張依如,衛(wèi)軍,劉曉春,吳志強(qiáng),高宗余,陳濤
(1.中南大學(xué) 土木工程學(xué)院,湖南 長(zhǎng)沙 410075;
2.中鐵大橋勘測(cè)設(shè)計(jì)院集團(tuán)有限公司,湖北 武漢 430050)
?
鋼箱-桁架梁K型整體節(jié)點(diǎn)焊接殘余應(yīng)力的有限元分析
張依如1,衛(wèi)軍1,劉曉春1,吳志強(qiáng)1,高宗余2,陳濤1
(1.中南大學(xué) 土木工程學(xué)院,湖南 長(zhǎng)沙 410075;
2.中鐵大橋勘測(cè)設(shè)計(jì)院集團(tuán)有限公司,湖北 武漢 430050)
摘要:以新型鋼箱-桁梁橋下弦桿K型整體節(jié)點(diǎn)為研究對(duì)象,采用ANSYS軟件建立K型整體節(jié)點(diǎn)焊接的熱力學(xué)有限元模型,根據(jù)實(shí)際焊接工藝及施焊順序,采用生死單元法模擬焊接熱源加載和冷卻過(guò)程,開(kāi)展節(jié)點(diǎn)焊接殘余應(yīng)力的數(shù)值模擬分析,得出的焊接殘余應(yīng)力分布規(guī)律與縮尺模型試驗(yàn)實(shí)測(cè)結(jié)果吻合較好。鋼箱-桁梁橋K型整體節(jié)點(diǎn)焊接殘余應(yīng)力的有限元分析結(jié)果表明,腹板對(duì)焊處形成最大焊接殘余應(yīng)力區(qū)域,節(jié)點(diǎn)與腹桿對(duì)接部分所受影響較小。
關(guān)鍵詞:焊接;殘余應(yīng)力; K型節(jié)點(diǎn);有限元分析;箱-桁梁橋
大型鋼桁架梁橋節(jié)點(diǎn)焊縫多、剛度大,焊接殘余應(yīng)力會(huì)降低其剛性和尺寸穩(wěn)定性,嚴(yán)重影響結(jié)構(gòu)和焊接接頭的疲勞強(qiáng)度、抗應(yīng)力腐蝕開(kāi)裂能力直接影響結(jié)構(gòu)的靜強(qiáng)度和疲勞強(qiáng)度。鋼箱-桁架雙層組合鋼梁結(jié)構(gòu)為新型大跨鋼橋結(jié)構(gòu),箱型桁梁整體節(jié)點(diǎn)作為其重要的連接結(jié)構(gòu),將工廠制作完成的部分節(jié)點(diǎn)結(jié)構(gòu)進(jìn)行現(xiàn)場(chǎng)拼裝,產(chǎn)生的焊接殘余應(yīng)力對(duì)于橋梁的精確合龍及成橋后結(jié)構(gòu)應(yīng)力狀態(tài)會(huì)產(chǎn)生顯著的影響[1]。目前,對(duì)于鋼橋節(jié)點(diǎn)的焊接殘余應(yīng)力研究對(duì)象以工字型、管節(jié)點(diǎn)居多,對(duì)箱型桁梁節(jié)點(diǎn)有限元分析較少[1-3]。本文研究對(duì)象為某鋼橋箱-桁梁與工字鋼腹桿的K型整體節(jié)點(diǎn),其結(jié)構(gòu)如圖1。因其尺寸較大且結(jié)構(gòu)復(fù)雜,制作等尺寸模型浪費(fèi)鋼材且成本較高;通過(guò)有限元分析與縮尺模型的試驗(yàn)對(duì)比,可以得到節(jié)點(diǎn)殘余應(yīng)力的分布規(guī)律。
圖1 節(jié)點(diǎn)模型結(jié)構(gòu)及焊縫位置示意圖Fig.1 Joint model structure and positions of welds
1焊接殘余應(yīng)力分析原理
鋼材焊接時(shí)產(chǎn)生局部高溫的不均勻溫度場(chǎng),高溫部分膨脹伸長(zhǎng)但受到臨近鋼材約束,引起較高溫度應(yīng)力;受熱區(qū)鋼材屈服極限下降,熱應(yīng)力可部分地超過(guò)該屈服極限,使焊接區(qū)形成了塑性的熱壓縮形變;冷卻后,焊接區(qū)比周圍區(qū)域相對(duì)縮短、變窄,形成焊接殘余應(yīng)力[3]。
