李 越,宋友桂,趙井東
(1. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安 710061;2. 中國科學(xué)院寒區(qū)旱區(qū)環(huán)境與工程研究所,蘭州 730000)
伊犁尼勒克黃土石英顆粒微形態(tài)特征及其成因與物源意義
李 越1,宋友桂1,趙井東2
(1. 中國科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國家重點實驗室,西安 710061;2. 中國科學(xué)院寒區(qū)旱區(qū)環(huán)境與工程研究所,蘭州 730000)
石英顆粒表面微形態(tài)分析是判斷沉積物成因和來源的重要方法之一。對伊犁盆地尼勒克黃土石英顆粒表面微形態(tài)特征進(jìn)行了研究,并將其與冰川、河流、沙漠樣品進(jìn)行比較,結(jié)果表明尼勒克黃土石英顆粒磨圓較差,冰川和水流作用的微形態(tài)特征明顯,系近源風(fēng)力搬運沉積。通過對比分析討論了石英粉砂的可能產(chǎn)生機(jī)制,認(rèn)為流水和寒凍風(fēng)化作用為伊犁黃土的形成提供了重要動力來源。尼勒克黃土的物質(zhì)來源和匈牙利黃土類似,而與黃土高原黃土有較大差別,這主要表現(xiàn)在經(jīng)受風(fēng)力搬運-沉積的次數(shù)上或者風(fēng)力搬運的距離上。該研究為解譯伊犁地區(qū)黃土的古氣候環(huán)境意義提供了重要基礎(chǔ)。
伊犁黃土;石英顆粒表面結(jié)構(gòu);成因與來源
在我國,黃土除了在黃土高原集中分布外,位于亞洲內(nèi)陸的新疆地區(qū)也有廣泛的黃土堆積,如伊犁盆地、天山和西昆侖山坡麓。伊犁盆地的黃土主要分布在低山、丘陵和高階地上(葉瑋等,2003)。近十多年來,眾多學(xué)者(史正濤等,2007;宋友桂等,2010a,2010b;李傳想等,2011,2012;李傳想和宋友桂,2011,2014;Zhang et al,2013;鄂崇毅等,2014;曾蒙秀和宋友桂,2014;Song et al,2014;Yang et al,2014)對新疆伊犁黃土的分布特征、年代、粉塵來源、化學(xué)風(fēng)化特征、粒度、磁學(xué)和礦物學(xué)等方面的特征進(jìn)行了分析,進(jìn)一步探討了黃土蘊含的古氣候環(huán)境意義。然而黃土高原常用的磁化率和粒度指標(biāo)在伊犁黃土中的古環(huán)境意義仍存在爭論(葉瑋,2001;史正濤等,2007;Song et al,2008;李志忠等,2010;宋友桂等,2010a;夏敦勝等,2010;賈佳等,2011, 2012)。同時伊犁黃土物質(zhì)如何產(chǎn)生?黃土粉塵在到達(dá)沉積區(qū)前經(jīng)歷了哪些地質(zhì)作用?是風(fēng)成為主,還是近距離搬運?黃土的物源又在哪里?到目前為止,這些問題都沒有得到很好解決,妨礙了伊犁黃土的古氣候指標(biāo)的解譯。為解決以上問題,本文利用石英顆粒表面特征來研究黃土成因與來源問題。
由于石英在地表環(huán)境下具有穩(wěn)定的物理和化學(xué)特性,因此其顆粒形態(tài)特征可以用來反映沉積物的源區(qū)、搬運動力和沉積后的改造(劉東生,1985;Pye,1987;Guo et al,2002)。不同環(huán)境下的石英顆粒表面具有不同的形態(tài)及其組合特征(謝又予,1984;Krinsley and Trusty,1985;Vos et al,2014),因此可以利用這些特征對沉積物成因進(jìn)行直觀判別(Krinsley and Donahue,1968;Helland et al,1997; 李 珍 等,1999;Newsome and Ladd,1999)。通過對伊犁盆地尼勒克黃土的石英顆粒形態(tài)和表面微結(jié)構(gòu)的研究,并將其形態(tài)特征組合同來自冰川、河流和沙漠的樣品進(jìn)行對比,來探討該地區(qū)黃土中石英粉砂的產(chǎn)生機(jī)制,分析黃土物質(zhì)的形成過程及其與黃土高原黃土、歐洲黃土的異同。
1.1 樣品的采集
為了確定伊犁盆地黃土形成過程與所經(jīng)歷過的沉積環(huán)境,采集了伊犁盆地東部黃土、現(xiàn)代沙漠、河流沉積物、冰磧物的樣品(圖1),進(jìn)行了石英顆粒表面微形態(tài)的研究。沙漠樣品來自伊犁盆地西邊哈薩克斯坦的克孜勒庫姆沙漠、木尤思沙漠和薩雷耶西克阿特勞沙漠沙,樣品號分別是KZ45、KZ60和KZ84(圖1a)。冰川樣品采自天山夏特河流域阿爾恰勒特爾冰川末端冰磧物(圖1b),樣品編號GL-XT;河床砂樣品來自尼勒克剖面以西的喀什河(圖1b),樣品編號為YL1420、YL1421和YL1423;尼勒克剖面(圖1c)位于伊犁盆地東部喀什河河流二級階地上(圖1b),剖面地理位置為83°15'0.5"E、43°46'6"N,海拔高度為1558 m,剖面厚20.5 m,主要由2層砂黃土和2層弱古土壤組成,底部砂礫石層出露(Song et al,2015)。為避免成壤作用造成的化學(xué)溶蝕和沉淀對石英顆粒原始表面特征的影響,本文僅使用來自黃土層的樣品,取樣深度分別是1.50 m、9.10 m、11.06 m和19.56 m。
1.2 樣品制備
黃土樣品中石英的分離采用改進(jìn)了的焦硫酸鉀-氟硅酸浸泡法(Xiao et al,1995;孫有斌,2001),即取風(fēng)干樣品2 g,加雙氧水和鹽酸除去有機(jī)質(zhì)、碳酸鹽和鐵氧化物,然后用焦硫酸鉀熔融-氟硅酸浸泡法提取樣品中的單礦物石英。此方法得到的石英表面干凈,純度可達(dá)95%以上(圖2)。而對于冰川、河流與沙漠樣品,處理步驟如下:稱取10 g樣品,加入30%的H2O2溶液靜置48 h后,加熱煮沸以除去有機(jī)物。然后將樣品置于濃度為15%的鹽酸中,煮沸15 min,去除石英砂顆粒表面黏附的碳酸鹽類礦物。用蒸餾水反復(fù)沖洗后烘干。顆粒表面形態(tài)特征與粒度有關(guān)(Porter,1962;Mahaney,2002),尤其對于沙漠石英砂,其顆粒越粗,磨圓度增加(夏訓(xùn)誠,1987)。研究認(rèn)為0.125 — 0.01 mm石英砂除少數(shù)顆粒為硅質(zhì)覆蓋外,完全可以反映成因類型,表面結(jié)構(gòu)成因組合發(fā)育較全(方小敏,1991),所以將烘干的樣品過0.125 mm篩,使測試的顆粒粒徑與尼勒克黃土石英粒徑相接近,以減少由于粒徑差異帶來的誤差。然后在40倍雙目顯微鏡下從每個河流和沙漠樣品中分別挑選出石英顆粒40粒以上;在冰川樣品中挑選出48粒石英顆粒。根據(jù)Pye(1987)的研究,20 — 70 μm的粒級為短距離的懸移組分,并且其為尼勒克黃土粒度的主要組分,因此本文主要觀測黃土中該粒級組分的石英顆粒來提取環(huán)境信息和物質(zhì)來源信息。每個黃土樣品測試100粒左右。將樣品用導(dǎo)電碳膠帶固定并鍍金后,置于飛納臺式掃描電鏡PhenomTMproX(能譜版)下觀察。在對挑選的石英顆粒進(jìn)行拍照之前,先用電鏡自帶的能譜儀(EDS)確定為石英顆粒,然后進(jìn)行表面形態(tài)特征統(tǒng)計分析。以上實驗過程在黃土與第四紀(jì)地質(zhì)國家重點實驗室環(huán)境礦物學(xué)實驗室完成。
