張杏艷,陳中華,鄧海明,楊楷,龔勝,盧文學(xué),藍(lán)海恩
廣西壯族自治區(qū)畜牧研究所,南寧 530001
水環(huán)境中四環(huán)素類(lèi)抗生素降解及去除研究進(jìn)展
張杏艷,陳中華,鄧海明,楊楷,龔勝,盧文學(xué),藍(lán)海恩*
廣西壯族自治區(qū)畜牧研究所,南寧 530001
四環(huán)素類(lèi)抗生素是治療與預(yù)防人類(lèi)和動(dòng)物疾病及細(xì)菌感染的一類(lèi)廣譜抗菌藥。在畜牧養(yǎng)殖中,四環(huán)素類(lèi)抗生素做為疾病治療藥物和促生長(zhǎng)劑應(yīng)用廣泛,使用量巨大。本文綜述了四環(huán)素類(lèi)抗生素在水環(huán)境中的污染現(xiàn)狀及其在水中的降解和去除研究進(jìn)展。
四環(huán)素;抗生素;生態(tài)毒理;污染現(xiàn)狀;降解;去除
四環(huán)素類(lèi)抗生素(tetracycline antibiotics, TCs)是一類(lèi)具有并四苯結(jié)構(gòu)的廣譜抗生素(圖1),主要包括金霉素(chlotetracycline, CTC)、土霉素(oxytetracycline, OTC)、四環(huán)素(tetracycline, TET)及強(qiáng)力霉素(doxycycline, DOC)等。TCs可抑制腸道細(xì)菌繁殖,促進(jìn)牲畜生長(zhǎng),60年代后被作為飼料添加劑在我國(guó)廣泛應(yīng)用[1]。我國(guó)缺乏完善的獸藥抗生素使用監(jiān)控系統(tǒng),TCs濫用情況普遍。2010年我國(guó)僅CTC的使用量就高達(dá)71 900 t,比美國(guó)整個(gè)TCs總的年使用量要高22倍[2]。2013年我國(guó)TCs的使用量為12 000 t,是英國(guó)整個(gè)抗生素總使用量的11倍[3]??股?cái)z入體內(nèi)后很難被消化系統(tǒng)吸收,大多數(shù)抗生素以原藥形式隨糞便和尿液排出體外[4],如TCs排泄率達(dá)69%~86%[5]。而將動(dòng)物糞便還田在中國(guó)是非常普遍的做法。經(jīng)測(cè)算,2011年中國(guó)排放到環(huán)境中的畜禽糞便達(dá)21.21億t,預(yù)計(jì)到2020年和2030年中國(guó)畜禽糞便的排放量將分別達(dá)到28.75億t和37.43億t[6]。這些畜禽糞便多有TCs殘留,如豬糞中,OTC、TET、CTC平均含量分別為9.09、5.22、3.57 mg·kg-1[7]。TCs水溶性較好,易隨畜禽糞便還田進(jìn)入土壤并最終進(jìn)入地表水體。在一些養(yǎng)殖場(chǎng)的周?chē)w中,TCs含量可達(dá)到異常高的水平[8-9]。目前,我國(guó)尚無(wú)抗生素環(huán)境標(biāo)準(zhǔn),而抗生素可能導(dǎo)致生物毒性和致病菌產(chǎn)生抗藥性基因等環(huán)境風(fēng)險(xiǎn)[10],抗生素環(huán)境污染已引起人們的高度關(guān)注。本文綜述了TCs在水體中的污染現(xiàn)狀,降解及去除的研究進(jìn)展。
圖1 四環(huán)素類(lèi)抗生素(TCs)的分子結(jié)構(gòu)Fig. 1 The molecular structure of the tetracycline antibiotics (TCs)
表1 水體中TCs的濃度Table 1 The concentrations of TCs in water environment
注:OTC、TET、DOC、CTC表示土霉素、四環(huán)素、強(qiáng)力霉素和金霉素。
Note: OTC, TET, DOC and CTC mean oxytetracycline, tetracycline, doxycycline, and chlotetracycline.