由于焊接溫度場(chǎng)對(duì)焊接應(yīng)力應(yīng)變的影響較大,而焊接應(yīng)力應(yīng)變對(duì)溫度場(chǎng)的影響較弱,故僅考慮單向耦合效應(yīng)。非線性瞬態(tài)熱傳導(dǎo)溫度場(chǎng)基本微分方程為:
(1)
其中:c為材料比熱容;ρ為材料密度;λ為材料導(dǎo)熱系數(shù),三者均隨溫度變化;T為溫度場(chǎng)分布函數(shù);t為傳熱時(shí)間;Q為內(nèi)熱源。瞬態(tài)計(jì)算需給定溫度場(chǎng)初始條件Tt=0=T0(x,y,z),以及3類邊界條件,包括已知邊界溫度值、已知邊界熱流密度分布,以及已知物體邊界與周圍環(huán)境介質(zhì)的熱交換[3]。
采用熱彈塑性分析法,以焊接過(guò)程溫度場(chǎng)分析為基礎(chǔ)進(jìn)行焊接應(yīng)力分析,溫度作用下的材料應(yīng)變?yōu)椋?/p>
(2)
結(jié)構(gòu)中單元的平衡方程為:
(3)
2研究對(duì)象的計(jì)算建模
2.1模型建立與單元?jiǎng)澐?/p>
采用箱型鋼桁架橋中跨的桁架拱與邊跨的桁架結(jié)構(gòu)連接的對(duì)稱箱型節(jié)點(diǎn)模型,構(gòu)件包括腹板、頂板、底板、加勁板等,縱橋向尺寸長(zhǎng)度為2.72m,焊縫兩側(cè)根據(jù)圣維南原理,分別取1.72m和1.0m,腹板高度0.7m,頂、底板寬度0.7m,兩箱型腹板間距0.34m,對(duì)稱布置。由于節(jié)點(diǎn)幾何尺寸較大,故采用平面三維模型建模,即模型忽略鋼板厚度,以二維平面代替節(jié)點(diǎn)的各平板構(gòu)件,板件厚度通過(guò)實(shí)常數(shù)進(jìn)行定義,并利用節(jié)點(diǎn)的對(duì)稱性對(duì)模型進(jìn)行簡(jiǎn)化。
對(duì)整體節(jié)點(diǎn)現(xiàn)場(chǎng)拼接階段的焊接過(guò)程進(jìn)行模擬,設(shè)置3條焊縫依次為:節(jié)點(diǎn)與弦桿腹板對(duì)接焊縫,頂板與腹板焊接角焊縫以及底板與腹板焊接角焊縫,焊縫位置與焊接方向如圖1所示。選用SHELL57熱殼單元進(jìn)行網(wǎng)格單元?jiǎng)澐?,為在保證計(jì)算精度的同時(shí)減小計(jì)算量,焊縫及焊接影響區(qū)域網(wǎng)格加密至5mm,在遠(yuǎn)離焊縫的位置適當(dāng)增大單元尺寸,兩者間過(guò)渡段采用自適應(yīng)劃分。板殼單元均為三角形單元,有限元模型如圖2所示。
2.2材料屬性設(shè)置
本文模型采用Q235鋼材料熱物理和力學(xué)性能,由于焊接過(guò)程中溫度的急劇變化,材料的熱物理屬性會(huì)隨溫度改變形成非線性變化,針對(duì)這一情況,在定義材料屬性時(shí)采用數(shù)據(jù)庫(kù)表格形式,通過(guò)mptemp和mpdata命令定義關(guān)鍵溫度處的各熱物理性能參數(shù)值,以差值法或外推法確定其余溫度時(shí)的參數(shù)值。本文所采用的材料物理性能參數(shù)參考文獻(xiàn)[4-5],如表1。
表1 材料物理性能參數(shù)
圖2 節(jié)點(diǎn)有限元模型Fig.2 Finite element model of the joint
2.3邊界條件
將初始溫度設(shè)為室溫20 ℃,在模型外表面設(shè)置對(duì)流邊界,對(duì)流換熱系數(shù)為20 W/(m2·K)。為防止計(jì)算過(guò)程中模型產(chǎn)生剛體位移,并保證不會(huì)阻礙焊接過(guò)程中會(huì)發(fā)生的自由變形,在模型兩端及頂、底板側(cè)邊施加三向約束,底板部分設(shè)置豎向支撐,在腹板縱軸方向、加勁板等部位設(shè)置適當(dāng)約束;根據(jù)節(jié)點(diǎn)對(duì)稱性施加對(duì)稱約束。
3計(jì)算方法及過(guò)程