圖1 采樣點分布圖(a,b)和尼勒克黃土剖面(c)Fig.1 Location of the samples (a, b) and the Nilka loess section (c)
1.3 統(tǒng)計分析方法
利用石英顆粒表面特征來判斷物質(zhì)的來源或成因時,一般要用特征組合來進(jìn)行分析。本文綜合前人(謝又予,1984;王穎和迪納瑞爾,1985;潘仁義等,2012)對石英顆粒表面特征的劃分方案進(jìn)行劃分,分析方法采用環(huán)境顆粒百分比法(含有某種特征的顆粒占全部被分析顆粒的百分比)(陳麗華等,1986)。
2.1 石英顆粒形態(tài)總體特征
尼勒克黃土石英顆粒以多棱角狀、多邊形狀和次棱角狀為主,次圓狀顆粒極少出現(xiàn)或不出現(xiàn),未見圓狀顆粒(圖3)。邊緣形狀多表現(xiàn)為棱脊磨損和尖棱脊,次棱脊出現(xiàn)頻率平均為14%左右,有少量亞圓邊緣出現(xiàn),但頻率略大于2%(圖4a),未見磨圓邊緣。
圖2 石英樣和原樣X射線衍射圖譜對比Fig.2 Comparison of X-Ray diffraction spectrums between extracted quartz and bulk samples in NLK section
圖3 尼勒克剖面黃土與不同環(huán)境沉積物石英顆粒表面形態(tài)特征曲線對比(冰川、河流和沙漠曲線是樣品的平均值)Fig.3 The curve of quartz surface texture in NLK section and comparison of those from different environments
圖4 尼勒克黃土石英顆粒SEM外形特征(a)與機(jī)械作用結(jié)構(gòu)特征(b — l)(含部分化學(xué)作用結(jié)構(gòu)形態(tài))Fig.4 Surface microtopography (a) and mechanical microtextures (b — l) (Including part of chemical microtextures) of quartz grains under scanning electron microscope
2.2 機(jī)械作用形態(tài)
2.2.1 貝殼狀斷口與階梯狀斷口
一般認(rèn)為石英顆粒的貝殼狀斷口在冰川環(huán)境中大量產(chǎn)生(Vos et al,2014)。而在風(fēng)力長距離的搬運過程中,貝殼狀斷口往往會被磨蝕或改造而消失,因此在沙漠環(huán)境中少見。在高能水成環(huán)境中由于水的緩沖作用,顆粒產(chǎn)生的貝殼狀斷口少且面積較小,而中低能水下環(huán)境則不會產(chǎn)生(謝又予,1984;陳麗華等,1986)。尼勒克黃土石英顆粒表面貝殼狀斷口多呈清晰的弧形,其上發(fā)育新鮮的解理片,且出現(xiàn)相互重疊的現(xiàn)象(圖4b,4f)。黃土石英顆粒中大貝殼狀斷口(>10 μm)出現(xiàn)頻率為5% — 13%,平均為9%,而小貝殼狀斷口出現(xiàn)頻率較小,變化于3% — 5%,平均為4%(圖3)。因此,黃土物質(zhì)經(jīng)歷過冰川作用后,受到了后期河流流水的作用。
階梯狀斷口往往出現(xiàn)在貝殼狀斷口與解理面相交處,呈現(xiàn)弧狀或平直狀,其形成與擠壓作用或猛烈撞擊作用有關(guān),冰川作用、泥石流、洪流作用都可以形成。尼勒克黃土石英顆粒表面階梯狀斷口出現(xiàn)頻率為11% — 21%,平均為16%(圖3、圖4c,4j和圖5t),這也說明黃土石英顆粒在某一段時間內(nèi)受到過較大的機(jī)械應(yīng)力作用。
2.2.2 平行解理
平行解理常常與貝殼狀斷口或平直狀斷口(階梯狀斷口)一起出現(xiàn),其形成同樣也與顆粒的碰撞或擠壓有關(guān)。尼勒克黃土平行解理出現(xiàn)頻率為10% — 20%,平均為16%(圖3和圖4d),進(jìn)一步證實黃土石英顆粒在搬運過程中遭受過較強的外力碰撞作用。
2.2.3 撞擊深坑與V型坑
石英顆粒在搬運過程中,受到強烈的撞擊從而造成深坑。尼勒克黃土撞擊深坑出現(xiàn)頻率平均為11%。V型坑同樣是機(jī)械撞擊、磨損而留下的痕跡,其幾乎全部在高能的水下環(huán)境中通過顆粒相互碰撞形成(Mahaney and Kalm,2000),代表高能機(jī)械環(huán)境,可以作為水下磨蝕作用的標(biāo)志特征(陳麗華等,1986)。尼勒克黃土石英顆粒V型坑出現(xiàn)的頻率為14% — 19%,平均為16%(圖3和圖4e,4h,4i),由此可見,該地黃土在搬運過程中經(jīng)常受水流作用的影響。
2.2.4 平行擦痕或刻痕
平行擦痕或刻痕是在較高壓力下,棱角尖銳的顆粒之間相對擠擦發(fā)生位移時產(chǎn)生的(Krinsley and Donahue,1968),可以作為冰川環(huán)境的診斷性特征(Higgs,1979)。尼勒克黃土擦痕或刻痕出現(xiàn)的頻率較小,為2% — 5%,平均為3%(圖3和圖4h,4k,4l)。從此結(jié)果來看,似乎冰川磨蝕對尼勒克黃土物質(zhì)的產(chǎn)生影響較小。
2.2.5 新月形鑿口
石英顆粒在高壓下經(jīng)過大顆粒的緩慢研磨形成新月形鑿口,其弧形頂端指示的方向與最大刻蝕應(yīng)力平行。在尼勒克黃土石英顆粒中的出現(xiàn)頻率為13% — 20%,平均為17%(圖3、圖4g和圖5o)。潘仁義等(2012)發(fā)現(xiàn)新月形鑿口在天山冰川沉積石英砂顆粒出現(xiàn)的頻率較高,然而石磊等(2009)發(fā)現(xiàn)新月形鑿口在貢嘎山海螺溝冰磧物極少出現(xiàn)。兩者分析的石英砂顆粒的粒度相同。因此筆者認(rèn)為新月形鑿口對冰川作用的指示還存在不確定性,本文暫不對其進(jìn)行討論。
2.2.6 翻卷解理薄片
翻卷解理薄片是一系列呈鋸齒狀,高度參差不齊的薄的平行解理片,與顆粒表面之間存在一定的夾角(Margolis and Krinsley,1974)。翻卷解理薄片一般都經(jīng)受了溶蝕和沉淀作用,尤其是在熱帶沙漠地區(qū)(陳麗華等,1986;Mahaney,2002)。它是風(fēng)成和冰川環(huán)境的主要特征(Krinsley and Cavallero,1970;Mahaney,2002;Costa et al,2013),但是一般在風(fēng)成環(huán)境中比較普遍。其在黃土石英中極少出現(xiàn)(2%)(圖3、圖4j和圖5m),也表明該地黃土只經(jīng)歷過較短距離或時間的風(fēng)力搬運。
