国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

蘭州盆地第三紀(jì)沉積物常量元素變化及其古環(huán)境意義

2016-03-13 03:18:54劉星星李再軍孫東懷孫有斌
地球環(huán)境學(xué)報(bào) 2016年4期
關(guān)鍵詞:常量蘭州沉積物

王 揚(yáng),劉星星,李再軍,孫東懷,孫有斌

(1.中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安710061;2.中國(guó)科學(xué)院大學(xué),北京 100049;3. 蘭州大學(xué) 西部環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,蘭州 730000)

蘭州盆地第三紀(jì)沉積物常量元素變化及其古環(huán)境意義

王 揚(yáng)1,2,劉星星1,2,李再軍3,孫東懷3,孫有斌1

(1.中國(guó)科學(xué)院地球環(huán)境研究所 黃土與第四紀(jì)地質(zhì)國(guó)家重點(diǎn)實(shí)驗(yàn)室,西安710061;2.中國(guó)科學(xué)院大學(xué),北京 100049;3. 蘭州大學(xué) 西部環(huán)境教育部重點(diǎn)實(shí)驗(yàn)室,蘭州 730000)

通過(guò)對(duì)蘭州盆地鳳凰山剖面沉積物(厚約2484 m)的常量元素(Si、Al、Ca、Fe、K、Mg、Na)和碳酸鹽含量分析,發(fā)現(xiàn)元素含量變化特征可分為三類:(1)元素Al、Fe、K和Mg賦存于細(xì)顆粒礦物中,與粒度分選和風(fēng)化強(qiáng)度關(guān)系密切;(2)元素Si主要賦存于石英中,能良好反映沉積相變化;(3)元素Ca、Na與化學(xué)沉積鹽類的生成有關(guān),元素比值(Na/Al和Ca/Al)能揭示沉積環(huán)境演變。元素比值變化表明蘭州盆地第三紀(jì)古環(huán)境變化可劃分為四個(gè)階段:54 —43 Ma為三角洲河流相沉積,氣候較溫暖濕潤(rùn);43—33 Ma Na/Al比值較高,鈉鹽大量生成,進(jìn)入鹽湖發(fā)育階段,氣候開始變干;33 — 23 Ma Ca/Al比大幅度波動(dòng),地層中含有大量石膏層,盆地經(jīng)歷了半干旱—半濕潤(rùn)的氣候環(huán)境波動(dòng);23—9 Ma盆地從咸水-半咸水湖轉(zhuǎn)變?yōu)轱L(fēng)塵主導(dǎo)的干旱環(huán)境。綜合鳳凰山剖面的元素、磁化率、色度和粒度結(jié)果,認(rèn)為第三紀(jì)以來(lái)蘭州盆地古環(huán)境經(jīng)歷了三次階段性變干的過(guò)程(~43 Ma,~33 Ma和~23 Ma);同全球氣候和區(qū)域構(gòu)造記錄的對(duì)比表明,前兩次變干可能同全球氣候變冷關(guān)系密切,而早中新世的變干則可能是區(qū)域構(gòu)造運(yùn)動(dòng)的結(jié)果。

蘭州盆地;第三紀(jì);常量元素;沉積相;古環(huán)境

蘭州盆地是我國(guó)開展第三系研究較早的地區(qū)之一,包含了豐富的哺乳動(dòng)物化石,經(jīng)歷了顯著的沉積環(huán)境演化。上世紀(jì)開始,謝家榮(1921)、Young and Bien(1937)、胡敏(1946)、路兆洽(1948)、楊鍾?。?948)等,先后多次對(duì)盆地的第三系地層和化石進(jìn)行了全面的調(diào)查和對(duì)比研究。甘肅區(qū)調(diào)隊(duì)建立的下第三系西柳溝組(古新統(tǒng)—始新統(tǒng))、野狐城組(漸新統(tǒng)),上第三系咸水河組(中新統(tǒng))、臨夏組(上新統(tǒng))是目前被廣泛應(yīng)用的地層單元(甘肅省地質(zhì)局區(qū)域地質(zhì)調(diào)查隊(duì),1984)。隨后,邱占祥等(邱占祥和谷祖綱,1988;邱占祥等,1997,1998;邱占祥和謝駿義,1997;邱占祥和王伴月,1999)在蘭州盆地發(fā)現(xiàn)了豐富的哺乳動(dòng)物化石,命名了南坡坪動(dòng)物群、狹溝動(dòng)物群、張家坪動(dòng)物群和對(duì)亭溝動(dòng)物群。岳樂(lè)平等(2000,2003)對(duì)蘭州盆地永登剖面第三系沉積物進(jìn)行了磁性地層學(xué)和沉積學(xué)研究,建立了第三系地層古地磁年代序列。張炎等(2010)通過(guò)對(duì)皋蘭山剖面沉積物的研究,表明蘭州地區(qū)沉積地層在至少約7 Ma開始由河湖相向風(fēng)塵沉積轉(zhuǎn)變,氣候開始干旱化;Zhang et al(2014)認(rèn)為~26 Ma亞洲內(nèi)陸大規(guī)模干旱化已經(jīng)形成,蘭州盆地風(fēng)塵沉積顯著增加。

沉積物中元素含量的變化對(duì)于指示氣候冷暖干濕波動(dòng)有重要意義。比如,鈉是化學(xué)性質(zhì)活潑的元素,在暖濕氣候條件下易淋溶遷移,地層中鈉含量的增加反映古氣候向干冷趨勢(shì)發(fā)展(舒強(qiáng)等,2001;靳鶴齡等,2003;趙錦慧等,2004);鐵、鋁較穩(wěn)定而不易遷移,鋁、全鐵、鉀、硅含量低時(shí),反映了氣候轉(zhuǎn)干、降水減少、化學(xué)和生物作用減弱(張虎才等,1991)。另外,依據(jù)比值的變化可以表明元素的相對(duì)富集或分散,Na / K、Fe / Mg、Zr / Rb、K / Al、Ba / (Zr+Rb)、Ba / Al、Sr / (Zr + Rb)能很好地反映古氣候、古環(huán)境意義(劉連文,2004)。魯新川(2007)對(duì)臨夏盆地14 — 4.4 Ma湖泊沉積物化學(xué)元素進(jìn)行研究,表明CaO、Na2O和CaO / MgO比值與干旱氣候成正比,并對(duì)其氣候演化進(jìn)行了階段性劃分(宋春暉等,2007)。前人對(duì)蘭州盆地第三紀(jì)的研究多集中在動(dòng)物群、古生物化石、巖石地層單元以及沉積相的研究,運(yùn)用的指標(biāo)多是粒度、磁化率、色度等,但關(guān)于蘭州盆地第三系沉積物地球化學(xué)特征的研究基本沒(méi)有涉及。本文通過(guò)對(duì)蘭州鳳凰山剖面9 — 54 Ma以來(lái)沉積物中常量元素的分析,結(jié)合地層特征以及沉積相變化,探討第三系時(shí)期蘭州盆地沉積物的元素地球化學(xué)特征及其古環(huán)境氣候階段和意義。