3.1熱源加載及溫度場(chǎng)計(jì)算
目前常用的移動(dòng)熱源加載方法主要有高斯熱源法與生死單元法2種。本文溫度場(chǎng)模擬采用生死單元技術(shù),在計(jì)算開(kāi)始前首先將焊縫處所有單元?dú)⑺?,模擬板件未連接時(shí)的狀態(tài),再按照焊接順序及熱源移動(dòng)方向,編寫(xiě)APDL循環(huán)語(yǔ)句,逐個(gè)激活被殺死的單元,同時(shí)施加生熱率模擬焊縫的填充,以實(shí)現(xiàn)焊接熱源的移動(dòng)加載。根據(jù)焊接速度10 mm/s及焊縫單元尺寸,設(shè)置焊縫處每個(gè)單元激活加熱時(shí)間為0.5 s。焊接加熱過(guò)程結(jié)束后,刪除熱荷載,施加對(duì)流換熱荷載模擬冷卻過(guò)程,分5級(jí)設(shè)置冷卻時(shí)間荷載步,每級(jí)時(shí)間步長(zhǎng)逐漸增大,以減小計(jì)算量。當(dāng)節(jié)點(diǎn)模型冷卻至接近室溫20 ℃時(shí),認(rèn)為冷卻過(guò)程結(jié)束。
3.2應(yīng)力場(chǎng)計(jì)算
將SHELL57熱殼單元轉(zhuǎn)化成對(duì)應(yīng)的SHELL63結(jié)構(gòu)單元以進(jìn)行應(yīng)力場(chǎng)模擬。將荷載步和時(shí)間步長(zhǎng)設(shè)置成與溫度場(chǎng)分析完全相同,以保證計(jì)算精度并減小計(jì)算量。通過(guò)APDL語(yǔ)言DO循環(huán)語(yǔ)句,讀取節(jié)點(diǎn)溫度文件中每一子步的溫度場(chǎng)分布,進(jìn)行加載和求解,打開(kāi)牛頓迭代(NROPT,FLL,ON)和線性搜索(LNSRCH),求解得到模型冷卻后的應(yīng)力場(chǎng)分布。
3.3有限元計(jì)算結(jié)果的試驗(yàn)驗(yàn)證
本次整體節(jié)點(diǎn)殘余應(yīng)力試驗(yàn)測(cè)試采用與實(shí)橋節(jié)點(diǎn)相同焊接工藝,采用盲孔法進(jìn)行,實(shí)測(cè)鋼材屈服強(qiáng)度為315 MPa。提取與實(shí)測(cè)模型測(cè)點(diǎn)位置對(duì)應(yīng)的焊縫①和與焊縫②垂直方向焊接殘余應(yīng)力模擬值,與試驗(yàn)測(cè)試值進(jìn)行對(duì)比,如圖3~4。
圖3 焊縫①沿焊縫方向焊接殘余應(yīng)力實(shí)測(cè)值與模擬值對(duì)比圖Fig.3 Comparison of measured value and simulation value of welding residual stress along weld①
圖4 焊縫②垂直與焊縫方向焊接殘余應(yīng)力實(shí)測(cè)值與模擬值對(duì)比圖(取一半)Fig.4 Comparison of measured value and simulation value of welding residual stress perpendicular to weld②(half)
有限元分析所得的焊縫殘余應(yīng)力分布規(guī)律與試驗(yàn)實(shí)測(cè)結(jié)果基本一致,表明有限元分析結(jié)果可信。
4結(jié)果分析
焊接殘余應(yīng)力分布即應(yīng)力場(chǎng)計(jì)算最后一個(gè)時(shí)間步(Last Step)所得到的應(yīng)力計(jì)算結(jié)果,分布云圖如圖5~9所示。
圖5 節(jié)點(diǎn)等效殘余應(yīng)力與橫向殘余應(yīng)力分布Fig.5 Distribution of von Mises welding residual stress and lateral welding residual stress