2.3 化學(xué)作用形態(tài)
2.3.1 溶蝕作用
由于本文未使用古土壤樣品,因此可以認(rèn)為石英顆粒上的溶蝕痕跡均產(chǎn)生于被風(fēng)力搬運至沉積區(qū)前。尼勒克黃土石英顆粒中溶蝕表面、溶蝕坑和溶蝕縫的出現(xiàn)頻率較高,分別為21%、26%(圖3、圖4d,4l和圖5 m — q)。不規(guī)則溶蝕坑的出現(xiàn)說明化學(xué)作用已經(jīng)深入到解體帶與非解體帶之間的過渡帶;石英r面晶面缺陷形成的蝕坑(圖5u中黑色箭頭處)多次出現(xiàn);有的顆粒表面化學(xué)溶蝕強烈發(fā)育,形成了蜂窩狀溶蝕坑(圖5v)。
定向溶蝕坑有一定方向性(圖4b,4l和圖5q,5r),其產(chǎn)生與晶體晶格錯位和缺陷有關(guān)(Amelinckx,1964)。它們有的外表很像等腰三角形,并且成排出現(xiàn)(圖5x),有時見到兩排交叉在一起,呈X結(jié)(圖5w)。這種溶蝕坑先后經(jīng)歷了機(jī)械和化學(xué)兩類作用(Bull et al,1980;Bull,1981;Peterknecht and Tietz,2011)。它們在冰川環(huán)境下普遍存在,而在其他環(huán)境中鮮見報道(Vos et al,2014)。其出現(xiàn)頻率不及10%(圖3),可能反映了顆粒處于冰川環(huán)境的時間較短。
鱗片狀剝落與晶體缺陷、雜質(zhì)以及撞擊形成的裂縫有關(guān),其出現(xiàn)僅限于發(fā)生溶解淋濾的成壤層位(Higgs,1979)。而在黃土石英顆粒中極少出現(xiàn)(2%)(圖3、圖4d和圖5t),表明該地黃土的成壤作用很弱。
圖5 尼勒克黃土石英顆粒SEM化學(xué)作用結(jié)構(gòu)特征(m — x)(含部分機(jī)械作用結(jié)構(gòu)形態(tài))Fig.5 Chemical microtextures (m — x) of quartz grains under SEM (scanning electron microscope) (Including part of mechanical microtextures)
2.3.2 沉淀作用
硅質(zhì)球、硅質(zhì)鱗片和硅質(zhì)薄膜是常見的氧化硅沉淀形式,沉淀作用程度逐漸加大,圖5s記錄了從硅質(zhì)球到硅質(zhì)薄膜的演化。但是黃土石英顆粒表面這類沉淀作用極少出現(xiàn)(圖3)。
一般認(rèn)為石英晶體的增長反映的是次生變化特征,而不是沉積環(huán)境特征(江新勝等,2003a,2003b),它的形成與埋深、在過飽和溶液中的滯留時間以及可用空間有關(guān)(Pittman,1972;Marzolf,1976)。石英晶體的增長需要較長的時間(Higgs,1979),而尼勒克黃土石英顆粒表面未見無定形硅沉淀以及二氧化硅結(jié)晶,說明石英粉砂顆粒未在某一地點停留太長時間。
2.4 黃土物質(zhì)的形成
2.4.1 黃土的風(fēng)成成因
在對尼勒克黃土石英顆粒形態(tài)進(jìn)行觀察時,發(fā)現(xiàn)其表面多見尖銳的棱角,貝殼狀斷口與階梯狀斷口常見,而幾乎未見蝶形坑與不規(guī)則的小麻坑,這似乎與黃土的風(fēng)成成因相悖。但是這些特征與黃土高原西峰紅粘土、甘肅秦安紅粘土以及匈牙利Tengelic紅粘土等典型的風(fēng)成沉積物相似(Guo et al,2001;Liu et al,2006;Kovacs et al,2008),都被看作是風(fēng)成粉塵沉積物所具有的特征(Whalley et al,1982;Pye and Sperling,1983;Pye,1995;Wright,2001)。粉塵顆粒在被搬運過程中處于懸浮狀態(tài),它們銳利的邊緣未遭受到磨損,而這正好可以將黃土物質(zhì)在被風(fēng)搬運之前所經(jīng)歷的地質(zhì)營力保留下來,便于了解黃土物質(zhì)的產(chǎn)生過程。
尼勒克黃土風(fēng)成成因另外的證據(jù)來自對其粒度的分析。黃土粒級在10 — 50 μm的顆粒含量為47% — 62%,占粒級組成的主要部分,其余粒組所占比例較小(數(shù)據(jù)未發(fā)表)。而Moldvay(1962)的實驗結(jié)果表明該粒級顆粒易浮動、易分散,稱為風(fēng)塵的“基本粒組”,由此推斷尼勒克黃土亦為風(fēng)成堆積。
2.4.2 黃土物質(zhì)的動力來源
使用歐幾里得直線距離計算方法(Mahaney et al,2001),將黃土石英顆粒表面特征組合同冰川、河流與沙漠石英樣品進(jìn)行比較。該方法基于石英顆粒表面微形態(tài)特征百分比可定量反映兩種沉積物形成環(huán)境的相似性。其計算公式如下:
其中:d表示兩種沉積物形成環(huán)境i與j之間的距離,其范圍為0到+∞;p表示統(tǒng)計的微形態(tài)特征的個數(shù);x表示某個微形態(tài)特征出現(xiàn)的頻率。
計算結(jié)果如表1所示,冰川與沙漠、河流之間的距離都較遠(yuǎn),沙漠與河流之間的距離相對較為接近。黃土同河流最近,其次是冰川,而離沙漠最遠(yuǎn)。
表1 不同沉積物石英顆粒表面形態(tài)出現(xiàn)頻率的歐幾里得距離Tab.1 Euclidean distances between frequencies of quartz grain surface textures
該結(jié)果顯示尼勒克黃土石英粉砂曾受到較長時間的水流作用。同時水流作用還是一種產(chǎn)生粉砂級物質(zhì)的有效機(jī)制(Wright et al,1998),短距離的河流搬運就可以使得較小的顆粒進(jìn)一步遭受粉碎(Schumm and Stevens,1973)。黃土石英顆粒表面上V型坑的出現(xiàn)頻率相對較高(圖3),也說明水流作用對黃土粉砂物質(zhì)的產(chǎn)生起到了重要的影響(Pye,1995;Gallet et al,1998;Wright,2001;Smalley et al,2009)。另外在河流樣品中,階梯狀斷口與平行解理的出現(xiàn)頻率高于冰川與沙漠樣品(分別為18%、27%),表明產(chǎn)生這兩種微形態(tài)的機(jī)械應(yīng)力主要來自于水體的流動。因此可以推斷尼勒克黃土石英顆粒表面階梯狀斷口與平行解理的出現(xiàn)頻率較高(都為16%),其原因主要是受到水流的作用。