1 區(qū)域背景

蘭州盆地位于青藏高原東北緣和黃土高原西緣(圖1),是廣義的第三紀(jì)隴中沉積盆地中次一級(jí)的中新生代盆地,海拔1500 m以上,位于黃河上游,處于東部季風(fēng)濕潤(rùn)區(qū)、西北內(nèi)陸干旱區(qū)和青藏高寒區(qū)三大自然區(qū)域的交匯地帶,有我國(guó)“季風(fēng)三角”的樞紐地區(qū)一說(shuō)(李吉均等,2001)。蘭州盆地特殊的地理位置,決定了該區(qū)對(duì)構(gòu)造運(yùn)動(dòng)和環(huán)境變化的響應(yīng)較其他地區(qū)更為敏感。蘭州盆地是典型的溫帶半干旱大陸性季風(fēng)氣候,年平均氣溫9.3℃,年平均降水量360 mm,植被不甚發(fā)育,為草原植被至荒漠草原植被。研究區(qū)位于蘭州盆地內(nèi),區(qū)內(nèi)大部分地區(qū)為黃土所覆蓋,比較完整地沉積了白堊紀(jì)晚期及第三紀(jì)以來(lái)不同時(shí)期的沉積物,盆地被自西向東再轉(zhuǎn)向北東穿流而過(guò)的黃河橫切,黃河南、北岸分布著不同時(shí)代的地層(圖1)。

圖1 蘭州盆地鳳凰山剖面位置圖及區(qū)域內(nèi)第三系地層分布Fig.1 Location of Fenghuangshan section in Lanzhou Basin and the Tertiary stratigraphic distribution in the area

蘭州地區(qū)的典型剖面包括第四紀(jì)的九州臺(tái)剖面(張虎才等,1991;張虎才,1993;劉現(xiàn)彬等,2012)、第三紀(jì)的南山剖面(胡文偉等,2011;Sun et al,2011)、永登剖面(岳樂(lè)平等,2000,2003;鄧焰平等,2010)、皋蘭山剖面(韓飛等,2010;張炎等,2010)、對(duì)亭溝剖面(Flynn et al,1999;Qiu et al,2013;張鵬等,2015)以及鳳凰山剖面(張?jiān)聦毜龋?012;Zhang et al,2014)。第三紀(jì)地層在盆地不同位置厚度差異巨大,對(duì)亭溝厚約750 m(張鵬等,2015),永登剖面厚約1300 m(岳樂(lè)平等,2000),鳳凰山剖面厚約2490 m(Zhang et al,2014),不同剖面沉積厚度的差異歸因于其位于蘭州沉積盆地的不同位置。其中,鳳凰山剖面靠近盆地邊緣,沉積地層連續(xù)穩(wěn)定,地層時(shí)間跨度為9 — 54 Ma,剖面自下而上包含了三個(gè)組:西柳溝組、野狐城和咸水河組。岳樂(lè)平等(2000)認(rèn)為西柳溝組古地磁年齡為58 — 51 Ma,野狐城組為51—31.5 Ma,咸水河組為31.5 — 15 Ma;Zhang et al(2014)認(rèn)為西柳溝組為54 — 33 Ma,野狐城組為33 — 23.6 Ma,咸水河組為23.6 — 9 Ma。西柳溝組以河流沉積相為主,由一套紅色塊狀砂巖和碎屑砂巖組成,具有交錯(cuò)層理;野狐城組是由含石膏夾層的紫紅色泥巖和磚紅色河流相砂巖組成,為河湖相沉積地層,基本上相當(dāng)于西寧盆地西寧組的上部分(甘肅省地質(zhì)局區(qū)域地質(zhì)調(diào)查隊(duì),1984);咸水河組為河湖相沉積旋回夾風(fēng)成粘土層(張?jiān)聦毜龋?012),下部主要是薄的泥巖夾有數(shù)層砂巖,上部多是粘土層,該組包含了5個(gè)地方哺乳動(dòng)物群(邱占祥等,1997)。Zhang et al(2014)對(duì)該剖面進(jìn)行了巖性、粒度、古地磁、色度、粉塵通量以及掃描電鏡的研究,揭示了~26 Ma亞洲內(nèi)陸大規(guī)模的干旱化已經(jīng)開始出現(xiàn),并在約22 Ma、14 Ma逐步加劇。

2 材料與方法

鳳凰山剖面(36°09′10″N,103°36′15″E,圖1)位于蘭州市黃河以北的安寧區(qū),厚約2484 m,包含有出露良好且沉積連續(xù)穩(wěn)定的第三系地層。根據(jù)古地磁結(jié)果(Zhang et al,2014),對(duì)整個(gè)剖面進(jìn)行不等間距(2—30 m)粉末樣品挑選,其中咸水河組(厚約962 m)136個(gè)樣品,野狐城組(厚約96 m)樣品48個(gè),西柳溝組(厚約1152 m)樣品51個(gè),共計(jì)235個(gè)樣品,粉末樣的年代依據(jù)古地磁結(jié)果線性內(nèi)插獲得。本研究所有樣品由蘭州大學(xué)孫東懷教授提供。所挑粉末樣品稱取10 g烘干,用Bartington MS2型雙頻(475 Hz和4750 Hz)磁化率儀測(cè)量,獲得樣品的磁化率值,用于同已發(fā)表數(shù)據(jù)的深度對(duì)比。

常量元素測(cè)量采用X射線熒光光譜分析法(XRF)。具體步驟如下:將樣品放在38℃烘箱里充分烘干后,取10 g用研磨機(jī)研磨2分鐘,顆粒大小為200目(75 μm)以下,稱取試樣6 g在30噸壓力下制成32 mm直徑的圓片,之后送入波長(zhǎng)色散型X熒光光譜測(cè)試儀(WD-XRF)上進(jìn)行常量元素(Si、Al、Ca、Fe、K、Mg、Na)組成分析。測(cè)試過(guò)程中利用12個(gè)水系沉積物標(biāo)準(zhǔn)物質(zhì)(GSD-1 — 12)和16個(gè)國(guó)家土壤標(biāo)準(zhǔn)物質(zhì)(GSS-1 — 16)建立元素分析的工作曲線,其中對(duì)GSS-8進(jìn)行了多次平行測(cè)試,常量元素分析的不確定性在壓片法中測(cè)量均小于1%。色度測(cè)量選取Konica Minolta公司生產(chǎn)的CM-700d分光測(cè)色計(jì)進(jìn)行測(cè)試,掃描之前用于XRF測(cè)量的壓片樣,可獲得L*、a*、b*以及400 —700 nm的反射光譜數(shù)據(jù)。碳酸鹽的百分含量測(cè)試采用氣量法,測(cè)定0.3 g樣品與3 mL的10%的稀鹽酸反應(yīng)生成的CO2氣體體積,利用公式:碳酸鹽含量=氣壓×(測(cè)量值本底值)/(溫度+273.15)/0.8309/樣品質(zhì)量,計(jì)算得到樣品碳酸鹽的百分含量。

3 結(jié)果

鳳凰山剖面235個(gè)樣品的元素分析結(jié)果和碳酸鹽含量變化如表1所示。沉積物常量元素主要由Si、Al、Ca、Fe、K、Mg、Na組成,含量依次降低。Si含量高達(dá)39.48%,低至8.07%,平均值為26.5%;Al含量在1.45% — 9.65%變化,平均值為6.1%;Ca含量的變化范圍為0.32% — 14.9%,均值為5.7%;Fe(0.49% — 5.2%)、K(0.26% — 3.52%)、Mg(0.16% — 3.15%)、Na(0.13% — 3.29%)元素含量變化范圍略小,平均值分別為2.8%、2.0%、1.6%、1.3%。碳酸鹽含量在3.0% — 28.99%變化,平均值為11.66%,變化幅度較大。

表1 碳酸鹽校正前后常量元素含量對(duì)比Tab.1 Comparison of carbonate-free basis concentrations and bulk contents of major elements