圖6 焊縫①中心處焊接殘余應(yīng)力分布曲線Fig.6 Distribution curve of welding residual stress at center of weld①
圖7 腹板與焊縫①垂直縱橋方向殘余應(yīng)力分布曲線Fig.7 Distribution curve of welding residual stress perpendicular to weld① on web
圖8 頂板焊接殘余應(yīng)力分布Fig.8 Welding residual stress distribution of top plate
圖9 頂板與焊縫②垂直方向殘余應(yīng)力分布曲線(取一半)Fig.9 Distribution curve of welding residual stress perpendicular to weld② on top plate(half)
從節(jié)點(diǎn)應(yīng)力云圖可以看出,最大殘余應(yīng)力均出現(xiàn)在焊縫處,腹板上的縱向應(yīng)力分布大致為縱向焊縫邊緣區(qū)域出現(xiàn)壓應(yīng)力、縱向焊縫之間向外壓應(yīng)力逐漸減小,在邊緣處出現(xiàn)小幅拉應(yīng)力;腹板上的橫向應(yīng)力分布大致為豎向焊縫邊緣區(qū)域出現(xiàn)壓應(yīng)力、縱向焊縫之間向外壓應(yīng)力逐漸減小。最大焊接殘余應(yīng)力范圍出現(xiàn)在焊縫交叉區(qū)域,向遠(yuǎn)離焊縫區(qū)域遞減。焊縫部位出現(xiàn)最大殘余應(yīng)力165 MPa,除焊縫部分有較大的焊接殘余應(yīng)力外,節(jié)點(diǎn)總體上應(yīng)力在60 MPa 以內(nèi);在距離焊縫較遠(yuǎn)、靠近腹桿和弦桿部分的應(yīng)力很小,但在節(jié)點(diǎn)模型邊緣處有小幅拉應(yīng)力,其值在20 MPa以內(nèi)。腹板縱橋方向?qū)雍缚p左側(cè)有兩處明顯下降,對(duì)比模型發(fā)現(xiàn)其所在位置為兩橫向加勁板,因此認(rèn)為工廠預(yù)制完成的加勁板結(jié)構(gòu)對(duì)現(xiàn)場(chǎng)拼接施焊產(chǎn)生的焊接殘余應(yīng)力有削弱作用。
5結(jié)論
1)有限元模擬箱型桁梁K型整體節(jié)點(diǎn)焊接殘余應(yīng)力分布和實(shí)驗(yàn)測(cè)試接近,表明模型計(jì)算結(jié)果正確。本文對(duì)應(yīng)力松弛問(wèn)題不予考慮。
2)該箱型桁梁K型整體節(jié)點(diǎn)最大焊接殘余應(yīng)力區(qū)域分布于腹板對(duì)接焊縫附近,最大應(yīng)力值達(dá)到165 MPa 左右,未超過(guò)鋼材屈服強(qiáng)度,并沿縱橋方向向兩側(cè)遞減。頂板及底板的最大焊接殘余應(yīng)力集中于焊縫處,向兩側(cè)迅速遞減。節(jié)點(diǎn)其余部分的焊接殘余應(yīng)力相對(duì)較小,總體上在60 MPa 以內(nèi)。
3)多條焊縫影響下,最大焊接殘余應(yīng)力范圍出現(xiàn)在焊縫交叉區(qū)域,向遠(yuǎn)離焊縫區(qū)域遞減。焊接殘余應(yīng)力影響范圍在縱橋方向分布于對(duì)接焊縫兩側(cè),左側(cè)節(jié)點(diǎn)影響范圍0.5 m,右側(cè)1.0 m,節(jié)點(diǎn)與兩腹桿相接部分受影響較小,對(duì)橋梁整體性能影響不大。
4)工廠預(yù)制完成的加勁板結(jié)構(gòu)對(duì)現(xiàn)場(chǎng)拼接施焊產(chǎn)生的焊接殘余應(yīng)力有削弱作用。
參考文獻(xiàn):
[1] 黃永輝,王榮輝,甘泉. 鋼桁梁橋整體節(jié)點(diǎn)焊接殘余應(yīng)力試驗(yàn)[J]. 中國(guó)公路學(xué)報(bào),2011,24(1):83-88.