Smalley(1990)認(rèn)為在中亞的高山地區(qū),第四紀(jì)冰川活動十分有限,則大量粉砂級物質(zhì)的產(chǎn)生應(yīng)與除冰川作用之外的其他機(jī)制有關(guān)。這從本文所統(tǒng)計的擦痕或刻痕出現(xiàn)的頻率上也能看出(圖3)。Wright et al(1998)雖然通過模擬實驗也證明了冰川磨蝕并不是石英粉砂產(chǎn)生的非常有效的機(jī)制,但是其仍然認(rèn)為在自然環(huán)境下冰川磨蝕可長期持續(xù)地產(chǎn)生粉砂物質(zhì)。由此,本文認(rèn)為冰川磨蝕在粉砂物質(zhì)產(chǎn)生方面具有一定的作用,但是冰川與黃土的石英顆粒形態(tài)特征之間的歐幾里得距離不及河流,一方面可能是因為冰川磨蝕確實無法供給大量的粉砂級物質(zhì);另一方面可能是冰川作用留下的痕跡受到后期流水作用的改造。
盡管冰川作用對粉砂物質(zhì)產(chǎn)生的影響較小,但是高海拔地區(qū)的風(fēng)化作用是非常有效的石英粉砂產(chǎn)生機(jī)制,這由前人的實驗也得到證明(Wrightet al,1998),因此本文認(rèn)為高山地區(qū)的風(fēng)化對尼勒克黃土物質(zhì)的產(chǎn)生同樣有重要的影響。新生代以來,受印度板塊向北俯沖碰撞的影響,天山地區(qū)經(jīng)歷了強烈的隆升(Avouac et al,1993;郭召杰等,2006),即使是在晚更新世晚期,北天山仍然遭受了差異性抬升的過程(楊曉平等,2012)。因此,伊犁黃土粉砂物質(zhì)的產(chǎn)生與天山隆升帶來的風(fēng)化剝蝕加強也有密切關(guān)系:(1)山體的隆升勢必會造成由擠壓、褶皺和俯沖所帶來的構(gòu)造應(yīng)力的減小,從而導(dǎo)致巖石的破碎和崩解;(2)海拔的升高可以導(dǎo)致氣候條件的改變,增強寒凍風(fēng)化;(3)山體抬升還增加了流體的勢能,進(jìn)而提高了冰川融水下切和沉積物剝蝕的速率。Smalley(1990,1995)也認(rèn)為構(gòu)造活動引發(fā)的風(fēng)化作用對中國及中亞地區(qū)黃土的形成也是至關(guān)重要的。
黃土與沙漠樣品的歐幾里得距離最遠(yuǎn),也說明了粉砂顆粒在被搬運過程中處于懸浮狀態(tài),未遭受到強烈的磨損。
另外,尼勒克黃土石英表面的化學(xué)溶蝕現(xiàn)象十分發(fā)育(圖3),并且溶蝕作用基本發(fā)生在機(jī)械作用之后(圖5),也說明沉積物在經(jīng)過短時間的冰川磨蝕、寒凍風(fēng)化等作用之后即被融冰水搬運至冰水扇的扇緣地區(qū)。由于溫度的升高,沉積物經(jīng)歷了較強的化學(xué)溶蝕作用(如潘仁義等(2012)對冰水沉積物石英顆粒表面形態(tài)的研究),并且在搬運過程中可能也會產(chǎn)生一部分粉砂物質(zhì)(Nahon and Trompette,1982;Pye,1983)?;瘜W(xué)沉淀作用在風(fēng)成環(huán)境(圖3)和成巖作用中是普遍存在的(陳麗華等,1986),而在尼勒克黃土石英顆粒上化學(xué)沉淀作用較少出現(xiàn),可能表明了該地黃土物質(zhì)并沒有長期處于類似沙漠的風(fēng)成環(huán)境中。發(fā)源于中國天山的伊犁河干流由東向西流入哈薩克斯坦境內(nèi),而伊犁盆地出現(xiàn)的大風(fēng)、極大風(fēng)又以西風(fēng)、偏西風(fēng)為主,因此很可能石英粉砂在未被伊犁河水流搬運到盆地西部的沙漠時就已經(jīng)被由西向東的氣流吹揚起來。
綜上所述,天山巖體經(jīng)受風(fēng)化剝蝕、冰川磨蝕、冰水作用以及化學(xué)風(fēng)化作用而產(chǎn)生的粉砂粒級物質(zhì)被冰川融水或大氣降水帶到冰水沖積平原或沖積扇;之后又被河流(如伊犁河、喀什河)搬運至盆地西部半干旱環(huán)境(該環(huán)境條件更容易起塵(Pye,1995))下的河流沖積平原。另外可能也有一部分進(jìn)入了干旱的沙漠環(huán)境;最后這些沉積物又受到風(fēng)力(主要為近地面西風(fēng))向東的搬運作用,而后堆積形成黃土。整個過程與Smalley et al(2009)的模型類似。其中在水流和風(fēng)力的搬運過程中,分選作用以及顆粒之間的碰撞也會對粉砂的聚集和產(chǎn)生有重要貢獻(xiàn)(Wright et al,1998)。因此尼勒克地區(qū)黃土的形成過程可由圖6來表示。
圖6 尼勒克黃土的形成過程Fig.6 Probable mechanism of events the formation of Nilka loess
根據(jù)Wright(2001)的研究,匈牙利黃土有如下形成過程:喀爾巴阡山山體的風(fēng)化、阿爾卑斯地區(qū)的寒凍風(fēng)化以及北歐冰川分布區(qū)的冰川磨蝕產(chǎn)生大量的石英粉砂;這些物質(zhì)可以通過塊體運動的形式或者冰川作用、坡面作用的方式向山下移動;之后這些混合粒級的沉積物又被冰水、河流系統(tǒng)搬運而重新分配,期間高能的水流系統(tǒng)也會造成顆粒的粉碎和粒級的變細(xì)。來自阿爾卑斯和喀爾巴阡山地區(qū)的沉積物分別由多瑙河和蒂薩河搬運至匈牙利大平原,在泛濫平原沉積下來。最后經(jīng)過風(fēng)力侵蝕、搬運、沉積形成黃土;而來自北歐更新世冰川作用區(qū)的物質(zhì)經(jīng)過冰水搬運到達(dá)冰水沖積平原后,又經(jīng)若干次河流搬運進(jìn)入風(fēng)力作用區(qū),之后在風(fēng)力搬運、沉積后形成黃土。而黃土高原黃土與其西部或西北部的巨大山體之間存在有廣闊的沙漠和戈壁,冰川對阿爾泰山以及祁連山山體進(jìn)行磨蝕以及寒凍風(fēng)化所產(chǎn)生的粉砂物質(zhì)首先要進(jìn)入干旱的沙漠、戈壁等風(fēng)成環(huán)境,并且在該環(huán)境下經(jīng)霜凍風(fēng)化和鹽風(fēng)化還可以產(chǎn)生大量的粉塵,因此黃土高原的黃土物質(zhì)在到達(dá)沉積區(qū)前經(jīng)歷了多次風(fēng)力搬運-沉積的過程。
從上面論述可以看出,尼勒克黃土的形成與匈牙利黃土類似,而同黃土高原黃土形成過程差異較大,這主要表現(xiàn)在經(jīng)受風(fēng)力搬運-沉積的次數(shù)或者搬運的距離上。
通過對尼勒克黃土石英顆粒表面形態(tài)特征的研究以及與冰川、河流、沙漠沉積物進(jìn)行比較,得到以下認(rèn)識:
(1)石英顆粒形態(tài)特征的研究,結(jié)合粒度分析,認(rèn)為尼勒克黃土具有風(fēng)成堆積的成因。石英顆粒外形以及機(jī)械作用形態(tài)特征指示尼勒克黃土物質(zhì)在被風(fēng)力搬運之前經(jīng)受過冰川和水流的作用。
(2)流水作用對尼勒克黃土石英粉砂具有重要的影響,這不僅表現(xiàn)在石英粉砂的產(chǎn)生上,而且還表現(xiàn)在水流可能對已有的粉砂級物質(zhì)的改造上;冰川磨蝕作用處于次要的位置;而風(fēng)力作用未在石英顆粒上留下明顯的痕跡。山體隆升造成的風(fēng)化剝蝕亦是黃土石英粉砂的重要產(chǎn)生機(jī)制。尼勒克黃土物質(zhì)起源與匈牙利黃土類似,在經(jīng)受風(fēng)力搬運-沉積的次數(shù)上或者風(fēng)力搬運的距離上與黃土高原黃土有較大差異。