TCs為酸堿兩性物質(zhì),且其鹽酸鹽性質(zhì)較穩(wěn)定[11]。TCs鹽酸鹽在水溶液中溶解度較大[12],因此,隨糞便施用進(jìn)入到環(huán)境的中TCs很容易隨雨水進(jìn)入到水體,水體也最先受到TCs的污染。
TCs在不同水體中的濃度與其特性和來(lái)源有關(guān),豬場(chǎng)等養(yǎng)殖廢水中TCs殘留量最高,可達(dá)mg·L-1級(jí)別,畜禽養(yǎng)殖排污口及周邊水體次之,在幾到幾十μg·L-1級(jí)別,而地表水多在10 μg·L-1以下(表1)。而地下水和飲用水源也已檢測(cè)到OTC和TET的存在,濃度分別為0.0086 μg·L-1和0.0036 μg·L-1[13]。
TCs除濃度不斷增長(zhǎng)之外,影響范圍也在不斷擴(kuò)大。2010年江蘇27個(gè)規(guī)?;B(yǎng)殖場(chǎng)排水口和周?chē)h(huán)境53個(gè)水體樣品中,OTC、CTC、TET和DOC的檢出率分別為60.4%、60.4%、34.0%和17.0%[14]。2014年北京溫榆河2 478 km2流域面積62個(gè)采樣點(diǎn)中,CTC、OTC、TET、DOC的檢出率已達(dá)到91%、91%、93%、64%[15]。2015年TCs在全國(guó)58個(gè)流域的預(yù)測(cè)平均濃度在幾到幾十ng·L-1之間,全國(guó)超一半的水域受抗生素的污染,東部流域抗生素污染比西部流域嚴(yán)重,北方流域和南方流域抗生素污染最嚴(yán)重的是海河和珠江,其抗生素環(huán)境預(yù)測(cè)濃度比雅魯藏布江等西部流域高出幾十倍[3]。
TCs在不同環(huán)境介質(zhì)和條件下降解的半衰期差別很大(表2),短則幾小時(shí),長(zhǎng)可超過(guò)160 d。TCs在環(huán)境中主要發(fā)生非生物降解和生物降解,其中,非生物降解包括光降解、氧化降解、水解,生物降解包括微生物降解和植物降解。
2.1 光降解
表2 TCs在不同環(huán)境介質(zhì)及條件下降解的半衰期Table 2 Half-life of TCs in different environmental media and condition
2.2 氧化降解
TCs在電、強(qiáng)氧化劑的作用下會(huì)發(fā)生氧化降解。電化學(xué)氧化降解對(duì)CTC的去除效率為40%~50%,其降解機(jī)理在于在酸性體系中,CTC分子結(jié)構(gòu)中的苯環(huán)受到羥基自由基的進(jìn)攻而活化并逐步降解,而在中性和堿性體系中,CTC則在羥基自由基和超氧自由基的共同作用下降解;若在pH=3的電解體系中引入亞鐵離子,在光照產(chǎn)生的超氧自由基作用下CTC與亞鐵絡(luò)合脫除2個(gè)氫生成產(chǎn)物(532=479+56-2),亞鐵離子的引入使得CTC的氧化降解達(dá)到60%~94%[40]。而強(qiáng)氧化劑臭氧的氧化能力極強(qiáng),可對(duì)雙鍵、芳香族化合物、雜環(huán)化合物、胺等化合物直接氧化或分解生成羥基自由基[41]。臭氧對(duì)TCs的氧化機(jī)理為先對(duì)C11a-C12和C2-C3兩個(gè)雙鍵、芳香環(huán)和氨基進(jìn)行氧化,產(chǎn)生質(zhì)核比為461、477、509和416的化合物,再進(jìn)一步氧化至產(chǎn)生質(zhì)核比為432、480、448、525和496的化合物,臭氧的強(qiáng)氧化作用對(duì)TCs的降解效率非常高,只需臭氧處理4~6 min,TET就可以完全去除[42],如,20 mg·L-1的TET經(jīng)過(guò)5 min臭氧處理就可以完全降解[43]。水中TET的氧化降解受pH、臭氧濃度、臭氧流速的影響顯著,且TET的降解隨pH、臭氧濃度、臭氧流速的升高而增強(qiáng)[44]。臭氧在增大OTC生物可降解性的同時(shí),還能減少其對(duì)活性污泥細(xì)菌的毒性[45]。高鐵酸鉀(Fe(VI))對(duì)TET的氧化降解受pH和Fe(VI)濃度的影響較大,其降解效率取決于pH和初始Fe(VI)濃度[46]。氧化降解法處理的效率高,反應(yīng)速度快,使用范圍廣泛,但處理費(fèi)用比較高,反應(yīng)器復(fù)雜,反應(yīng)條件嚴(yán)格還有會(huì)副產(chǎn)物產(chǎn)生。
2.3 水解