由于測(cè)量的常量元素含量變化可能受到碳酸鹽含量變化的影響,不能真實(shí)反映元素本身的含量變化(文啟忠,1989)。為了獲得元素含量真實(shí)變化,將剖面中常量元素含量進(jìn)行碳酸鹽百分含量校正以除去碳酸鹽對(duì)元素的影響,公式為:校正值=測(cè)量值/(1- CaCO3含量),校正前后常量元素含量變化的相關(guān)性分析見表1。結(jié)果表明,Si、Al、Fe、K、Mg、Na含量校正前后相關(guān)性都很高,其中Si的r2> 0.91,其他元素r2> 0.99,說(shuō)明常量元素含量受到碳酸鹽含量的影響非常微弱,元素含量的變化基本可以代表其本身的變化規(guī)律。Ca元素通過(guò)公式:校正值=測(cè)量值- 0.4×CaCO3進(jìn)行校正,校正前后的相關(guān)性很?。╮2= 0.298),說(shuō)明Ca主要賦存于碳酸鹽礦物中。本文選取經(jīng)碳酸鹽含量校正后的元素含量值進(jìn)行進(jìn)一步分析與討論。

為了進(jìn)一步分析常量元素含量的變化特征,將校正后的常量元素分別和Al做相關(guān)性分析(圖2)。結(jié)果顯示Fe(r2= 0.9481)、K(r2= 0.7947)、Mg(r2= 0.8057)和Al呈較高的正相關(guān),Na(r2= 0.1244)和Ca(r2= 0.1129)與Al相關(guān)性較差。Si與Al的關(guān)系表現(xiàn)地較復(fù)雜,可以將其分成三個(gè)階段,在9 — 23 Ma和33—54 Ma Si和Al有一定的正相關(guān)(r2> 0.6),22—33 Ma階段二者基本沒(méi)有相關(guān)性(r2= 0.1718)。據(jù)此,將7種常量元素變化大至分為三類:(1)Al、Fe、K、Mg;(2)Si;(3)Ca、Na,進(jìn)一步分析控制沉積物常量元素含量變化的因素。

圖2 常量元素與Al的相關(guān)性分析(Al和Si分成三組地層分別做相關(guān)性分析)Fig.2 Correlation analysis between major elements and Al (Al and Si were divided into three groups for the formation correlation analysis)

第一類元素Al、Fe、K、Mg之間具有很好的一致性,表現(xiàn)出明顯的階段性特征(圖3)。4條元素含量變化曲線由老至新呈現(xiàn)出增加的趨勢(shì),大致可以劃分為三段:西柳溝組(2012 —3158 m)各元素含量都較低且變化波動(dòng)較??;野狐城組和咸水河組下部(1438 — 2012 m)元素含量都有所增加且有大幅度高低值頻繁交替出現(xiàn);咸水河組中上部(903 — 1438 m)Al、Fe、K、Mg的含量均值處于最高的一個(gè)區(qū)段,震蕩幅度較之前略小。

圖3 鳳凰山剖面巖性(Zhang et al,2014)和沉積物常量元素及碳酸鹽含量變化Fig.3 Variations of lithology (Zhang et al, 2014), major element concentrations and carbonate content of Fenghuangshan section sediments

第二類元素Si除了在野狐城組和咸水河組下部的含量波動(dòng)很大且頻繁,其他階段其含量沒(méi)有大的波動(dòng)(圖3)。與地層巖性變化相對(duì)應(yīng),第三紀(jì)以來(lái)Si含量總體呈逐漸減小的趨勢(shì),西柳溝組以河流相塊狀砂巖為主,野狐城組和咸水河組下部為河湖相砂泥巖交互出現(xiàn),咸水河組上部為厚的粘土層夾有數(shù)層砂巖。

第三類元素Ca和Na的含量變化趨勢(shì)和變化幅度與其他元素并不一致。Ca含量在西柳溝組含量較低,自野孤城組(~2012 m)開始顯著增加,咸水河組含量總體較高。Na含量在西柳溝組下部和野孤城組總體較低,而在西柳溝組上部和咸水河組總體較高。

4 討論

4.1 常量元素變化對(duì)古環(huán)境的指示

沉積物元素含量變化控制因素較多,各地層單元中元素的遷移聚集受到氣候、地形、源區(qū)物質(zhì)化學(xué)成分的初始差異和化學(xué)元素自身特點(diǎn)的影響。蘭州盆地第三紀(jì)以來(lái)復(fù)雜的沉積相變化使元素變化的解釋更為復(fù)雜,單一的元素含量變化具有多解性,然而一定的元素組合卻具有成因?qū)傩裕哂形镌椿蛘叱练e環(huán)境的指示意義。從鳳凰山剖面7種常量元素的分析結(jié)果可以看出,常量元素含量與沉積物類型和沉積相密切相關(guān)(圖3)。

Al、Fe、K均為富集在偏細(xì)顆粒(粘土礦物、輝石、角閃石、鐵氧化物、云母)中的穩(wěn)定元素,Mg也易在細(xì)顆粒輝石、角閃石、黑云母等中富集。Al、Fe、K、Mg含量隨沉積物粒度的減小逐步增大,并且Fe、K、Mg和Al有高的正相關(guān)關(guān)系,這些元素含量變化主要與粘土礦物密切相關(guān),代表了細(xì)顆粒沉積物(粘土礦物)的影響,是元素含量變化的主要控制因素。元素含量變化既受搬運(yùn)過(guò)程中動(dòng)力分選作用的影響,較弱的搬運(yùn)動(dòng)力易攜帶較多的細(xì)顆粒礦物,又與物源區(qū)風(fēng)化作用密切相關(guān),通常干熱氣候條件下氧化作用強(qiáng)烈會(huì)導(dǎo)致硅酸鹽礦物發(fā)生風(fēng)化,形成更多的粘土礦物。在54 — 33 Ma,Al、Fe、K、Mg含量低且穩(wěn)定,與粗顆粒的河流相砂巖有關(guān),搬運(yùn)動(dòng)力較強(qiáng),氣候相對(duì)暖濕。在約33 Ma和23 Ma時(shí)段,4個(gè)元素的含量都有明顯階段性的增加,細(xì)顆粒物質(zhì)輸入增多。元素含量變化表明33 — 23 Ma氣候波動(dòng)較大,干濕交替出現(xiàn),而22 Ma以來(lái)氣候振蕩幅度則大大減小。

Si主要存在于石英和各種硅酸鹽礦物(輝石、角閃石、長(zhǎng)石、云母)中,風(fēng)化過(guò)程中輝石和角閃石被分解,長(zhǎng)石、云母易轉(zhuǎn)變?yōu)檎惩恋V物。因?yàn)槭⑤^穩(wěn)定,Si含量在剖面中的變化主要受到物質(zhì)來(lái)源及風(fēng)力分選作用的影響。一般而言,Si富集在偏粗顆粒,而Al富集在偏細(xì)顆粒中,二者呈反相關(guān)關(guān)系。然而,從Si與Al的相關(guān)性分析可以看出(圖2),二者相關(guān)性受到沉積相變化控制。由于蘭州盆地第三紀(jì)時(shí)期沉積環(huán)境波動(dòng)頻繁(岳樂(lè)平等,2003),砂巖中Si含量略高,而泥巖中Si含量降低,因此Si含量變化主要反映了沉積相的變化。54—33 Ma,高Si含量與河流相粗粒砂巖有關(guān);33—22 Ma Si含量有所減小且波動(dòng)頻繁,反映當(dāng)時(shí)河湖泊相(砂巖-泥巖)頻繁的交互出現(xiàn);22 Ma之后Si含量趨于穩(wěn)定,地層以風(fēng)塵沉積為主,偶夾河流相沉積。