致謝:本文在野外采樣、實驗操作以及論文寫作當(dāng)中得到了李云博士、陳濤碩士、周杰碩士、董俊超實驗員以及北京大學(xué)劉耕年教授的幫助和指導(dǎo),在此表示衷心的感謝!
陳麗華, 繆 昕, 于 眾. 1986. 掃描電鏡在地質(zhì)上的應(yīng)用 [M]. 北京: 科學(xué)出版社: 21 – 44. [Chen L H, Miao X, Yu Z. 1986. The applications of scanning electron microscope in geology [M]. Beijing: Science Press: 21 – 44.]
鄂崇毅, 楊太保, 賴忠平, 等. 2014. 中亞則克臺黃土剖面記錄的末次冰期以來的環(huán)境演變 [J]. 地球環(huán)境學(xué)報, 5(2): 163 – 172. [E C Y, Yang T B, Lai Z P, et al. 2014. The environmental change records since the Last Glaciation at Zeketai loess section, central Asia [J]. Journal of Earth Environment, 5(2): 163 – 172]
方小敏. 1991. 中國西部第四紀(jì)冰川與環(huán)境 [M]. 北京: 科學(xué)出版社: 138 – 148. [Fang X M. 1991. The quaternary glaciers in western China and the environment [M]. Beijing: Science Press: 138 – 148.]
郭召杰, 張志誠, 吳朝東, 等. 2006. 中、 新生代天山隆升過程及其與準(zhǔn)噶爾、 阿爾泰山比較研究 [J]. 地質(zhì)學(xué)報, 80(1): 1 – 15. [Guo Z J, Zhang Z C, Wu C D, et al. 2006. The Mesozoic and Cenozoic exhumation history of Tianshan and comparative studies to the Junggar and Altai Mountains [J]. Acta Geological Sinica, 80(1): 1 – 15.]
賈 佳, 夏敦勝, 王 博, 等. 2012. 黃土高原與伊犁黃土磁學(xué)特征對比及啟示 [J]. 第四紀(jì)研究, 32(4): 749 – 760. [Jia J, Xia D S, Wang B, et al. 2012. The compaeison between Loess Plateau and Ili loess magnetic properties and their implications [J]. Quternary Sciences, 32(4): 749 – 760.]
賈 佳, 夏敦勝, 魏海濤, 等. 2011. 阿西克剖面記錄的西天山地區(qū)黃土磁學(xué)性質(zhì)及古氣候意義初探 [J]. 中國沙漠, 31(6): 1406 – 1415. [Jia J, Xia D S, Wei H T, et al. 2011. Magnetic property and paleoclimatic implication recorded by AXK sequence in West Tianshan area [J]. Journal of Desert Research, 31(6): 1406 – 1415.]
江新勝, 徐金沙, 潘忠習(xí). 2003a. 鄂爾多斯盆地白堊紀(jì)沙漠石英砂顆粒表面特征 [J]. 沉積學(xué)報, 21(3): 416 – 422. [Jiang X S, Xu J S, Pan Z X. 2003a. Microscopic features on quartz sand grain surface in the Cretaceous desert of Ordos Basin [J]. Acta Sedimentologica Sinica, 21(3): 416 – 422.]
江新勝, 徐金沙, 潘忠習(xí). 2003b. 四川盆地白堊紀(jì)沙漠石英砂顆粒表面特征 [J]. 沉積與特提斯地質(zhì), 23(1): 60 – 68. [Jiang X S, Xu J S, Pan Z X. 2003b. The surface features of the quartz sand grains from the Cretaceous desert in the Sichuan Basin [J]. Sedimentary Geology and Tethyan Geology, 23(1): 60 – 68.]
李傳想, 宋友桂, 千琳勃, 等. 2011. 中亞昭蘇黃土剖面粒度記錄的末次冰期以來氣候變化歷史 [J]. 沉積學(xué)報, 29(6): 1170 – 1179. [Li C X, Song Y G, Qian L B, et al. 2011. History of climate change recorded by grain size at the Zhaosu loess section in the Central Asia since the Last Glacial period [J]. Acta Sedimentologica Sinica, 29(6): 1170 – 1179.]
李傳想, 宋友桂, 王樂民. 2012. 新疆伊犁黃土元素地球化學(xué)特征及古環(huán)境意義 [J]. 新疆地質(zhì), 30(1): 103 – 108. [Li C X, Song Y G, Wang L M. 2012. Geochemical characteristics and Paleoenvironmental signifi cance of the loess in the Ili region, Xinjiang [J]. Xinjiang Geology, 30 (1): 103 – 108.]
李傳想, 宋友桂. 2011. 新疆伊犁黃土磁化率增強機(jī)制差異性分析 [J]. 地球?qū)W報, 32(1): 80 – 86. [Li C X, Song Y G. 2011. Differences in magnetic susceptibility enhancement in Ili Loess, Xinjiang [J]. Acta Geoscientica Sinica, 32(1): 80 – 86.]