水解是TCs在水環(huán)境中降解的主要途徑[47]。TCs分子中含有酚羥基、烯醇和二甲氨基等多個(gè)功能團(tuán),在酸性條件下C-6羥基和C-5上的氫正好處于反式構(gòu)型,易發(fā)生消除反應(yīng),生成無(wú)活性橙黃色脫水物,而C-4二甲氨基易發(fā)生可逆的差向異構(gòu)化反應(yīng),在堿性條件下TCs可生成具有內(nèi)酯結(jié)構(gòu)的異構(gòu)體。此外,OTC由于存在C-5羥基與C-4二甲氨基之間形成的氫鍵,4位的差向異構(gòu)化比TET難,而CTC由于C-7氯原子的空間排斥作用,使4位異構(gòu)化反應(yīng)比TET更容易發(fā)生。TCs在水體中降解途徑主要為差向異構(gòu)化,不過(guò)差向化還不是TCs在水體中的降解終點(diǎn),如CTC水解產(chǎn)物就有de-CTC、iso-CTC以及它們的差向異構(gòu)體。TCs的水解受pH和溫度的影響較大,在TCs降解速率隨pH和溫度的升高而升高,而離子強(qiáng)度對(duì)TCs的水解則無(wú)明顯影響[35,48]。水解的過(guò)程比較長(zhǎng)且效果有限,在實(shí)際應(yīng)用中多作為輔助手段使用。
2.4 微生物降解
微生物可以改變抗生素的結(jié)構(gòu)和理化性質(zhì),將抗生素從大分子化合物降解成小分子化合物,直至轉(zhuǎn)變成H2O和CO2。在抗生素的生物降解中,耐藥細(xì)菌的作用最大,耐藥菌可直接破壞和修飾抗生素而使其失活,光合菌、發(fā)酵絲狀菌、芽孢桿菌、枯草桿菌、乳酸菌、放線(xiàn)菌、酵母菌、硝化細(xì)菌、酵母均具有抗生素降解功能[49]。耐藥菌對(duì)TCs的降解機(jī)制大概有3種:①水解,TCs含有酰胺鍵等易水解的敏感化學(xué)鍵,耐藥菌通過(guò)酶消除這些化學(xué)鍵而使TCs失去活性;②乙酰轉(zhuǎn)移,耐藥菌通過(guò)對(duì)TCs羥基或酰胺基等活潑基團(tuán)的共價(jià)修飾導(dǎo)致其失去靶點(diǎn)結(jié)合能力而使其失活,乙酰轉(zhuǎn)移是細(xì)菌使抗生素失活的常用機(jī)制;③氧化還原機(jī)制,TET可被耐藥性酶TetX氧化。研究表明,在豬糞中添加外源微生物可以提高豬糞中TCs的降解,且外源微生物對(duì)TCs的降解率為:CTC > OTC > TET[50]。在堆肥中添加外源復(fù)合菌系之后,CTC的降解率可提高20%[51]。白腐菌產(chǎn)生的天然木質(zhì)素過(guò)氧化物酶和錳過(guò)氧化物酶在體外對(duì)TET和OTC有很強(qiáng)的降解能力[52-53],谷胱甘肽硫轉(zhuǎn)移酶可將60%~70%的抗生素轉(zhuǎn)變?yōu)閷?duì)微生物沒(méi)有毒性的成分[54]。微生物降解法高效無(wú)污染,其難點(diǎn)在于微生物菌株的篩選及復(fù)合菌種組合條件的控制,微生物降解法在堆肥及廢水處理過(guò)程中應(yīng)用廣泛。
2.5 植物降解
植物可通過(guò)直接吸收或根系分泌物以及根系微生物轉(zhuǎn)化對(duì)抗生素進(jìn)行降解。研究表明,CTC可被植物直接吸收[49]。植物修復(fù)可能是實(shí)際修復(fù)抗生素污染的水體的最可行的方法。植物修復(fù)最常見(jiàn)的做法就是人工濕地修復(fù)系統(tǒng)和水生植物浮床。水燭和蘆葦是常見(jiàn)的水生植物,對(duì)TCs具有很好的去除效果,在以水燭、蘆葦構(gòu)建的人工濕地對(duì)DOC的去除效率分別為65%~75%和62%[55]。大漂和鳳眼蓮對(duì)水中TCs也具有清除作用,鳳眼蓮在抗生素濃度< 2.5 mg·L-1的污水中對(duì)TCs的去除效率可達(dá)80%,且鳳眼蓮去除水中鹽酸金霉素與鹽酸土霉素的效果優(yōu)于大漂[56]。水生蔬菜也可去除水環(huán)境中的TCs,且受季節(jié)變化影響比較大,在夏季,水芹過(guò)濾床系統(tǒng)對(duì)TCs的去除效率明顯高于空心菜濾床系統(tǒng),其對(duì)TCs的去除效率分別為71.83%和33.28%,但在冬季,2組水生植物濾床系統(tǒng)對(duì)TCs的去除效率差異不顯著[57]。植物降解法無(wú)需添加化學(xué)試劑,也不會(huì)造成二次污染,且成本低,處理效果好,不足之處在于植物降解法占用的土地面積比較大,人工濕地多為地表潛流,在處理過(guò)程中偶爾會(huì)產(chǎn)生臭味。植物降解法更適用于處理城鎮(zhèn)周邊及規(guī)?;B(yǎng)殖場(chǎng)氧化塘廢水中的抗生素。
綜上所述,TCs在環(huán)境中可通過(guò)多種降解反應(yīng)去除,污水處理廠處理工藝綜合了多種降解反應(yīng),是目前去除環(huán)境中TCs的最主要的方式。
污水處理廠對(duì)TCs總的去除效率為18%~100%,其中對(duì)CTC的去除效率為18%~47%,對(duì)TET和OTC的去除效率為100%,污水處理廠對(duì)TCs的去除主要發(fā)生在初級(jí)階段(格柵、曝氣、初級(jí)沉淀),初級(jí)階段對(duì)OTC的去除率超過(guò)60%[58]。不同的污水處理工藝對(duì)TCs的去除效率差別很大,見(jiàn)表3?;钚晕勰喙に囀菑U水中TCs去除的主要途徑[59]。活性污泥對(duì)TCs的去除機(jī)制以吸附作用為主,除對(duì)CTC產(chǎn)生少量的生物降解外,對(duì)OTC和TET則幾乎不產(chǎn)生生物降解,活性污泥對(duì)TCs去除率的大小順序?yàn)椋篛TC > TET > CTC;并隨著pH值的增大,活性污泥對(duì)3種抗生素的吸附量均逐漸減小,且在同一pH值條件下的去除率大小始終為:OTC > TET > CTC[60]。