Ca和Na在河流相、湖泊相、風(fēng)塵沉積多變的環(huán)境下,除了存在于碎屑礦物方解石、云母、長(zhǎng)石中,亦可賦存于湖泊自身的化學(xué)沉積過(guò)程形成的白云石CaMg(CO3)2、石膏(CaSO4水合物)和鈉鹽(NaCl等)中。Ca、Na和Al無(wú)明顯的相關(guān)性,暗示了Ca、Na含量變化,更多反映了化學(xué)沉積生成鹽類的情況。由于Ca和Na有多重來(lái)源,其環(huán)境意義存在多解性,相對(duì)的元素比值對(duì)沉積環(huán)境的演化更為敏感。Al元素在沉積物形成過(guò)程中相對(duì)穩(wěn)定并且主要富集在粘土粒級(jí)中(余素華等,1994),故選擇Al為穩(wěn)定元素,計(jì)算元素的比值討論元素的變化。下文將用Na /Al和Ca /Al比值來(lái)反映化學(xué)成因的鹽類和石膏的生成情況,這些鹽類的沉積受溫度影響比較大,多見于干旱地區(qū),可以反映湖泊咸淡變化和氣候的干旱程度(孫小虹,2013;呂鳳琳,2014;呂鳳琳等,2015)。

4.2 區(qū)域環(huán)境變化過(guò)程及影響因素

Na /Al和Ca /Al比值變化表明蘭州盆地沉積環(huán)境經(jīng)歷了顯著變化(圖4)。在43 — 33 Ma,Na /Al比值顯著增高,說(shuō)明這一時(shí)期鈉鹽大量生成,氣候開始變干,鹽湖開始發(fā)育。隨后在33 —23 Ma,Ca/Al比值變化幅度顯著增加,Na /Al比值較之前略有減小但仍比其他時(shí)段略高,表明~33 Ma開始石膏大量沉積并有一定的鈉鹽析出,與這個(gè)時(shí)間段沉積地層中有大量石膏層一致。石膏的形成需要一定的條件,除了要有一個(gè)集水成湖的盆地外,還需地面徑流將周圍土壤中的溶質(zhì)帶入湖中,并且蒸發(fā)量大于降水量,因此石膏形成的最佳環(huán)境為半干旱環(huán)境(王蘇民,1993; Williams et al,1999)。自33 Ma開始,氣候總體相對(duì)干旱,進(jìn)入了咸水湖階段,地層中數(shù)層呈條帶狀分布的石膏亦說(shuō)明古氣候明顯的干濕波動(dòng)。22 Ma以來(lái),Na/Al和Ca/Al變小且趨于穩(wěn)定,表明沉積環(huán)境變?yōu)榈蛘吆聪觥?/p>

圖4 鳳凰山剖面平均粒徑、磁化率、紅度(Zhang et al,2014)、同元素比值變化和深海氧同位素(Zachos et al,2001)對(duì)比Fig.4 Variations of mean size, magnetic susceptibility, redness (Zhang et al, 2014) and element ratios in Fenghuangshan section and their comparison with deep sea oxygen isotope records (Zachos et al, 2001)

結(jié)合前人的沉積相及相關(guān)代用指標(biāo)變化研究結(jié)果(岳樂(lè)平等,2003;Zhang et al,2014),元素地球化學(xué)組成揭示出第三紀(jì)蘭州盆地古環(huán)境的階段性演化特征。在54 — 43 Ma為三角洲河流相沉積,地層中不含鹽類夾層,主要由塊狀砂巖組成,顆粒較粗,顯示盆地可能為開放的淡水湖盆;低磁化率值和高紅度值,說(shuō)明盆地環(huán)境較為溫暖。43 — 33 Ma,以鈉鹽的大量生成為特征,此時(shí)進(jìn)入了咸水湖發(fā)育階段。此時(shí)段紅度急劇減小,由于紅度主要同赤鐵礦含量相關(guān),赤鐵礦形成于相對(duì)炎熱干燥的有氧環(huán)境中(Rossel et al,2006),它的含量變化主要與溫度相關(guān)(Barron and Torrent,1986;Yang et al,2001;Yang and Ding,2003),說(shuō)明此時(shí)段溫度有所降低,因此,咸水湖的形成主要是降水減少而非蒸發(fā)增加所致,說(shuō)明此時(shí)段氣候經(jīng)歷了顯著變干。在33 — 22 Ma為河流相和咸水湖相交替沉積,中等粒徑的河湖相沉積物磁化率開始增加,地層中大量的石膏夾層及紅度大幅度的變化,表明蘭州盆地轉(zhuǎn)為干冷和濕熱的沉積環(huán)境頻繁交替出現(xiàn),出現(xiàn)了類似于現(xiàn)代的季風(fēng)雛形。隨后的22 — 9 Ma,表現(xiàn)為風(fēng)塵沉積大量出現(xiàn)并夾有河湖相夾層,湖泊由咸水湖變?yōu)榈?,磁化率開始顯著增加,同時(shí)紅度逐漸變小,氣候逐漸變冷,干旱化加劇。

基于深海氧同位素記錄的全球氣候變化自50 Ma開始表現(xiàn)為總體變冷(圖4),在33 Ma有一次顯著變冷,隨后在26 Ma有所和緩,至15 Ma開始又顯著變冷(Zachos et al,2001)。蘭州盆地的西柳溝組和白堊紀(jì)河口群之間為角度不整合(~54 Ma)標(biāo)志著新生代蘭州盆地第一次重大構(gòu)造事件,可能是由亞洲和印度的初始碰撞所致(Yin and Harrison,2000),這一事件使蘭州盆地第三紀(jì)流域體系及沉積模式初步形成。從~ 43 Ma盆地內(nèi)鈉鹽生成,到~33 Ma石膏大量析出,結(jié)合磁化率和紅度變化,表明盆地氣候逐漸變干和變冷的趨勢(shì)。風(fēng)塵組分含量分析表明,在33 — 22 Ma亞洲內(nèi)陸干旱化已具有一定規(guī)模,26 Ma蘭州盆地風(fēng)成沉積已占顯著優(yōu)勢(shì)(Zhang et al,2014)。晚漸新世至早中新世,秦安-天水盆地已有大量粉塵堆積出現(xiàn)(Guo et al,2002;Qiang et al,2011),同期我國(guó)西北地區(qū)發(fā)育石膏、鹽巖沉積(劉東生,1997;劉東生等,1998)均顯示了內(nèi)陸干旱化的加劇。在漸新世/中新世界線,我國(guó)大陸環(huán)境的氣候系統(tǒng)由行星風(fēng)系為主導(dǎo)向季風(fēng)風(fēng)系轉(zhuǎn)變(Sun and Wang,2005;Guo et al,2008),類似于現(xiàn)代的亞洲季風(fēng)-干旱格局開始發(fā)育(施雅風(fēng)等,1998;安芷生等,2006),可能和青藏高原北部在25 — 20 Ma的加速生長(zhǎng)相關(guān)(Turner et al,1993;Xiao et al,2012;Sun et al,2015)。中新世開始,Na/Al和Ca /Al 比值變化總體穩(wěn)定,對(duì)應(yīng)了相對(duì)干旱的沉積環(huán)境,同風(fēng)塵組分的顯著增加標(biāo)志的干旱化趨勢(shì)一致。通過(guò)與全球氣候變化趨勢(shì)和區(qū)域構(gòu)造證據(jù)初步對(duì)比,蘭州盆地第三紀(jì)的三次階段性變干的控制因素有所不同,前兩次變化可能同全球氣候變冷驅(qū)動(dòng)的區(qū)域降水減少一致,類似的記錄在西寧盆地也有顯示(Zhang et al,2015),而23 Ma前后的變干可能是青藏高原北部的抬升,加劇了蘭州盆地的干旱化(Zheng et al,2003)。

