柴博森,項 玥,馬文星※,遇 超,寇尊權(quán)(.吉林大學機械科學與工程學院,長春 300; .吉林省產(chǎn)品質(zhì)量監(jiān)督檢驗院,長春 3003)
?
制動工況下液力偶合器流場湍流模型分析與驗證
柴博森1,項玥2,馬文星1※,遇超1,寇尊權(quán)1
(1.吉林大學機械科學與工程學院,長春 130022;2.吉林省產(chǎn)品質(zhì)量監(jiān)督檢驗院,長春 130103)
摘要:合理選擇湍流模型是獲取準確和可靠數(shù)值模擬結(jié)果的關(guān)鍵。該文采用3種湍流模型(標準k-ε模型、分離渦模型、大渦模擬模型)仿真制動工況下方形腔液力偶合器流場,提取流速場和渦量場。基于粒子圖像測速(particle image velocimetry,PIV)技術(shù)測量液力偶合器制動工況下流場,將數(shù)值模擬結(jié)果與PIV試驗結(jié)果進行對比,以PIV試驗測量結(jié)果作為評價基準,分析采用3種湍流模型計算流場結(jié)果的差異性,完成湍流模型的適用性分析。結(jié)果表明,標準k-ε模型仿真結(jié)果與PIV試驗結(jié)果誤差較大;采用大渦模擬模型模擬主流區(qū)域流場結(jié)構(gòu)分布更加真實,仿真結(jié)果能夠較好地解釋主流區(qū)域多尺度渦旋運動規(guī)律和能量耗散機理;采用分離渦模型能夠更準確地捕捉近壁面和角渦區(qū)高梯度流場結(jié)構(gòu)分布。研究結(jié)果可為液力偶合器流場精確計算與性能預(yù)測提供參考。
關(guān)鍵詞:計算機仿真;可視化;模型;液力偶合器;粒子圖像測速;流速場;渦量場;渦旋
柴博森,項玥,馬文星,遇超,寇尊權(quán). 制動工況下液力偶合器流場湍流模型分析與驗證[J]. 農(nóng)業(yè)工程學報,2016,32(3):34-40.doi:10.11975/j.issn.1002-6819.2016.03.006http://www.tcsae.org
Chai Bosen, Xiang Yue, Ma Wenxing, Yu Chao, Kou Zunquan. Analysis and experimental verification of turbulence models in flow simulation for hydrodynamic coupling under braking condition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 34-40. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2016.03.006 http://www.tcsae.org
Email:chaibs2012@jlu.edu.cn
液力偶合器具有減緩沖擊、隔離扭振、輕載啟動和防護過載的優(yōu)點,廣泛應(yīng)用在工程機械、礦山機械、建筑機械和起重運輸機械等領(lǐng)域[1-3]。
研究液力偶合器內(nèi)部流場結(jié)構(gòu)分布對于其性能改進和結(jié)構(gòu)優(yōu)化設(shè)計具有重要意義。數(shù)值模擬與試驗測量是研究液力偶合器內(nèi)部流場的主要手段[4-7]。在數(shù)值模擬方面,計算流體動力學(computational fluid dynamics,CFD)能夠?qū)崿F(xiàn)液力偶合器流場計算,但是采用不同湍流模型的計算結(jié)果差異性較大。正確選擇合理的湍流模型是獲取準確和可靠數(shù)值模擬結(jié)果的關(guān)鍵[8-9]。在試驗測量方面,粒子圖像測速技術(shù)(particle image velocimetry,PIV)占據(jù)液力偶合器流場測量的主流地位[10-13]。