A2/O工藝主要通過(guò)生物降解和吸附作用去除TCs,其吸附作用對(duì)TET、OTC、CTC的去除貢獻(xiàn)分別為29%、38%、39%,生物降解為21%、22%、47%[61],A2/O工藝對(duì)TCs的去除能力高于活性污泥工藝。反滲透、活性炭、臭氧等這些污水處理技術(shù)對(duì)抗生素有明顯的降低和消除作用[62],然而這些技術(shù)在污水處理廠卻很少配備。污水處理工藝對(duì)TCs的去除效率受污泥停留時(shí)間、水力停留時(shí)間、溫度、pH值、鈣鎂離子濃度、微生物總量和細(xì)菌耐受性的影響。
表3 不同污水處理工藝對(duì)TCs的去除效率Table 3 Removal efficiency of TCs by different wastewater treatment process
活性污泥法處理能力高,出水水質(zhì)好,但運(yùn)行成本高,能量消耗大,管理復(fù)雜且有污泥膨脹問(wèn)題;膜生物反應(yīng)器運(yùn)行穩(wěn)定,可封閉運(yùn)轉(zhuǎn),無(wú)臭,能耗低,但成本高,生物膜片容易脫落,影響出水水質(zhì);氧化法反應(yīng)速度快,適用范圍廣,效率高,但處理費(fèi)用較高,反應(yīng)條件復(fù)雜。
綜上所述,我國(guó)TCs的使用量巨大,TCs的污染有越演愈烈的趨勢(shì)。雖然人們對(duì)TCs的污染和降解途徑做了大量的研究,但仍然有許多問(wèn)題尚待解決,如:
(1)TCs在局部和較短時(shí)間內(nèi)的環(huán)境濃度比較容易測(cè)定,但其在環(huán)境中的遷移轉(zhuǎn)化過(guò)程復(fù)雜,目前缺乏精準(zhǔn)的可大范圍長(zhǎng)時(shí)間預(yù)測(cè)TCs環(huán)境濃度的模型,TCs剩余的環(huán)境容量需進(jìn)一步確定,我國(guó)也還沒(méi)有TCs的環(huán)境質(zhì)量標(biāo)準(zhǔn)和排放標(biāo)準(zhǔn)。
(2)TCs的降解途徑多樣,但在實(shí)際應(yīng)用中對(duì)TCs的去除有限或成本較高,微生物去除法受限于微生物對(duì)TCs的耐受性。高效、簡(jiǎn)便、安全、經(jīng)濟(jì)的多組合方式去除TCs有待進(jìn)一步研究。
(3)TCs畜牧養(yǎng)殖來(lái)源量最大,然而我國(guó)普遍缺乏處理TCs的基礎(chǔ)設(shè)施,各種小型的,適用于規(guī)?;B(yǎng)殖廠和小養(yǎng)殖戶(hù)的TCs去除方法和設(shè)備亟待開(kāi)發(fā)和研究。
致謝:感謝海南大學(xué)環(huán)境科學(xué)系副教授葛成軍在文章修改中給予的幫助。
[1] 池振興. 四環(huán)素類(lèi)污染物毒性的微觀機(jī)制研究[D]. 濟(jì)南: 山東大學(xué), 2012: 1-4
Chi Z X. Investigation on the micromechanism of the toxicity of tetracyclines[D]. Jinan: Shandong University, 2012: 1-4 (in Chinese)
[2] 郭欣妍, 王娜, 許靜, 等. 獸藥抗生素的環(huán)境暴露水平及其環(huán)境歸趨研究進(jìn)展[J]. 環(huán)境科學(xué)與技術(shù), 2014, 37(9): 76-86
Guo X Y, Wang N, Xu J, et al. Research progress on environmental exposure levels and environmental fate of veterinary antibiotics [J]. Environmental Science & Technology, 2014, 37(9): 76-86 (in Chinese)
[3] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensive evaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782
[4] Kay P, Blackwell P A, Boxall A, et al. Transport of veterinary antibiotics in overland flow following the application of slurry to arable land [J]. Chemosphere, 2005, 59(7): 951-959
[5] Toxicology Data Network [EB/OL]. (2013-05-01) [2016-02-24]. http://www.toxnet.nlm.nih.gov.