5 結(jié)論

通過(guò)對(duì)蘭州鳳凰山剖面沉積物的常量元素地球化學(xué)分析,認(rèn)為不同元素組合可良好地揭示沉積古環(huán)境演化,尤其是化學(xué)沉積形成的鹽類(Na)和石膏(Ca)相關(guān)元素含量,對(duì)盆地干旱氣候的變化較為敏感?;谠乇戎底兓∟a/Al和Ca/Al),將蘭州盆地第三紀(jì)沉積環(huán)境演變劃分為四個(gè)階段:54 — 43 Ma為三角洲河流相沉積,氣候相對(duì)暖濕,盆地可能為開放的淡水湖盆;43 — 33 Ma鈉鹽生成,進(jìn)入咸水湖發(fā)育階段,氣候變干變冷;33 — 23 Ma則是河流相和咸水近湖濱相沉積,地層中含有大量的石膏,盆地進(jìn)入咸水湖階段,蘭州盆地轉(zhuǎn)為半干旱-半濕潤(rùn)的氣候且氣候波動(dòng)頻繁;23 — 9 Ma為河流相和湖濱相沉積旋回并夾有風(fēng)塵沉積,盆地經(jīng)歷了湖相逐漸變干的變化過(guò)程。自54 Ma以來(lái),蘭州盆地氣候環(huán)境經(jīng)歷了階段性的變干,分別出現(xiàn)在~43 Ma,~33 Ma和~22 Ma,與沉積相和多代用指標(biāo)揭示的古氣候變化歷史是一致的。盆地古環(huán)境的變化可能受控于全球氣候變化和青藏高原階段式隆升兩大因素,前者可能確定了長(zhǎng)期的古環(huán)境演變趨勢(shì),而后者加速了亞洲干旱化的階段性進(jìn)程。

致謝:感謝中國(guó)科學(xué)院地球環(huán)境研究所吳楓副研究員在元素分析時(shí)提供的指導(dǎo)。

安芷生, 張培震, 王二七, 等. 2006. 中新世以來(lái)我國(guó)季風(fēng)-干旱環(huán)境演化與青藏高原的生長(zhǎng)[J]. 第四紀(jì)研究, 26(5): 678 – 693. [An Z S, Zhang P Z, Wang E Q, et al. 2006. Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau science the Miocene [J]. Quaternary Sciences, 26(5): 678 – 693.]

鄧焰平, 洪漢烈, 殷 科, 等. 2010. 蘭州盆地永登剖面晚古新世—早漸新世沉積物中粘土礦物的特征及其古氣候指示意義[J]. 現(xiàn)代地質(zhì), 24(4): 793 – 800. [Deng Y P, Hong H L, Yin K, et al. 2010. Clay mineralogy and its palaeoclimatic indicator of the late Paleocene to early Oligocene sediments in Yongdeng Lanzhou Basin [J]. Geoscience, 24(4): 794 – 800.]

甘肅省地質(zhì)局區(qū)域地質(zhì)調(diào)查隊(duì). 1984. 甘肅的第三系[J]. 甘肅地質(zhì), 2: 1 – 40. [Regional Geological Survey Team, Geological Bureau of Gansu Province. 1984. Tertiary system of Gansu [J]. Gansu Geology, 2: 1 – 40.]

韓 飛, 孫東懷, 張 焱, 等. 2010. 蘭州地區(qū)晚第三紀(jì)磁性地層與古環(huán)境意義[J]. 地球物理學(xué)報(bào), 53(5): 1179 – 1186. [Han F, Sun D H, Zhang Y, et al. 2010. Magnetostratigraphy and palaeoclimatic significance of Late Neogene aeolian sequence of Lanzhou area [J]. Chinese Journal of Geophysics, 53(5): 1179 – 1186.]

胡 敏. 1946. 關(guān)于甘肅第三紀(jì)幾個(gè)問(wèn)題之商榷[J]. 地質(zhì)論評(píng), (S2): 215 – 222. [Hu M. 1946. The discuss of several problems about Gansu Tertiary [J]. Geological Review, (S2): 215 – 222.]

胡文偉, 張?jiān)聦? 郭 峰, 等. 2011. 蘭州地區(qū)晚新生代沉積的巖石磁學(xué)記錄及其古環(huán)境意義[J].蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版), 47(5): 7 – 16. [Hu W W, Zhang Y B, Guo F, et al. 2011. Rock magnetic record for a late cenozoic sequence from Lanzhou area and its palaeoenvironmental implications [J]. Journal of Lanzhou University (Natural Sciences), 47(5): 7 – 16.]

靳鶴齡, 蘇志珠, 孫 忠. 2003. 渾善達(dá)克沙地全新世中晚期地層化學(xué)元素特征及其氣候變化[J]. 中國(guó)沙漠, 23(4):366 – 371. [Jin H L, Su Z Z, Sun Z. 2003. Characters of chemical elements in strata of middle and late Holocene in Hunshandake Desert and the indicating climatic changes [J]. Journal of Desert Research, 23(4): 366 – 371.]

李吉均, 方小敏, 潘保田,等. 2001. 新生代晚期青藏高原強(qiáng)烈隆起及其對(duì)周邊環(huán)境的影響[J]. 第四紀(jì)研究, 21(5): 381 – 391. [Li J J, Fang X M, Pan B T, et al. 2001. Late Cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area [J]. Quaternary Sciences, 21(5): 381 – 391.]

劉東生, 鄭綿平, 郭正堂. 1998. 亞洲季風(fēng)系統(tǒng)的起源和發(fā)展及其與兩極冰蓋和區(qū)域構(gòu)造運(yùn)動(dòng)的時(shí)代耦合性[J].第四紀(jì)研究, 18(3): 194 – 204. [Liu T S, Zheng M P, Guo Z T. 1998. Initiation and evolution of the Asian monsoon system timely coupled with the icesheet growth and the tectonic movements in Asia [J]. Quaternary Sciences, 18(3): 194 – 204.]

劉東生. 1997. 中國(guó)第四紀(jì)環(huán)境概要[M]. 北京: 科學(xué)出版社: 189 – 239. [Liu T S. 1997. Summary on the Quaternary environments in China [M]. Beijing: Science Press: 189 – 239.]

劉連文. 2004. 元素地球化學(xué)在海陸沉積古環(huán)境研究中的應(yīng)用[D]. 上海: 同濟(jì)大學(xué). [Liu L W. 2004. Application of element geochemistry in the study of sea and continental sedimentary paleoenvironment [D]. Shanghai: Tongji University.]

劉現(xiàn)彬, 夏敦勝, 賈 佳, 等. 2012. 蘭州九州臺(tái)黃土磁性特征及其古氣候意義研究[J]. 第四紀(jì)研究, 32(4): 761 – 770. [Liu X B, Xia D S, Jia J, et al. 2012. Magnetic properties of Jiuzhoutai loess in Lanzhou and its signifi cance of palaeoclimate [J]. Quaternary Sciences, 32(4): 761 – 770.]

魯新川. 2007. 臨夏盆地14 — 4.4 Ma湖相沉積物元素地球化學(xué)特征與氣候變化[D]. 蘭州:蘭州大學(xué). [Lu X C. 2007. Elemental geochemical characters and palaeoclimatic changes of lacustrine sediments of 14 — 14.4 Ma in Linxia Basin [D]. Lanzhou: Lanzhou University.]

路兆洽. 1948. 關(guān)于甘肅及青海境內(nèi)之第三紀(jì)紅色地層[J].地質(zhì)論評(píng), (S2): 258 – 261. [Lu Z Q. 1948. The red strata of Tertiary in Gansu and Qinghai Province [J]. Geological Review, (S2): 258 – 261.]