李傳想, 宋友桂. 2014. 西風(fēng)區(qū)末次冰期以來昭蘇黃土剖面微量元素分布特征及其環(huán)境意義 [J]. 地球環(huán)境學(xué)報, 5(2): 56 – 66. [Li C X, Song Y G. 2014. The characteristics of distribution of trace elements and their paleoclimatic implications at the Zhaosu Loess Section in Westerly Area since the Last Glacial Period [J]. Journal of Earth Environment, 5(2): 56 – 66.]
李 珍, 張家武, 馬海洲. 1999. 西寧黃土石英顆粒表面結(jié)構(gòu)與黃土物質(zhì)來源探討 [J]. 沉積學(xué)報, 17(2): 221 – 225. [Li Z, Zhang J W, Ma H Z. 1999. Discession on the texture features of quartz grains and their origin in the Xining Loess [J]. Acta Geographica Sinica, 17(2): 221 – 225.]
李志忠, 凌智永, 陳秀玲, 等. 2010. 新疆伊犁河谷晚全新世風(fēng)沙沉積粒度旋回與氣候變化 [J]. 地理科學(xué), 30(4): 613 – 619. [Li Z Z, Ling Z Y, Chen X L, et al. 2010. Late Holocene climate changes revealed by grain-size cycles in Takemukul desert in Yili of Xinjiang [J]. Scientia Geographica Sinica, 30(4): 613 – 619.]
劉東生. 1985. 黃土與環(huán)境 [M]. 北京: 科學(xué)出版社: 191 – 302. [ Liu T S. 1985. Loess and the environment [M]. Beijing: Science Press: 191 – 302.]
潘仁義, 李川川, 張 梅, 等. 2012. 天山冰川與塔克拉瑪干風(fēng)沙沉積的顆粒特征和分異過程分析 [J]. 北京大學(xué)學(xué)報(自然科學(xué)版), 48(5): 744 – 756. [Pan R Y, Li C C, Zhang M, et al. 2012. Analysis of particle characteristics and differentiation processes of glacial sediment in Tianshan and eolian sediment in the Taklimakan desert [J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 48 (5): 744 – 756.]
石 磊, 張 躍, 陳藝鑫, 等. 2009. 貢嘎山海螺溝冰川沉積的石英砂掃描電鏡形態(tài)特征分析 [J]. 北京大學(xué)學(xué)報(自然科學(xué)版), (2): 53 – 59. [Shi L, Zhang Y, Chen Y X, et al. 2009. Quartz grain SEM microtextures analysis of subglacial deposits at Hailuogou glacier [J]. Acta Scientiarum Naturalium Universitatis Pekinensis (Online First), (2): 53 – 59.]
史正濤, 董 銘, 方小敏. 2007. 伊犁盆地晚更新世黃土-古土壤磁化率特征 [J]. 蘭州大學(xué)學(xué)報(自然科學(xué)版), 43(2): 7 – 10. [Shi Z T, Dong M, Fang X M. 2007. The characteristics of later pleistocene loess-paleosol magnetic susceptibility in Yili Basin [J]. Journal of Lanzhou University (Natural Sciences), 43(2): 7 – 10.]
宋友桂, Nie Jun-sheng, 史正濤, 等. 2010b. 天山黃土磁化率增強機(jī)制初步研究 [J]. 地球環(huán)境學(xué)報, 1(1): 66 – 72. [ Song Y G, Nie J S, Shi Z T, et al. 2010b. A preliminary study of magnetic enhancement mechanisms of the Tianshan Loess [J]. Journal of Earth Environment, 1(1): 66 – 72]
宋友桂, 史正濤, 方小敏, 等. 2010a. 伊犁黃土的磁學(xué)性質(zhì)及其與黃土高原對比 [J]. 中國科學(xué): D輯, 40(1): 61 – 72. [Song Y G, Shi Z T, Fang X M, et al. 2010a. Magnetic properties of the Ili loess and the comparison with Chinese Loess Plateau [J]. Science China: Earth Sciences, 40(1): 61 – 72.]
孫有斌. 2001. 黃土樣中石英單礦物的分離 [J]. 巖礦測試, 20(1): 23 – 26. [Sun Y B. 2001. Separation of quartz minerals from loess samples [J]. Rock and Mineral Analysis, 20(1): 23 – 26.]
王 穎, 迪納瑞爾. 1985. 石英砂表面結(jié)構(gòu)模式圖集 [M].北京: 科學(xué)出 版社: 4 – 30. [Wang Y, Deonarine B. 1985. Model atlas of surface textures of quartz sand [M]. Beijing: Science Press: 4 – 30.]
夏敦勝, 陳發(fā)虎, 馬劍英, 等. 2010. 新疆伊犁地區(qū)典型黃土磁學(xué)特征及其環(huán)境意義初探 [J]. 第四紀(jì)研究, 30(5): 902 – 911. [Xia D S, Chen F H, Ma J Y, et al. 2010. Magnetic characteristics of loess in the Ili area and their environmental implication [J]. Quaternary Sciences, 30 (5): 902 – 911.]
夏訓(xùn)誠. 1987. 庫木塔格沙漠的基本特征 [M]. 北京: 科學(xué)出版社: 78 – 94. [Xia X C. 1987. Essential characteristics of Kumtag desert [M]. Beijing: Science Press: 78 – 94.]
謝又予. 1984. 中國石英砂表表面結(jié)構(gòu)特征圖譜 [M]. 北京: 海洋出版社: 4 – 10. [Xie Y Y. 1984. Atlas of quartz sand surface textural features of China micrographs [M]. Beijing: Ocean Press: 4 – 10.]
楊曉平, 李 安, 黃偉亮. 2012. 天山北麓活動褶皺帶晚第四紀(jì)時期隆升的差異性 [J]. 中國科學(xué): 地球科學(xué), 42(12): 1877 – 1888. [Yang X P, Li A, Huang W L. 2012. Differentiation in uplifting of active fold band located at the northern piedmonts of Tianshan mountains in the Late Quaternary [J]. Science China: Earth Sciences, 42(12): 1877 – 1888.]
葉 瑋, 桑長青, 趙興有. 2003. 新疆黃土分布規(guī)律及粉塵來源 [J]. 中國沙漠, 23(5): 514 – 520. [Ye W, Sang C Q, Zhao X Y. 2003. Spatial-temporal distribution of loess and source of dust in Xinjiang [J]. Journal of Desert Research, 23(5): 514 – 520.]
葉 瑋. 2001. 新疆西風(fēng)區(qū)黃土沉積特征與古氣候 [M].北京: 海洋出版社: 1 – 180. [Ye W. 2001. Sedimental characteristics of loess in Westerly area, Xinjiang and paleoclimate [M]. Beijing: Ocean Press: 1 – 180.]