[6] 朱寧, 馬驥. 中國(guó)畜禽糞便產(chǎn)生量的變動(dòng)特征及未來(lái)發(fā)展展望[J]. 農(nóng)業(yè)展望, 2014(1): 46-48
Zhu N, Ma J.Changes and outlook about production amount of livestock and poultry manure in China [J]. Agricultural Outlook, 2014(1): 46-48 (in Chinese)
[7] 張樹(shù)清, 張夫道, 劉秀梅, 等. 規(guī)?;B(yǎng)殖畜禽糞主要有害成分測(cè)定分析研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2005, 11(6): 822-829
Zhang S Q, Zhang F D, Liu X M, et al. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots[J]. Plant Nutrition and Fertilizer Science, 2005, 11(6): 822-829 (in Chinese)
[8] Leung H W, Minh T B, Murphy M B, et al. Distribution, fate and risk assessment of antibiotics in sewage treatment plants in Hong Kong, South China [J]. Environment International, 2012, 42: 1-9
[9] Gao L, Shi Y, Li W, et al. Occurrence of antibiotics in eight sewage treatment plants in Beijing, China [J]. Chemosphere, 2012, 86(6): 665-671
[10] 周啟星, 羅義, 王美娥. 抗生素的環(huán)境殘留、生態(tài)毒性及抗性基因污染[J]. 生態(tài)毒理學(xué)報(bào), 2007, 2(3): 243-251
Zhou Q X, Luo Y, Wang M E. Environmental residues and ecotoxicity of antibiotics and their resistance gene pollution: A review [J]. Asian Journal of Ecotoxicology, 2007, 2(3): 243-251 (in Chinese)
[11] Brain R A, Wilson C J, Johnson D J, et al. Effects of a mixture of tetracyclines to Lemna gibba and Myriophyllum sibiricum evaluated in aquatic microcosms [J]. Environmental Pollution (Barking, Essex: 1987), 2005, 138(3): 425-442
[12] Thiele-Bruhn S. Pharmaceutical antibiotic compounds in soils—A review [J]. Journal of Plant Nutrition and Soil Science, 2003, 166(2): 145-167
[13] Tong L, Li P, Wang Y, et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS [J]. Chemosphere, 2009, 74: 1090-1097
[14] 魏瑞成, 葛峰, 陳明, 等. 江蘇省畜禽養(yǎng)殖場(chǎng)水環(huán)境中四環(huán)類(lèi)抗生素污染研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2010, 29(6): 1205-1210
Wei R C, Ge F, Chen M, et al. Pollution of tetracyclines from livestock and poultry farms in aquatic environment in Jiangsu Province, China [J]. Journal of Agro-Environment Science, 2010, 29(6): 1205-1210 (in Chinese)
[15] Zhang Q Q, Jia A, Wan Y, et al. Occurrences of three classes of antibiotics in a natural river basin: Association with antibiotic-resistant Escherichia coli [J]. Environmental Science & Technology, 2014, 48: 14317-14325
[16] 劉虹, 張國(guó)平, 劉叢強(qiáng). 固相萃取-色譜測(cè)定水, 沉積物及土壤中氯霉素和3種四環(huán)素類(lèi)抗生素[J]. 分析化學(xué), 2007, 35(3): 315-319
Liu H, Zhang G P, Liu C Q. Determination of chloramphenicol and three tetracyclines by solid phase extraction and high performance liquid chromatography-ultraviolet detection[J]. Chinese Journal of Analytical Chemistry, 2007, 35(3): 315-319 (in Chinese)
[17] Lindsey M E, Meyer T M, Thurman E M, et al. Analysis of trace levels of sulfonamide and tetracycline antimicrobials in groundwater and surface water using solid-phase extraction and liquid chromatography/ mass spectrometry [J]. Analytical Chemistry, 2001, 73(19): 4640-4646
[18] Pailler J Y, Krein A, Pfister L, et al. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg [J]. The Science of The Total Environment, 2009, 407(16): 4736-4743
[19] Luo Y, Xu L, Rysz M, et al. Occurrence and transport of tetracycline, sulfonamide, quinolone, and macrolide antibiotics in the Haihe River Basin, China [J]. Environmental Science & Technology, 2011, 45(5): 1827-1833
[20] Kim S, Carlson K.Temporal and spatial trends in the occurrence of human and veterinary antibiotics in aqueous and river sediment matrices [J]. Environmental Science & Technology, 2007, 41(1): 50-57
[21] Ruan Y F, Chen J M, Guo C S, et al. Distribution characteristics of typical antibiotics in surface water and sediments from freshwater aquaculture water in Tianjin suburban areas, China [J]. Journal of Agro-Environment Science, 2011, 30(12): 2586-2593
[22] Batt A L, Bruce I B, Aga D S. Evaluating the vulnerability of surface water to antibiotic contamination from varying wastewater treatment plant discharges [J]. Environmental Pollution, 2006, 142(2): 295-302
