbon (DIC); dissolved organic carbon (DOC);14C dating; carbonate; old carbon effect
CHENG Peng, E-mail: chp@ieecas.cn
10.7515/JEE201604004
2016-03-07;錄用日期:2016-05-05
Received Date:2016-03-07 ;Accepted Date:2016-05-05
國(guó)家重點(diǎn)基礎(chǔ)研究發(fā)展計(jì)劃(973計(jì)劃)(2013CB955900);國(guó)家自然科學(xué)基金項(xiàng)目(41290254)
Foundation Item:National Basic Research Program of China (2013CB955900); National Natural Science Foundation of China (41290254)
程 鵬,E-mail: chp@ieecas.cn