曾蒙秀, 宋友桂. 2014. 新疆伊犁地區(qū)近地表黃土的磁化率研究 [J]. 地球環(huán)境學(xué)報, 5(2): 135 – 144. [Zeng M X, Song Y G. 2014. Magnetic susceptibility characteristics of near-surface loess in the Ili basin, Xinjiang [J]. Journal of Earth Environment, 5(2): 135 – 144.]
Amelinckx S. 1964. Solid state physics, Suppl. 6: The direct observation of dislocations [M]. New York: Academic Press: 1 – 53.
Avouac J P, Tapponnier P, Bai M, et al. 1993. Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan [J]. Journal of Geophysical Research: Solid Earth (1978 — 2012), 98(B4): 6755 – 6804.
Bull P A, Culver S J, Gardner R. 1980. Chattermark trails as paleoenvironmental indicators [J]. Geology, 8(7): 318 – 322.
Bull P A. 1981. Environmental reconstruction by electron microscopy [J]. Progress in Physical Geography, 5(3): 368 – 397.
Costa P J M, Andrade C, Mahaney W C, et al. 2013. Aeolian microtextures in silica spheres induced in a wind tunnel experiment: Comparison with aeolian quartz [J]. Geomorphology, 180: 120 – 129.
Gallet S, Jahn B M, Lanoё B V V, et al. 1998. Loess geochemistry and its implications for particle origin and composition of the upper continental crust [J]. Earth and Planetary Science Letters, 156(3 / 4): 157 – 172.
Guo Z T, Peng S Z, Hao Q Z, et al. 2001. Origin of the Miocene-Pliocene Red-Earth formation at Xifeng in northern China and implications for paleoenvironments [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 170 (1 / 2): 11 – 26.
Guo Z T, Ruddiman W F, Hao Q Z, et al. 2002. Onset of Asian desertifi cation by 22 Myr ago inferred from loess deposits in China [J]. Nature, 416(6877): 159 – 163.
Helland P, Huang P H, Diffendal R F. 1997. SEM analysis of quartz sand grain surface textures indicates alluvial/ colluvial origin of the Quaternary “glacial” boulder clays at Huangshan (Yellow Mountain), East-Central China [J]. Quaternary Research, 48(2): 177 – 186.
Higgs R. 1979. Quartz-grain surface features of Mesozoic-Cenozoic sands from the Labrador and western Greenland continental margins [J]. Journal of Sedimentary Research, 49(2): 599 – 610.
Kovacs J, Varga G, Dezso J. 2008. Comparative study on the Late Cenozoic red clay deposits from China and Central Europe (Hungary) [J]. Geological Quarterly, 52(4): 369 – 381.
Krinsley D H, Donahue J. 1968. Environmental interpretation of sand grain surface textures by electron microscopy [J]. Geological Society of America Bulletin, 79(6): 743 – 748.
Krinsley D, Cavallero L. 1970. Scanning electron microscopic examination of periglacial eolian sands from Long Island, New York [J]. Journal of Sedimentary Research, 40(4): 1345 – 1350.
Krinsley D, Trusty P. 1985. Environmental interpretation of quartz grain surface textures [M]. Berlin: Springer: 213 – 229.
Liu J F, Guo Z T, Qiao Y S, et al. 2006. Eolian origin of the Miocene loess-soil sequence at Qin’an, China: Evidence of quartz morphology and quartz grain-size [J]. Chinese Science Bulletin, 51(1): 117 – 120.
Mahaney W C, Kalm V. 2000. Comparative scanning electron microscopy study of oriented till blocks, glacial grains and Devonian sands in Estonia and Latvia [J]. Boreas, 29(1): 35 – 51.
Mahaney W C, Stewart A, Kalm V. 2001. Quantification ofSEM microtextures useful in sedimentary environmental discrimination [J]. Boreas, 30(2): 165 – 171.
Mahaney W C. 2002. Atlas of sand grain surface textures and applications [M]. New York: Oxford University Press: 237. Margolis S V, Krinsley D H. 1974. Processes of formation and environmental occurrence of microfeatures on detrital quartz grains [J]. American Journal of Science, 274(5): 449 – 464.
Marzolf J E. 1976. Sand-grain frosting and quartz overgrowth examined by scanning electron microscopy: the Navajo Sandstone (Jurassic (?)), Utah [J]. Journal of Sedimentary Research, 46(4): 906 – 912.
Moldvay L. 1962. On the governing sedimentation from eolian suspension [J]. Acta Universitatis Szegediensis, 14: 75 – 109.
Nahon D, Trompette R. 1982. Origin of siltstones: glacial grinding versus weathering [J]. Sedimentology, 29(1): 25 – 35.
Newsome D, Ladd P. 1999. The use of quartz grain microtextures in the study of the origin of sand terrains in Western Australia [J]. Catena, 35(1): 1 – 17.
Peterknecht K M, Tietz G F. 2011. Chattermark trails: surface features on detrital quartz grains indicative of a tropical climate [J]. Journal of Sedimentary Research, 81(1/ 2): 153 – 158.
Pittman E D. 1972. Diagenesis of quartz in sandstones as revealed by scanning electron microscopy [J]. Journal of Sedimentary Research, 42(3): 507 – 519.
Porter J J. 1962. Electron microscopy of sand surface texture [J]. Journal of Sedimentary Research, 32(1): 124 – 135.
Pye K, Sperling C. 1983. Experimental investigation of silt formation by static breakage processes: the effect of temperature, moisture and salt on quartz dune sand and granitic regolith [J]. Sedimentology, 30(1): 49 – 62.
Pye K. 1983. Formation of quartz silt during humid tropical weathering of dune sands [J]. Sedimentary Geology, 34: 267 – 282.
Pye K. 1987. Aeolian dust and dust deposits [M]. London: Academic Press: 1 – 165.
Pye K. 1995. The nature, origin and accumulation of loess [J]. Quaternary Science Reviews, 14: 653 – 667.
Schumm S, Stevens M. 1973. Abrasion in place: a mechanism for rounding and size reduction of coarse sediments in rivers [J]. Geology, 1(1): 37 – 40.
Smalley I, O’Hara-Dhand K, Wint J, et al. 2009. Rivers and loess: The significance of long river transportation in the complex event-sequence approach to loess deposit formation [J]. Quaternary International, 198: 7 – 18.
Smalley I. 1990. Possible formation mechanisms for the modal coarse-silt quartz particles in loess deposits [J]. Quaternary International, 7: 23 – 27.
Smalley I. 1995. Making the material: the formation of siltsized primary mineral particles for loess deposits [J]. Quaternary Science Reviews, 14: 645 – 651.
Song Y G, Chen X L, Qian L B, et al. 2014. Distribution and composition of loess sediments in the Ili Basin, Central Asia [J]. Quaternary International, 334: 61 – 73.
Song Y G, Lai Z P, Li Y, et al. 2015. Comparison between luminescence and radiocarbon dating of late Quaternary loess from the Ili Basin in Central Asia [J]. Quaternary Geochronology, 30: 405 – 410.
Song Y G, Shi Z T, Dong H M, et al. 2008. Loess magnetic susceptibility in Central Asia and its paleoclimatic significance [C]// IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, 7—11 July, 2008, 2: 1227 – 1230.
Vos K, Vandenberghe N, Elsen J. 2014. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation [J]. Earth-Science Reviews, 128: 93 – 104.