[23] Jiang H, Zhang D, Xiao S, et al. Occurrence and sources of antibiotics and their metabolites in river water, WWTPs, and swine wastewater in Jiulongjiang River basin, South China [J]. Environmental Science & Pollution Research, 2013, 20(12): 9075-9083
[24] 李偉明, 鮑艷宇, 周啟星. 四環(huán)素類(lèi)抗生素降解途徑及其主要降解產(chǎn)物研究進(jìn)展[J]. 應(yīng)用生態(tài)學(xué)報(bào), 2012, 23(8): 2300-2308
Li W M, Bao Y Y, Zhou Q X. Degradation pathways and main degradation products of tetracycline antibiotics: Research progress[J]. Chinese Journal of Applied Ecology, 2012, 23(8): 2300-2308 (in Chinese)
[25] Jiao S J, Zheng S R, Yin D Q, et al. Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria [J]. Chemosphere, 2008, 73(3): 377-382
[26] 黃麗萍. 水中典型抗生素的光化學(xué)降解研究[D]. 上海: 東華大學(xué), 2011: 27-49
Huang L P. Studies on photochemical degradation of typical antibiotics [D]. Shanghai: Huangdong University, 2011: 27-49 (in Chinese)
[27] Liu W, Wang H, Chen X J, et al. Research on degradation of antibiotics in the environment [J]. Progress in Veterinary Medicine, 2009, 30(3): 89-94
[28] Reyes C, Fernandez J, Freer J, et al. Degradation and inactivation of tetracycline by TiO2photocatalysis [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 184: 141 -146
[29] Gao J M, Zheng Z G, Wang Y. Photodegradation of tetracycline by TiO2/ZnO [J]. Chongqing Environmental Science, 2003, 25(1): 17-19
[30] 宋晨怡, 尹大強(qiáng). 四環(huán)素光催化降解特性與選擇性研究[J]. 環(huán)境科學(xué), 2014, 35(2): 619-625
Song C Y, Yin D Q. Characteristics and selectivity of photocatalytic-degradation of tetracycline hydrochloride[J]. Environmental Science, 2014, 35(2): 619-625 (in Chinese)
[31] 朱向東, 王玉軍, 孫瑞娟, 等. 溶液酸度對(duì)四環(huán)素類(lèi)物質(zhì)光降解和光催化降解速率的影響[J]. 生態(tài)與農(nóng)村環(huán)境學(xué)報(bào), 2012, 28(6): 742-745
Zhu X D, Wang Y J, Sun R J, et al. Effect of solution pH on photodegradation and photocatalytic degradation of tetracyclines[J]. Journal of Ecology and Rural Environment, 2012, 28(6): 742-745 (in Chinese)
[32] Castillo C, Criado S, Dfaz M, et al. Riboflavin as a sensitiser in the photodegradation of tetracyclines. Kinetics, mechanism and microbiological implications [J]. Dyes and Pigments, 2007, 72: 178-184
[33] 李華. 水體中四環(huán)素類(lèi)抗生素的光化學(xué)行為研究[D]. 武漢: 華中科技大學(xué), 2011: 11-42
Li H. Photochemical behavior of tetracyclines in aquatic system [D]. Wuhan: Huazhong University, 2011:11-42 (in Chinese)
[34] Pouliquen H, Delepee R, Larhantec-Verdier M, et al. Comparative hydrolysis and photolysis of four antibacterial agents (oxytetracycline oxolinic acid, flumequine and florfenicol) in deionised water, freshwater, and seawater under abiotic conditions [J]. Aquaculture, 2007, 262: 23-28
[35] Loftin K A, Adams C D, Meyer M T, et al. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics [J]. Journal of Environmental Quality, 2008, 37(2): 378-386
[36] 張健, 關(guān)連珠, 顏麗. 不同畜禽糞便所含金霉素在土壤中的動(dòng)態(tài)變化及降解途徑[J]. 生態(tài)學(xué)雜志, 2011, 30(6): 1125-1130
Zhang J, Guan L Z, Yan L. Dynamics and degradation approach of different domestic animal feces chloroteracyline in soil [J]. Chinese Journal of Ecology, 2011, 30(6): 1125-1130 (in Chinese)
[37] Bao Y, Zhou Q, Guan L, et al. Depletion of chlortetracycline during composting of aged and spiked manures [J]. Waste Management (New York, N.Y.), 2009, 29(4): 1416-1423
[38] 匡光偉, 孫志良, 陳小軍, 等. 四環(huán)素類(lèi)抗菌藥物在雞糞中的降解研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2007, 26(5): 1784-1788
Kuang G W, Sun Z L, Chen X J, et al. Degradation of tetracyclines in chicken feces [J]. Journal of Agro-Environment Science, 2007, 26(5): 1784-1788 (in Chinese)
[39] Wu X F, Wei Y S, Zheng J X, et al. The behavior of tetracyclines and their degradation products during swine manure composting [J]. Bioresource Technology, 2011, 102(10): 5924-5931
[40] 相欣奕. 氧化技術(shù)降解典型有機(jī)污染物研究[D]. 重慶: 重慶大學(xué), 2013: 23-122
Xiang X Y. Pathways and application of oxidative degradation of typical organic pollutants[D]. Chongqing: Chongqing University, 2013: 23-122 (in Chinese)