國內(nèi)外學者在液力偶合器流場計算與試驗測量方面開展了大量研究,H. Huitenga等[14-15]基于CFD研究了滿充液下液力偶合器內(nèi)部流動規(guī)律,給出啟動特性最優(yōu)的結(jié)構(gòu)參數(shù)組合方案。F.Magagnato等[16]分別采用大渦模擬(large eddy simulation,LES)模型和分離渦(detached eddy simulation,DES)模型仿真渦輪內(nèi)部流場,在相同網(wǎng)格數(shù)量下采用DES模型計算結(jié)果更加接近試驗結(jié)果。褚亞旭等[17]采用大渦模擬仿真355 mm循環(huán)圓直徑的液力偶合器流場,與激光多普勒測速(laser doppler velocimetry,LDV)試驗結(jié)果對比后證實LES模型可以較準確地模擬牽引工況下液力偶合器流場。柴博森等[18-20]基于PIV技術(shù)測量并分析了液力偶合器在多種工況下的內(nèi)部流場,識別并提取了流場時空演化特征,為驗證液力偶合器內(nèi)部流場仿真結(jié)果提供了大量試驗依據(jù)。雖然國內(nèi)外學者對液力偶合器內(nèi)部流場進行了大量研究工作,但是對于處在特殊工況條件下工作的液力偶合器流場研究還不夠深入,對于液力偶合器流場仿真湍流模型適應(yīng)性分析的相關(guān)文獻卻鮮見報道。因此,開展液力偶合器流場湍流模型分析與驗證研究具有重要的工程應(yīng)用意義。
本文采用3種湍流模型仿真制動工況下滿充液液力偶合器流場,將仿真結(jié)果與PIV試驗結(jié)果進行對比,針對湍流模型的適應(yīng)性進行分析,以期將為液力偶合器流場精確計算與性能預(yù)測提供參考。
1.1標準k-ε模型
標準k-ε模型是通過求解湍流動能k方程和湍流耗散率ε方程,以k和ε值來計算湍流黏度,并通過Boussinesq假設(shè)獲得雷諾應(yīng)力的解[21]。標準k-ε模型方程為
式中t為時間,s;ρ為流體密度,kg/m3;k是紊流脈動動能,J;ui為時均速度,m/s;μ為流體黏度,Pa·s;μt為湍流動力黏度,Pa·s;Gk為由層流速度梯度而引起的湍流動能,J;ε 是紊流脈動動能的耗散率;xi和xj為張量表示的指標符號;C1ε,C2ε,σk,σε為模型常數(shù),具體取值為C1ε=1.44,C2ε=1.92,σk=1.0,σε=1.3。
1.2LES模型
大渦模擬(large eddy simulation,LES)將流場中渦旋分為大尺度渦和小尺度渦,通過濾波函數(shù)將湍流瞬時運動方程中小尺度渦旋濾去,大尺度渦旋用瞬時運動方程直接計算,而小尺度渦旋對大尺度渦旋的影響則通過在大尺度渦旋運動方程中引入附加應(yīng)力項來體現(xiàn),該應(yīng)力項被稱為亞格子尺度應(yīng)力[22]。LES模型的控制方程組為
式中ui和uj為張量形式的時均速度(i和j的取值范圍為1、2、3),m/s;xi和xj為張量表示的指標符號;p為壓強,Pa;τij為亞格子尺度應(yīng)力,帶有上劃線的量為濾波后的場變量。
1.3DES模型
分離渦(detached eddy simulation,DES)模型是將LES和雷諾平均N-S方程(RANS方程)的優(yōu)點相結(jié)合的一種混合模型[23],其主要思想是在近壁面附近求解RANS方程,構(gòu)建Spalart-Allmaras 湍流模型(SA方程),在其他區(qū)域采用大渦模擬計算大尺度渦旋。DES模型克服了高雷諾數(shù)下LES模型對網(wǎng)格要求太高的缺點。其中SA渦黏性方程如下
式中v~為渦黏系數(shù);uj為時均速度,m/s;Gv為由流體流動渦黏性引起產(chǎn)生項,J;Yv為由流體流動渦黏性引起的耗散項,J;Cb2,vσ~為模型常數(shù),具體取值Cb2=0.622,vσ~=2/3。
2.1模型建立