HUANG Yonghui, WANG Ronghui,GAN Quan. Experiment on welding residual stress of integral joint for steel truss bridge[J]. China Journal of Highway and Transport, 2011,24(1):83-88.
[2] 蒙占彬. K型管節(jié)點(diǎn)焊接殘余應(yīng)力及其對(duì)應(yīng)力集中系數(shù)的影響[J]. 中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2013,37(2):130-134.
MENG Zhanbin. Welding residual stress of K-joint and its influence on stress concentration factor[J]. Journal of China University of Petroleum, 2013,37(2):130-134.
[3] 劉嘉,張潤(rùn)昌,瞿偉廉,等.考慮兩種焊縫連接的鋼橋節(jié)點(diǎn)殘余應(yīng)力分析[J]. 武漢理工大學(xué)學(xué)報(bào),2014,36(3):83-87.
LIU Jia, ZHANG Runchang, QU Weilian, et al. Analysis on welding residual stresses of railway bridge nodes considering two types of welding[J]. Journal of Wuhan University of Technology, 2014,36(3):83-87.
[4] 趙銳. 焊接殘余應(yīng)力的數(shù)值模擬及控制消除研究[D].大連:大連理工大學(xué),2006.
ZHAO Rui. Study of welding residual stress's numerical simulation and relieving[D]. Dalian:Dalian University of Technology,2006.
[5] 趙秋,吳沖. U肋加勁板焊接殘余應(yīng)力數(shù)值模擬分析[J]. 工程力學(xué),2012,29(8):262-268.
ZHAO Qiu, WU Chong. Numerical analysis of welding residual stress of U-rib[J]. Engineering Mechanics Stiffened Plate, 2012,29(8):262-268.
[6] LI Liangbi, WAN Zhengquan, WANG Zili, et al. Residual stress relaxation in typical weld joints and its effect on fatigue and crack growth[J]. Acta Metallurgica Sinica (English Letters), 2009,22(3):202-210.
[7] 徐勤良,邢麗. 某工程節(jié)點(diǎn)焊接殘余應(yīng)力測(cè)試及消除試驗(yàn)研究[J]. 科技通報(bào), 2010,26(3):446-450.
XU Qinliang, XING Li. Experimental study on residual stress of welding joint and vibration stress relief[J]. Bulletin of Science and Technology, 2010,26(3):446-450.
[8] XU Guoxiang, WU Chuansong, MA Xuezhou, et al. Numerical analysis of welding residual stress and distortion in laser+GMAW hybrid welding of aluminum alloy T-joint[J]. Acta Metallurgica Sinica(English Letters),2013,26(3):352-360.
[9] 瞿偉廉,何杰. 鋼橋整體節(jié)點(diǎn)焊接殘余應(yīng)力三維有限元分析[J]. 橋梁建設(shè),2009(4):28-31,49.
QU Weilian, HE Jie. Three-dimensional finite element analysis of welding residual stress in integral panel point of steel bridge[J]. Bridge Construction, 2009(4):28-31,49.