[41] 孫秋月. 飲用水臭氧催化氧化工藝去除典型抗生素的研究[D]. 濟(jì)南: 山東建筑大學(xué), 2014: 25-45
Sun Q Y. Research on removal of typical antibiotics by ozone catalytic oxidation process in drinking water [D]. Jinan: Shandong Architecture University, 2014: 25-45 (in Chinese)
[42] Khan M H, Bae H, Jung J Y. Tetracycline degradation by ozonation in the aqueous phase: Proposed degradation intermediates and pathway [J]. Journal of Hazardous Materials, 2010, 181(1-3): 659-665
[43] Wu J G, Jiang Y X, Zha L Y, et al. Tetracycline degradation by ozonation, and evaluation of biodegradability and toxicity of ozonation byproducts [J]. Canadian Journal of Civil Engineering, 2010, 37(11): 1485-1491
[44] Wang Y, Zhang H, Zhang J H, et al. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor [J]. Journal of Hazardous Materials, 2011, 192(1): 35-43
[45] Uslu M O, Balcioglu I A. Ozonation of animal wastes containing oxytetracycline [J]. Ozone Science and Engineering, 2008, 30(4): 290-299
[46] Yang S F, Doong R A. Preparation of potassium ferrate for the degradation of tetracycline [J]. ACS Symposium Series, 2008, 985(25): 404-419
[47] 阿丹. 人工濕地對(duì)14種常用抗生素的去除效果及影響因素研究[D]. 廣州: 暨南大學(xué), 2012: 1-18
A D. The removal efficiency and impact factors of 14 antibiotics in constructed wetlands [D]. Guangzhou: Jinan University, 2012:1-18 (in Chinese)
[48] 鄭麗英. 金霉素的水解動(dòng)力學(xué)研究[J]. 廣州化工, 2010, 38(12): 182-183, 191
Zheng L Y. Hydrolysis kinetics of the chlortetracycline [J]. Guangzhou Chemical Industry, 2010, 38(12): 182-183, 191 (in Chinese)
[49] 劉偉, 王慧, 陳小軍, 等. 抗生素在環(huán)境中降解的研究進(jìn)展[J]. 動(dòng)物醫(yī)學(xué)進(jìn)展, 2009, 30(3): 89-94
Liu W, Wang H, Chen X J, et al. Research on degradation of antibiotics in the environment [J]. Progress in Veterinary Medicine, 2009, 30(3): 89-94 (in Chinese)
[50] 張健, 關(guān)連珠. 豬糞中3種四環(huán)素類(lèi)抗生素在土壤中的動(dòng)態(tài)變化及降解途徑[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2013, 19(3): 727-732
Zhang J, Gan L Z. Dynamics and mechanism of degradation of three tetracycline antibiotics from pig manures in soil [J]. Journal of Plant Nutrition and Fertilizer, 2013, 19(3): 727-732 (in Chinese)
[51] 秦莉, 高茹英, 李國(guó)學(xué), 等. 外源復(fù)合菌系對(duì)堆肥纖維素和金霉素降解效果的研究[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2009, 28(4): 820-823
Qin L, Gao R Y, Li G X, et al. Decomposition effect of additive of composite microbial system on cellulose and chlortetracycline in compositing [J]. Journal of Agro-Environment Science, 2009, 28(4): 820-823 (in Chinese)
[52] Wen X H, Jia Y N, Li J X. Degradation of tetracycline and oxytetracycline by crude lignin peroxidase prepared from Phanerochaete chrysosporium—A white rot fungus [J]. Chemosphere, 2009, 75(8): 1003-1007
[53] Wen X H, Jia Y N, Li J X. Enzymatic degradation of tetracycline and oxytetracycline by crude manganese peroxidase prepared from Phanerochaete chrysosporium [J]. Journal of Hazardous Materials, 2010, 177(1-3): 924-928
[54] Park H, Choung Y K. Degradation of antibiotics (tetracycline, sulfathiazole, ampicillin) using enzymes of glutathion S-transferase [J]. Human and Ecological Risk Assessment, 2007, 13(5): 1147-1155
[55] María H V, Guido F, Michael P, et al. Removal of antibiotics from urban wastewater by constructed wetland optimization [J]. Chemosphere, 2011, 83(5): 713-719
[56] 陳小潔, 李鳳玉, 郝雅賓. 兩種水生植物對(duì)抗生素污染水體的修復(fù)作用[J]. 亞熱帶植物科學(xué), 2012, 41(4): 1-7
Chen X J, Li F Y, Hao Y B. The preliminary exploration of remediation the antibiotics polluted water by two hydrophytes [J]. Subtropical Plant Science, 2012, 41(4): 1-7 (in Chinese)
[57] 廖杰, 徐熙安, 劉玉洪, 等. 水生植物濾床深度處理養(yǎng)殖廢水過(guò)程中抗生素與抗性基因的響應(yīng)研究[J]. 環(huán)境科學(xué)學(xué)報(bào), 2015, 35(8): 2464-2470
Liao J, Xu X A, Liu Y H, et al. Removal and response of antibiotics and antibiotic resistance genes during advanced treatment of livestock wastewater by aquatic plant filter bed [J]. Acta Scientiae Circumstantiae, 2015, 35(8): 2464-2470 (in Chinese)