呂鳳琳, 劉成林, 焦鵬程, 等. 2015. 亞洲大陸內(nèi)部鹽湖沉積特征、階段性演化及其控制因素探討——基于羅布泊LDK01深孔巖心記錄[J]. 巖石學(xué)報(bào), 31(9): 2770 – 2782. [Lü F L, Liu C L, Jiao P C, et al. 2015. The discussion on sedimentary characteristics, phased evolution and controlling factors of saline lake in Asia interior: records from deep drill cores of LDK01 in Lop Nur, Xinjiang, northwestern China [J]. Acta Petrologica Sinica, 31(9): 2770 – 2782.]

呂鳳琳. 2014. 羅布泊早更新世以來(lái)沉積環(huán)境演變及其地質(zhì)意義[D]. 北京: 中國(guó)地質(zhì)大學(xué). [Lü F L. 2014. Evolution of depositional environment since early Pleistocene in Lop Nor, Xinjiang, China and its geological signifi cance [D]. Beijing: China University of Geosciences.]

邱占祥, 谷祖綱. 1988. 甘肅蘭州——第三紀(jì)中期哺乳動(dòng)物化石地點(diǎn)[J]. 古脊椎動(dòng)物學(xué)報(bào), 26(3): 198 – 223. [Qiu Z X, Gu Z G. 1988. A new locality yielding Mid-Tertiary mammals near Lanzhou, Gansu [J]. Vertebrata PalAsiatica, 26(3): 198 – 223.]

邱占祥, 王伴月, 邱鑄鼎, 等. 1997. 甘肅蘭州盆地咸水河組研究的新進(jìn)展[M]. 北京: 海洋出版社: 177 – 192. [Qiu Z X, Wang B Y, Qiu Z D, et al. 1997. The new progress in the study of Xianshuihe group of Lanzhou Basin, Gansu [M]. Beijing: Ocean Press: 177 – 192.]

邱占祥, 王伴月, 謝駿義. 1998. 記蘭州盆地第三紀(jì)中期的爪獸(奇蹄目)化石[J]. 古脊椎動(dòng)物學(xué)報(bào),36(4):297 – 318. [Qiu Z X, Wang B Y, Xie J Y. 1998. Mid-Tertiary Chalicothere (Perissodactyla) fossils from Lanzhou, Gansu, China [J]. Vertebrata PalAsiatica, 36(4): 297 – 318.]

邱占祥, 王伴月. 1999. Allacerops(奇蹄目、犀超科)化石在我國(guó)的發(fā)現(xiàn)及其分類地位的討論[J]. 古脊椎動(dòng)物學(xué)報(bào), 37(1): 48 – 61. [Qiu Z X, Wang B Y. 1999. Allacerops (Rhinocerotoidea, Perissodactyla), its discovery in China and its systematic position [J]. Vertebrata PalAsiatica, 37(1): 48 – 61.]

邱占祥, 謝駿義. 1997. 記蘭州盆地巨獠犀(奇蹄目,犀科)——新種[J]. 古脊椎動(dòng)物學(xué)報(bào), 35(4): 250 – 267. [Qiu Z X, Xie J Y. 1997. A new species of Aprotodon (Perissodactyla, Rhinocerotidae) from Lanzhou basin, Gansu, China [J]. Vertebrata PalAsiatica, 35(4): 250 – 267.]

施雅風(fēng), 湯懋蒼, 馬玉貞. 1998. 青藏高原二期隆升與亞洲季風(fēng)孕育關(guān)系探討[J]. 中國(guó)科學(xué)(D輯),28(3): 263 – 271. [Shi Y F, Tang M C, Ma Y Z. 1998. Link age between the second up lifting of the Qinghai-Xizang (Tibetan) Plateau and the initiation of the Asian monsoon system [J]. Science in China (Series D), 42(3): 303 – 312.]

舒 強(qiáng), 鐘 巍, 熊黑鋼, 等. 2001. 南疆尼雅地區(qū)4000 a來(lái)的地化元素分布特征與古氣候環(huán)境演化的初步研究[J].中國(guó)沙漠, 21(1): 12 – 18. [Shu Q, Zhong W, Xiong H G, et al. 2001. Study on the characters of the geochemical elements and changes of paleoclimate since about 4000 a B.P. in Niya Section [J]. Journal of Desert Research, 21(1): 12 – 18.]

宋春暉, 魯新川, 邢 強(qiáng), 等. 2007. 臨夏盆地晚新生代沉積物元素特征與古氣候變遷[J]. 沉積學(xué)報(bào), 25(3): 409 – 416. [Sun C H, Lu X C, Xing Q, et al. 2007. Late Cenozoic element characters and palaeoclimatic change of the lacustrine sediments in Linxia Basin China [J]. Acta Sedimentologica Sinica, 25(3): 409 – 416.]

孫小虹. 2013. 羅布泊鹽湖鹽類礦物特征、成因與成鉀作用[D]. 北京: 中國(guó)地質(zhì)科學(xué)院. [Sun X H. 2013. Characteristics and genesis of salt minerals, and potash formation in the Lop Nur playa [D]. Beijing: Chinese Academy of Geological Science.]

王蘇民. 1993. 世界咸水湖的物理與化學(xué)特性[J]. 湖泊科學(xué), 5(3): 278 – 286. [Wang S M. 1993. Physics and chemistry of saline lakes [J]. Journal of Lake Science, 5(3): 278 – 286.]

文啟忠. 1989. 中國(guó)黃土地球化學(xué)[M]. 北京: 科學(xué)出版社: 210 – 235. [Wen Q Z. 1989. Chinese loess geochemistry [M]. Beijing: Science Press: 210 – 235.]

Williams M A J, Dunkerley D L, Deckker P D, et al. 1999. 第四紀(jì)環(huán)境 [M]. 劉東生, 譯. 北京: 科學(xué)出版社: 1 – 304. [Williams M A J, Dunkerley D L, Deckker P D, et al. 1999. Quaternary environment [M]. Liu T S, translated. Beijing: Science Press: 1 – 304. ]

謝家榮. 1921. 民國(guó)九年十二月甘肅地震報(bào)告[R]. [Xie J R. 1921. The earthquake report of nine years of the republic of China in Gansu [R].]

楊鍾健. 1948. 甘肅享堂脊椎動(dòng)物化石簡(jiǎn)報(bào)[J]. 地質(zhì)論評(píng), (S2): 199 – 202. [Young C C. 1948. The briefi ng of Gansu Xiangtang vertebrate fossils [J]. Geological Review, (S2): 199 – 202.]

余素華, 文啟忠, 張士三, 等. 1994. 中國(guó)西北地區(qū)晚第四紀(jì)黃土中鎂鋁地球化學(xué)與古氣候意義[J]. 沉積學(xué)報(bào), 12(1): 112 – 116. [Yu S H, Wen Q Z, Zhang S S, et al. 1994. The Geochemistry and Paleoclimate Significance of Magnesium and Aluminium in Loess of Late Quaternary in Northwestern China [J]. Acta Sedimentologica Sinica, 12(1): 112 – 116.]

岳樂(lè)平, Heller F, 邱占祥, 等. 2000. 蘭州盆地第三系磁性地層年代與古環(huán)境記錄[J]. 科學(xué)通報(bào), 45(18): 1998 – 2003. [Yue L P, Heller F, Qiu Z X, et al. 2000. Magnetuc stratigraphy and paleoenvironment records of Tertiary in Lanzhou Basin [J]. Chinese Science Bulletin, 45(18): 1998 – 2003.]