建立循環(huán)圓直徑為230 mm的液力偶合器三維模型,其中泵輪葉片數(shù)為13,渦輪葉片數(shù)為11。提取全流道流動計算域,通過ICEM軟件對全流道模型網(wǎng)格劃分,采用六面體網(wǎng)格,總體網(wǎng)格數(shù)為470 944,節(jié)點數(shù)為521 887,其中泵輪網(wǎng)格為275 392,渦輪網(wǎng)格數(shù)為195 552,流道模型及網(wǎng)格模型如圖1所示。
圖1 流道模型及網(wǎng)格模型Fig.1 Flow channel model and mesh model
2.2流場計算
忽略溫度變化和泄漏影響,并作流動周期對稱假設(shè),在制動工況(i=0)下,采用標準k-ε模型、DES模型和LES模型計算滿充液狀態(tài)下液力偶合器流場。流動介質(zhì)為蒸餾水,假設(shè)其密度和黏度都是常數(shù),取ρ=998.2 kg/m3和μ=0.001003 Pa·s。泵輪輸入轉(zhuǎn)速為200 r/min。為了詳細對比分析液力偶合器典型流動區(qū)域上3種湍流模型計算結(jié)果,截取渦輪流道1/2處徑向切面結(jié)果作為分析對象,圖2為不同湍流模型下的流速場,圖3為不同湍流模型下的渦量場。
圖2 不同湍流模型下流速場Fig.2 Velocity field of different turbulent models
圖3 不同湍流模型下渦量場Fig.3 Vorticity field of different turbulent models
3.1試驗測量系統(tǒng)
PIV試驗測量系統(tǒng)主要由機械部分、激光片光系統(tǒng)和圖像采集部分構(gòu)成,如圖4所示。機械部分主要由天津市林普機電有限公司生產(chǎn)的YS7124 型號三相異步變頻調(diào)速電機、上海摩億公司生產(chǎn)的EMT260型號激光轉(zhuǎn)速測量儀、長春通用機械廠生產(chǎn)的CLZ型號聯(lián)軸器以及2CY型號齒輪泵負載裝置組成。激光片光系統(tǒng)由中國西安遠訊光電科技有限公司制造,激光光源型號FIBER-21,可提供最大輸出功率為1.5 W的激光片光,片光厚度約1~2 mm。圖像采集部分主要由中國大恒集團有限公司生產(chǎn)的BM/BB-141GE數(shù)字相機及配套采集軟件組成,相機幀頻為30 fps。透明型液力偶合器樣機由大連市騰達機械設(shè)備技術(shù)公司制造,循環(huán)圓直徑為230 mm,泵輪葉片數(shù)為13,渦輪葉片數(shù)為11。數(shù)值模擬計算模型與試驗測量模型在幾何機構(gòu)上保證一致。
圖4 粒子圖像測速試驗系統(tǒng)Fig.4 Particle image velocimetry test system
3.2圖像采集及試驗結(jié)果
以蒸餾水作為液力偶合器內(nèi)部流動介質(zhì),選擇鋁粉作為示蹤粒子均勻投入待測流場,粒子直徑約為10~20 μm。制動工況下在泵輪輸入轉(zhuǎn)速為200 r/min時采集渦輪徑向流場圖像。由于原始圖像采集試驗是在黑暗的環(huán)境下開展的,為了提高原始采集圖像中粒子流動圖像特征參數(shù)識別質(zhì)量,需要經(jīng)過圖像亮度增強、中值濾波、圖像降噪完成圖像預(yù)處理,使得流場中粒子形態(tài)及運動軌跡更加易于識別,有利于獲得更好的流動圖譜。經(jīng)過圖像預(yù)處理后的連續(xù)2幀粒子圖像如圖5所示。
圖5 連續(xù)2幀粒子圖像Fig.5 Two successive frames of particle image
從圖5中可以清晰地看到繞漩渦中心的環(huán)流運動,此時渦輪受到來自泵輪流道內(nèi)高速液流的沖擊,在渦輪的主流區(qū)域形成明顯的順時針方向旋轉(zhuǎn)的大尺度湍流漩渦,大尺度漩渦流動承載著渦輪內(nèi)流動能量交換的主循環(huán)。