[58] Chang X S, Michael T M, Liu X Y, et al. Determination of antibiotics in sewage from hospitals, nursery and slaughter house, wastewater treatment plant and source water in Chongqing region of Three Gorge Reservoir in China [J]. Environmental Pollution, 2010, 158(5): 1444-1450
[59] Zhou L J, Ying G G, Liu S, et al. Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China [J]. Science of The Total Environment, 2013, 452-453: 356-376
[60] 李慧. 四環(huán)素類(lèi)抗生素(TCs)在活性污泥處理系統(tǒng)中的去除行為研究[D]. 泰安: 山東農(nóng)業(yè)大學(xué), 2013: 33-61
Li H. The study of removal of tetracycline antibiotics (TCs) on activated sludge [D]. Tai'an: Shandong Agriculture University, 2013: 33-61 (in Chinese)
[61] Huang M A, Zhang W, Liu C, et al. Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant [J]. Process Safety and Environmental Protection, 2015, 93: 68-74
[62] Huang C H, Sedlak D L. Analysis of estrogenic hormones in municipal wastewater effluent and surface water using enzyme-linked immunosorbent assay and gas chromatography/tandem mass spectrometry [J]. Environmental Toxicology and Chemistry, 2001, 20: 133-139
[63] Gulkowska A, Leung H W, So M K, et al. Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen, China [J]. Water Research, 2008, 42(1-2): 395-403
[64] Drillia P, Dokianakis S N, Fountoulakis M S, et al. On the occasional biodegradation of pharmaceuticals in the activated sludge process: The example of the antibiotic sulfamethoxazole [J]. Journal of Hazardous Materials, 2005, 122(3): 259-265
[65] Zhou P, Asce M, Su C, et al.Treatment of high-strength pharmaceutical wastewater and removal of antibiotics in anaerobic and aerobic biological treatment processes [J]. Journal of Environmental Engineering, 2006, 132(1): 129-136
[66] Batt A L, Kim S, Aga D S. Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations [J]. Chemosphere, 2007, 68(3): 428-435
[67] Huang M H, Zhang W, Liu C, et al. Fate of trace tetracycline with resistant bacteria and resistance genes in an improved AAO wastewater treatment plant [J]. Process Safety and Environmental Protection, 2015, 93: 68-74
[68] Matos M, Pereira M A, Parpot P, et al. Influence of tetracycline on the microbial community composition and activity of nitrifying biofilms [J]. Chemosphere, 2014, 117(1): 295-302
[69] 劉秀艷, 高永, 張魁. 四環(huán)素生產(chǎn)廢水處理技術(shù)探索及工程實(shí)踐[J]. 河北建筑工程學(xué)院學(xué)報(bào), 2005, 23(1): 25-27
Liu X Y, Gao Y, Zhang K. Research and engineering practice on treating the wastewater from acheomycin producing process [J]. Journal of Hebei Institute of Architecture Engineering, 2005, 23(1): 25-27 (in Chinese)
◆
A Review on Degradation and Elimination of Tetracycline Antibiotics in Water Environment
Zhang Xingyan, Chen Zhonghua, Deng Haiming, Yang Kai, Gong Sheng, Lu Wenxue, Lan Haien*
Guangxi Institute of Animal Husbandry, Nanning 530001, China
Received 24 February 2016 accepted 13 May 2016
Tetracycline antibiotics (TCs) are the broad-spectrum antibacterial drugs which prevent human and livestock bacterial infection and treat their disease. TCs are widely used in livestock and poultry culture industry as disease treatment drugs and growth promoter, and the amount of TCs consumed is enormous. The pollution status of TCs in water environment, and their degradation and elimination methods are summarized in this article.
tetracycline; antibiotics; pollution status; degradation and elimination; ecotoxicology
廣西壯族自治區(qū)畜牧總站項(xiàng)目(A0287 201605813)
張杏艷(1986-),女,碩士,研究方向?yàn)樾竽琉B(yǎng)殖環(huán)境質(zhì)量及生態(tài)毒理學(xué),E-mail: zhangxingyan.06@163.com;
*通訊作者(Corresponding author), E-mail: Ihe.0504@163.com
10.7524/AJE.1673-5897.20160224001
2016-02-24 錄用日期:2016-05-13
1673-5897(2016)6-044-09
X171.5
A
藍(lán)海恩(1969-),男,高級(jí)畜牧師,主要從事養(yǎng)豬及養(yǎng)殖技術(shù)研究工作,共發(fā)表論文20余篇。
張杏艷, 陳中華, 鄧海明, 等. 水環(huán)境中四環(huán)素類(lèi)抗生素降解及去除研究進(jìn)展[J]. 生態(tài)毒理學(xué)報(bào),2016, 11(6): 44-52
Zhang X Y, Chen Z H, Deng H M, et al. A review on degradation and elimination of tetracycline antibiotics in water environment [J]. Asian Journal of Ecotoxicology, 2016, 11(6): 44-52 (in Chinese)