岳樂(lè)平, 邱占祥, 頡光普, 等. 2003. 蘭州盆地永登剖面記錄的第三紀(jì)沉積環(huán)境[J]. 沉積學(xué)報(bào), 21(4): 683 – 694. [Yue L P, Qiu Z X, Xie G P, et al. Sedimentary environment of Tertiary recorded in the Yongdeng section of Lanzhou area [J]. Acta Sedimentologica Sinica, 21(4): 683 – 687.]

張 鵬, 敖 紅, 安芷生, 等. 2015. 蘭州盆地漸新世沉積物巖石磁學(xué)性質(zhì)探究[J]. 地球物理學(xué)報(bào), 58(7): 2445 – 2459. [Zhang P, Ao H, An Z S, et al. 2015. Rock magnetism properties of Oligocene sediments in the Lanzhou Basin [J]. Chinese Journal of Geophysics, 58(7): 2445 – 2459.]

張 炎, 孫東懷, 韓 飛, 等. 2010. 蘭州地區(qū)新近紀(jì)地層的沉積相和古環(huán)境記錄[J]. 沉積學(xué)報(bào), 28(3): 612 – 619. [Zhang Y, Sun D H, Han F, et al. 2010. Depositional facies and paleoenvironmental record of the late Tertiary stratum of Lanzhou area [J]. Acta Sedimentologica Sinica, 28(3): 612—619.]

張虎才, 張林源, Mahaney W C. 1991. 蘭州九州臺(tái)黃土剖面元素地球化學(xué)研究[J]. 地球化學(xué), (1): 79 – 86. [Zhang H C, Zhang L Y, Mahaney W C. 1991. Element geochemistry of the Jiuzhoutai loess section, Lanzhou [J]. Geochimica, (1): 79 – 86.]

張虎才. 1993. 九州臺(tái)黃土剖面碳酸鹽穩(wěn)定同位素及其氣候意義[J]. 蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版), 29(3): 232 – 240. [Zhang H C. 1993. The carbonate stable carbon and oxygen isotopes of the Jiuzhoutai loess profi le and their climatic significance [J]. Joutnal of Lanzhou University(Natural Sciences), 29(3): 232 – 240.]

張?jiān)聦? 孫東懷, 李再軍, 等. 2012. 蘭州地區(qū)新生代最老的風(fēng)成沉積[J].地質(zhì)學(xué)報(bào), 86(3): 503 – 513. [Zhang Y B, Sun D H, Li Z J, et al. 2012. The oldest eolian deposit of Cenozoic in Lanzhou Area [J]. Acta Geologica Sinica, 86(3): 503 – 513.]

趙錦慧, 王 丹, 樊寶生, 等. 2004. 延安地區(qū)黃土堆積的地球化學(xué)特征與最近13萬(wàn)年?yáng)|亞夏季風(fēng)氣候的波動(dòng)[J].地球化學(xué), 33(5): 495 – 500. [Zhao J H, Wang D, Pan B S, et al. Geochemical characteristics of the loess deposit at Yan’an and its implication to changes of East Asia summer monsoon during the past 130 ka [J]. Geochimical, 33(5): 495 – 500.]

Barron V, Torrent J. 1986. Use of the Kubelka-Munk theory to study the influence of iron oxides on soil colour [J].Journal of Soil Science, 37(4): 499 – 510.

Flynn L J, Downs W, Opdyke N, et al. 1999. Recent advances in the small mammal biostratigraphy and magnetostratigraphy of Lanzhou Basin [J]. Chinese Science Bulletin, 44(1): 105 – 118.

Guo Z T, Ruddiman W F, Hao Q Z, et al. 2002. On set of Asian desertification by 22 Myr ago inferred from loess deposition in China [J]. Nature, 416(6877): 159 – 163.

Guo Z T, Sun B, Zhang Z S, et al. 2008. A major reorganization of Asian climate regime by the early Miocene [J]. Climate of the Past Discussions, 4(3): 153 – 174.

Qiang X K, An Z S, Song Y G, et al. 2011. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertifi cation about 25 Ma ago [J]. Science China Earth Science, 54(1): 136 – 144.

Qiu Z X, Qiu Z D, Deng T, et al. 2013. Neogene land mammal stages/ages of China—toward the goal to establish an Asian land mammal stage/age scheme [M]// Wang X, Flynn L J, Fortelius M. Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology. New York: Columbia University Press: 29 – 90.

Rossel R A V, Minasny B, Roudier P, et al. 2006. Colour space models for soil science [J]. Geoderma, 133(3 / 4): 320 – 337.

Sun D H, Zhang Y B, Han F, et al. 2011. Magnetostratigraphy and palaeoenvironmental records for a Late Cenozoic sedimentary sequence from Lanzhou, Northeastern margin of the Tibetan Plateau [J]. Global and Planetary Change, 76(3/4): 106 – 116.

Sun X J, Wang P X. 2005. How old is the Asian monsoon system?—Palaeobotanical records from China [J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 222(3 / 4): 181 – 222.

Sun Y B, Ma L, Bloemendal J, et al. 2015. Miocene climate change on the Chinese Loess Plateau: Possible links to the growth of the northern Tibetan Plateau and global cooling [J]. Geochemistry Geophysics Geosystems, 16(7): 2097 – 2108.

Turner S, Hawkesworth C, Liu J Q, et al. 1993. Tmiing of Tibetan uplift constrained by analysis of volcanic rocks [J]. Nature, 364(6432): 50 – 54.

Xiao G Q, Guo Z T, Dupont-Nivet G, et al. 2012. Evidence for northeastern Tibetan Plateau uplift between 25 and 20 Ma in the sedimentary archive of the Xining Basin, Northwestern China [J]. Earth and Planetary Science Letters, 317(2): 185–195.

Yang S L, Ding Z L. 2003. Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles [J]. Geophysical Research Letters, 30(20), 2058, doi: 10.1029/2003GL018346.

Yang S L, Fang X M, Li J J, et al. 2001. Transformation functions of soil color and climate [J]. Science in China Series D, 44(1): 218 – 226.

Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen [J]. Annual Review of Earth & Planetary Sciences, 28(1): 211 – 280.

Young C C, Bien M N. 1937. Cenozoic geology of the Kaolan-Yungteng area of central Kansu [J]. Bulletin of the Geological Society of China, (S1): 221 – 245+247 – 260+505 – 514.

Zachos J, Pagani M, Sloan L, et al. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present [J]. Science, 292(5517): 686 – 693.

Zhang C X, Xiao G Q, Guo Z T, et al. 2015. Evidence of late early Miocene aridification intensification in the Xining Basin caused by the northeastern Tibetan Plateau uplift [J]. Global and Planetary Change, 128: 31 – 46.

Zhang Y B, Sun D H, Li Z J, et al. 2014. Cenozoic record of aeolian sediment accumulation and aridification from Lanzhou, China, driven by Tibatan Plateau uplift and global climate [J]. Global and Planetary Change, 120(3): 1 – 15.

Zheng D, Zhang P, Wan J, et al. 2003. Late Cenozoic deformation subsequence in northeastern margin of Tibet— detrital AFT records from Linxia basin [J]. Science in China Series D, 46(2): 266 – 275.