Whalley W B, Marshall J R, Smith B J. 1982. Origin of desert loess from some experimental-observations [J]. Nature, 300(5891): 433 – 435.
Wright J S. 2001. “Desert” loess versus “glacial” loess: quartz silt formation, source areas and sediment pathways in the formation of loess deposits [J]. Geomorphology, 36(3 / 4): 231 – 256.
Wright J, Smith B, Whalley B. 1998. Mechanisms of loesssized quartz silt production and their relative effectiveness: laboratory simulations [J]. Geomorphology, 23: 15 – 34.
Xiao J L, Porter S C, An Z S, et al. 1995. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of central China during the last 130,000 yr [J]. Quaternary Research, 43(1): 22 – 29.
Yang S L, Forman S L, Song Y G, et al. 2014. Evaluating OSL-SAR protocols for dating quartz grains from the loess in Ili Basin, Central Asia [J]. Quaternary Geochronology, 20: 78 – 88.
Zhang W X, Shi Z T, Chen G J, et al. 2013. Geochemical characteristics and environmental significance of Talede loess-paleosol sequences of Ili Basin in Central Asia [J]. Environmental Earth Sciences, 70(5): 2191 – 2202.
Micromorphological characters of quartz grain from Nilke loess-paleosol sequences and their implications of origin and provenance
LI Yue1, SONG Yougui1, ZHAO Jingdong2
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China)
Background, aim, and scope Xinjiang is also one of the most signifi cant loess regions in China with the exception of Chinese Loess Plateau, and the loess is mainly present in the northern piedmont of the Tianshan and Kunlun Mountains and Ili Basin. The loess deposits in Ili Basin unconformably cover the river terraces, the low uplands and the slopes of the Tianshan Mountains, and the researches on them have the merit of enabling reconstructions of past climate change in westerly dominant area of inland Asia. Although many predecessors have investigated the spatial distribution and studied the ages, pedostratigraphy, rock magnetism, elemental and mineral compositions and their implications for paleoclimate in details with respect to the Ili loess, there are many urgent questions that need to be solved: How were the materialsof Ili loess generated? Which geological process was experienced by the loess silt particles before they reached the sediment area? And where is the provenance of Ili loess? We have had no understanding of the answers by far, which hampers the interpretation of climate change. For this reason, this paper aims to solve the problems above mentioned with the micromorphological characters of quartz grains. In recent study, we compared the micromorphology of quartz grains from Nilka loess with those from glacial tills, riverbed deposits and desert sands to determine the mechanisms of loess-sized quartz silt production. These works will lay the foundation for the subsequent studies on the Ili loess. Materials and methods The 4 loess samples were collected from Nlika section located at the second-order terrace of Kashi River in the east of Ili Basin with the depths 1.50 m, 9.10 m, 11.06 m and 19.56 m, respectively. Glacial till was sampled from the terminus of Arqialeter Glacier located in catchment area of Xiate River; riverbed deposits were sampled from Kashi River and the sampling sites lay in the west of Nilka loess section; desert sands were sampled from Kyzylkum, Muyunkum and Saryeslk Atyrau desert within Kazakhstan respectively. With regard to the loess, 2 g dried sample was weighed, then hydrogen peroxide and hydrochloric acid were added to remove the organic matters and carbonates, and finally the quartz minerals were separated by hydrofluosilicic acid (H2SiF6) treatment. We chose the quartz grains within the grain sizes of 20 — 70 μm for observation. For glacial till, riverbed deposits and desert sands, first, organic matters and carbonates were removed from these samples with the same method; second, remnant materials were dried and sieved through 0.125 mm; third, quartz grains of < 0.125 mm were selected under binocular microscope. All the quartz grains were mounted on the SEM (scanning electron microscope) stubs with conductive tapes and sputtered with gold, and morphologic observation were conducted with PhenomTMproX (energy spectrum version) at the Environmental Mineralogy Laboratory, State Key Laboratory of Loess and Quaternary Geology. After that, frequency of each texture’s occurrence was calculated. Results The results reveal that the quartz grains from Nilka loess are poorly rounded; microtextures produced by glaciation and fl uviation are obvious but those by aeolian abrasion are rare; the chemical dissolution developed well in the surface of quartz grains but very few chemical precipitation could be observed. Discussion In spite of the surface with sharp feature, we are quite confi dent that Nilka loess is the eolian sediment according to previous literatures and the grain size distribution characteristics. With the Euclidean distances, we found that the loess was nearest to riverbed deposit and farther away from glacial till, and had farthest distance to desert sand. This result suggested the signifi cant impact of fl ow action on the generation of loess quartz silt and a certain contribution from glaciation. By analyzing the characteristics of tectonic environment in Tianshan region, combined with silt generating mechanisms reported by predecessors, we also considered the freezing weathering in high elevation area as one of the silt generating mechanisms. With comparative analysis to probable sequence of events indicating the formation of loess, it holds that the origin of Nilka loess are similar to those of loess in Hungary but different from those of loess in Chinese Loess Plateau. Conclusions With the studies of surface micromorphological characters of quartz grain and the grain size, we believe that Nilka loess also belongs to eolian sediment, and the shape of particle and morphology by mechanical effect indicate that Nilka loess materials have experienced glaciation and fl ow action before transportation by wind.The fl ow action played an important role in the generation of quartz silt from Nilka loess and glacial abrasion might make a certain contribution. However eolian erosion leaved no obvious traces in surface of quartz particles, indicative of the shorter transporting distance by wind between loess deposit area and provenance. Moreover it is inferred that the weather denudation was also the important silt generating mechanism. The origin of Nilka loess are similar to those of loess in Hungary, but different from those of loess in Chinese Loess Plateau, which displays mainly in the time of transportation-deposition by wind or distance of wind transport. Recommendations and perspectives This paper analyzes the geologic processes experienced byNilka loess materials and gives a understanding of the loess silt generating mechanism with plotting the probable sequence of events indicating the formation of loess. This work will lay an important foundation for interpreting climatic signifi cance of Ili loess.
Ili loess; quartz grain textures; origin and source
SONG Yougui, E-mail: ygsong@loess.llqg.ac.cn
10.7515/JEE201604005
2016-03-10;錄用日期:2016-06-13
Received Date:2016-03-10;Accepted Date:2016-06-13
國家自然科學(xué)基金項目(41572162,41172166);中國科學(xué)院地球環(huán)境研究所自主部署重點項目(ZZBS1301);中國科學(xué)院科技創(chuàng)新“交叉與合作團(tuán)隊”項目(中科院人字[2013]47號);中國科學(xué)院國際合作局對外合作重點項目(132B61KYS20160002)
Foundation Item:National Natural Science Foundation of China (41572162, 41172166); Key Research Program of Institute of Earth Environment, Chinese Academy of Sciences (ZZBS1301); Cross-disciplinary Collaborative Teams Program for Science, Technology and Innovation of Chinese Academy of Sciences (Renzi [2013]47); International Partnership Program of Chinese Academy of Sciences (132B61KYS20160002)
宋友桂,E-mail: ygsong@loess.llqg.ac.cn