[10] 楊文,石永久,王元清,等. 結(jié)構(gòu)鋼焊接殘余應(yīng)力三維有限元分析[J]. 吉林大學(xué)學(xué)報(bào)(工學(xué)版),2007,37(2):347-352.
YANG Wen, SHI Yongjiu, WANG Yuanqing, et al. Three- dimensional finite element analysis on welding residual stresses of construction steel[J]. Journal o f Jilin University ( Engineering and Technology Edition), 2007,37(2):347-352.
[11] 朱援祥,王勤,趙學(xué)榮,等. 基于ANSYS平臺(tái)的焊接殘余應(yīng)力模擬[J]. 武漢理工大學(xué)學(xué)報(bào),2004,26(2):69-72.
ZHU Yuanxiang, WANG Qin, ZHAO Xuerong, et al. Simulation of welding residual stress based on ANSYS[J]. Journal of Wuhan University of Technology, 2004,26(2):69-72.
[12] 姚小波.鋼桁架橋梁節(jié)點(diǎn)的焊接殘余應(yīng)力有限元模擬[D].武漢:武漢理工大學(xué),2008.
YAO Xiaobo. The FEM simulation of residual stress in welding stress truss bridge node[D]. Wuhan: Wuhan University of Technology,2008.
[13] 賈栗.工字鋼—端板組焊結(jié)構(gòu)焊接殘余應(yīng)力有限元分析[D].濟(jì)南:山東大學(xué),2013.
JIA Li. Finite element analysis on residual stress of welding assembly for I-beam and end-plate[D]. Jinan: Shandong University,2013.
[14] Anawa E M, Olabi A G. Control of welding residual stress for dissimilar laser welded materials[J]. Journal of Materials Processing Technology, 2008,20(4):22-33.
[15] 錢海盛,張宇,鄧紅川,等. 焊接工藝參數(shù)對(duì)Q235鋼焊接殘余應(yīng)力的影響[J]. 熱加工工藝,2015,44(5):169-171.
QIAN Haisheng, ZHANG Yu, DENG Hongchuan, et al. Effect of welding process parameters on welding residual stress of Q235 steel[J]. Hot Working Technology, 2015,44(5):169-171.
[16]JI Shude, ZHANG Liguo, LIU Xuesong, et al. Prediction of large structure welding residual stress by similitude principles[J]. Journal of Materials Science & Technology,2009,25(6):861-864.
(編輯陽(yáng)麗霞)
Finite element analysis on welding residual stresses ofintegral K-joints for steel box-truss bridge
ZHANG Yiru1, WEI Jun1, LIU Xiaochun1, WU Zhiqiang1, GAO Zongyu2, CHEN Tao1
(1.School of Civil Engineering, Central South University, Changsha 410075, China;2.China Railway Major Bridge Reconnaissance & Design Group Co., Ltd., Wuhan 430056,China)
Abstract:An integral K-joint in new steel box-truss bridge was selected as the study object, and finite element thermal-structural model was established using the software ANSYS. The numerical simulation of welding residual stresses was analyzed during the welding and cooling process by adopting the element birth-death technology, according to the welding procedure and order in practical engineering. The welding residual stress distribution of integral K-joint drawn from finite element analysis agrees well with the results of reduced scale model test. The finite element analysis of prototype integral K-joint in steel box-truss bridge indicates that the highest welding residual stresses is located adjacent to the butt weld area of web, while the parts of K-joint connected with web members are less influenced.
Key words:welding; residual stress; K-joint; finite element analysis; box-truss bridge
中圖分類號(hào):TG4
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):1672-7029(2016)02-0289-06
通訊作者:衛(wèi)軍(1957-),男,河南新鄉(xiāng)人,教授,博士,從事混凝土耐久性方向研究;E-mail:juneweii@163.com
基金項(xiàng)目:中國(guó)鐵路總公司科技研究開(kāi)發(fā)計(jì)劃項(xiàng)目(2013G001-A-2)
收稿日期:2015-05-27