Major elemental compositions of Tertiary sediments in Lanzhou Basin and their paleoenvironment implication

WANG Yang1,2, LIU Xingxing1,2, LI Zaijun3, SUN Donghuai3, SUN Youbin1
(1. State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China; 2. University of the Chinese Academy of Sciences, Beijing 100049, China; 3. MOE Key Laboratory of Western China’s Environmental Systems, Lanzhou University, Lanzhou 730000, China)

Background, aim, and scope The Lanzhou Basin is rich in Tertiary mammalian faunas and experienced signifi cant sedimentary environmental evolution, making it an ideal site for paleontological, sedimentological, magnetostratigraphical and paleoclimatic studies. Located in the northeastern margin of the Tibetan Plateau and the western margin of the Loess Plateau, the thick Cenozoic sedimentary sequence in Lanzhou provides critical evidence for the tectonic history of the northeastern part of the Tibetan Plateau and contains a large number of paleoenvironment information. The Fenghuangshan section is situated at the south edge of the Lanzhou Basin with continuous and stable strata ranging from9 Ma to 54 Ma. The Tertiary sedimentary systems of the basin are divided into three formations, i.e., the Xiliugou Formation, Yehucheng Formation and Xianshuihe Formation, in order of decreasing age. Previous work mostly concentrated in mammalian fossils, rock stratigraphic units and the sedimentary facies research by the use of indicators such as particle size, magnetic susceptibility, chroma in the Lanzhou Tertiary Basin. But the geochemical characteristics of Tertiary sediments in the Lanzhou Basin is hardly investigated. The variations of the elements content in the sediments can refl ect the fl uctuations of dry and wet climate. To explore the element geochemical characteristics and infer the stage and signifi cance of the Lanzhou Basin Tertiary sediments, we analyse the major elements of the sediments in the Fenghuangshan section at 9 — 54 Ma, combined with the strata features and the changes of sedimentary facies. Materials and methods We picked out 235 samples in the Fenghuangshan section, which has a total thickness of~2484 m. The sample age was obtained by linear interpolation of the paleomagnetic ages. Major elements were measured by X-ray fluorescence spectrometry (XRF). The CM-700d spectral color measurement meter produced by Konica Minolta Company was used to test the color of sediments. The percentage content of carbonate was measured by gas method, using the formula: carbonate content = pneumatic × background value(measured value)/(temperature+273.15)/0.8309/sample quality to calculate the percentage content of carbonate samples. Results The results show that the major elements of sediments consist mainly Si, Al, Ca, Fe, K, Mg, Na in descending order, and the element content are weakly affected by carbonate content. According to the results of the correlation of each element content and Al, the seven elements were divided into three categories: (1) Fe (r2= 0.9481), K (r2= 0.7947), Mg (r2= 0.8057) have a high positive correlation with Al. According to four element content curves, the results can be roughly divided into three parts with boundaries at 2012 m and 1438 m. (2) The relationship between Si and Al is more complex. There are little fl uctuations except that the elemental contents have large and frequent fl uctuation in the Yehucheng Formation and the lower part of the Xianhuihe Formation. (3) The correlation among Na (r2= 0.1244), Ca (r2= 0.1129) and Al are poor. The content of Ca was lower in the Xiliugou Formation, but increased signifi cantly from Yehucheng Formation (~2012 m) and was higher in the Xianshuihe Formation. The content of Na was quite low in the lower part of Xiliugou Formation and Yehucheng Formation, but generally high in the upper part of the Xiliugou Formation and the Xianshuihe Formation. Discussion The content of major element is closely related to sediment types and sedimentary facies, according to the results of the 7 major elements at the Fenghuangshan section. (1) Al, Fe, K, Mg that existed mainly in fi negrain minerals refl ect the effects of grain size sorting and/or weathering. In the period of 54 — 33 Ma, the contents of Al, Fe, K, Mg are low and stable, and associated with the coarse fl uvial facies sandstone, which has stronger transport power, related to warm and wet climate. The content of four elements have obvious periodic increase since 33 Ma, indicating the increasing of fi ne particle input. Changes of element content suggested that the climate had a great dry-wet oscillation in 33 — 23 Ma. (2) Si enriched in quartz is well related to the changing sedimentary facies. In stage of 54 — 33 Ma, the high content of Si is related to coarsegrained fluvial sandstone. However, during 33 — 22 Ma, the content reduced and fluctuated frequently, which refl ects the frequent interaction occurring of fl uvial-lacustrine facies (sandstone-mudstone). The Si content tends to be stable after 22 Ma, and the dust deposition dominated with the accidentally occurrence of fl uvial deposition. (3) Ca and Na may be associated with the formation of salts (i.e., salt and gypsum) during the chemical deposition, thus the Na/Al and Ca/Al ratios can be employed to infer the evolution of sedimentary environment. According to the element ratios and sedimentary facies research, the Tertiary paleoenvironmental evolution in the Lanzhou Basin can be divided into four stages: (1) fl uvial environment under a warm and humid climate at 54 — 43 Ma; (2) development of salt lake with high Na/Al ratios during 43 — 33 Ma; (3) fl uctuated salt lake from 33 Ma to 23 Ma with a signifi cant increase in Ca/Al ratioformed under semi-arid and semi-humid climate, and (4) shifts from salt-brackish lake to gradual aridifi cation environment lake after 23 Ma. Conclusions Combination of available proxy indicators including grain size, color, magnetic susceptibility and major elemental compositions suggests stepwise drying of the Lanzhou Basin occurred around 43 Ma, 33 Ma, and 23 Ma, respectively. Taking into account evidence of global cooling and regional tectonics, we tentatively attribute the fi rst two drying events to global cooling and the last drying in early Miocene to regional uplift of the northern Tibet Plateau. Recommendations and perspectives The results provide signifi cant stages of aridifi cation in the Lanzhou Basin. It is recommended that more work should be carried out to deepen the cognition of the Tertiary paleoenvironmental evolution in the Lanzhou Basin.

Lanzhou Basin; Tertiary; major elements; sedimentary facies; paleoenvironment

WANG Yang, E-mail: wangyang@ieecas.cn

10.7515/JEE201604007

2016-03-17;錄用日期:2016-05-19

Received Date:2016-03-17;Accepted Date:2016-05-19

中國(guó)科學(xué)院戰(zhàn)略性先導(dǎo)科技專項(xiàng)(XDB03020504)

Foundation Item:Strategic Priority Research Program of Chinese Academy of Sciences (XDB03020504)

王 揚(yáng),E-mail: wangyang@ieecas.cn

猜你喜歡
常量蘭州沉積物
科學(xué)照亮世界
——卡文迪什測(cè)定萬(wàn)有引力常量
晚更新世以來(lái)南黃海陸架沉積物源分析
渤海油田某FPSO污水艙沉積物的分散處理
海洋石油(2021年3期)2021-11-05 07:43:12
我的蘭州夢(mèng)
黃河之聲(2021年8期)2021-07-23 03:34:32
蘭州石化推進(jìn)改革正當(dāng)時(shí)
水體表層沉積物對(duì)磷的吸收及釋放研究進(jìn)展
我憶蘭州好(四)
蘭州瑣記
討論用ICP-AES測(cè)定土壤和沉積物時(shí)鈦對(duì)鈷的干擾
低氧低分壓環(huán)境下泡塑吸附火焰原子吸收光譜法測(cè)定常量金
西藏科技(2015年1期)2015-09-26 12:09:20
巫山县| 亚东县| 平泉县| 永康市| 丰宁| 南昌县| 武乡县| 英山县| 韩城市| 嘉定区| 长岛县| 工布江达县| 大悟县| 临邑县| 亳州市| 成武县| 乐至县| 石渠县| 云浮市| 荣成市| 诸暨市| 大丰市| 安泽县| 遂溪县| 神池县| 綦江县| 德安县| 雅江县| 武安市| 宜阳县| 宜川县| 太原市| 巴中市| 敖汉旗| 漳平市| 绵阳市| 伽师县| 南昌市| 静安区| 靖宇县| 历史|