實測液力偶合器試驗樣機葉片實際長度為75 mm,基于圖像處理技術(shù)提取圖像上葉片的首、末點坐標,單位為像素(pix),如圖6所示,首點坐標為(137.6,106.5),末點坐標為(1111.8,265.9),根據(jù)兩點之間距離公式計算圖像上葉片長度S為987.09 pix。將葉片實測長度與圖像測量長度相除,獲得圖像放大率,經(jīng)圖像標定后1 pix約為0.08 mm。
圖6 圖像標定Fig.6 Image calibration
基于灰度圖像互相關(guān)算法識別并提取流場矢量圖[24-25],獲得流速場和渦量場流動圖譜,如圖7所示。從整體上看,流動趨勢呈現(xiàn)為繞主流區(qū)域循環(huán)流動渦旋中心的大環(huán)流。強旋流沖擊葉片和外壁面,導(dǎo)致葉片附近和外壁面處出現(xiàn)脫離主循環(huán)流動趨勢的區(qū)域循環(huán)流動,如圖7a中的高流速區(qū)域和低流速區(qū)域的流場結(jié)構(gòu)變化。這些區(qū)域內(nèi)的循環(huán)流動由多尺度渦旋所構(gòu)成,如圖7b中的大、小尺度渦旋所示。這些多尺度渦旋在自身旋轉(zhuǎn)運動的同時,隨著主渦旋運動趨勢向主流區(qū)域渦旋中心運動,較大尺度渦旋在旋轉(zhuǎn)運動過程中逐漸轉(zhuǎn)變?yōu)樾〕叨葴u旋,多尺度渦旋的運動能量最終以熱能形式漸漸耗散,并在渦心處歸于0。
圖7 PIV試驗結(jié)果分析Fig.7 Results analysis of particle image velocimetry experiment
4.1流速場
為了清晰地體現(xiàn)流場計算結(jié)果的差異性,截取液力偶合器單獨流道內(nèi)二維流場仿真結(jié)果,如圖8所示,其中左側(cè)圖像為流速場,右側(cè)圖像為渦量場。為了保證仿真結(jié)果與試驗測量結(jié)果對比有效,截取的仿真流場切面與粒子圖像測速試驗中的激光切面位置保持一致。
從定性分析流速場結(jié)構(gòu)分布的角度來看,采用標準k-ε模型和DES模型仿真液力偶合器單獨流道內(nèi)主流區(qū)域流速場結(jié)構(gòu)分布幾乎保持一致,而采用LES模型流速場仿真結(jié)果趨于復(fù)雜,如圖8所示,但是采用LES模型可以模擬出多尺度渦旋結(jié)構(gòu),這與圖7a中的PIV試驗流速場測量結(jié)果相一致。因此,對于主流區(qū)域內(nèi)多尺度漩渦流場結(jié)構(gòu)仿真LES模型更加趨于真實。采用標準k-ε模型和DES模型都可以仿真出液力偶合器近壁面區(qū)域的高梯度流場結(jié)構(gòu)分布,但是采用標準k-ε模型模擬近壁面高流速區(qū)域覆蓋的面積更大,流速場結(jié)構(gòu)層次感不夠明顯,這與圖7a中的PIV試驗流速場測量結(jié)果不一致,出現(xiàn)局部模擬結(jié)果失真,而采用DES模型模擬近壁面高流速區(qū)域流場結(jié)構(gòu)分布更加接近于PIV試驗結(jié)果,更能夠體現(xiàn)出流速場的高梯度演化規(guī)律。由于液力偶合器近壁面區(qū)域湍流流動發(fā)展并不充分,因此采用LES模型仿真近壁面區(qū)域流速場嚴重失真。
圖8 不同湍流模型下單獨流道流速場及渦量場Fig.8 Velocity field and vorticity field of single flow channel by different turbulent models
從定量分析流速場中流速矢量大小的角度來看,對于液力偶合器主流核心區(qū)域,采用標準k-ε模型仿真流速值的范圍為0~0.46 m/s,采用DES模型仿真流速值的范圍為0~0.566 m/s,采用LES模型仿真流速值的范圍為0~0.693 m/s;對于近壁面高流速區(qū)域,采用標準k-ε模型仿真最大流速值為1.31 m/s,采用DES模型仿真最大流速值為1.62 m/s,采用LES模型仿真最大流速值為1.98 m/s,如圖8所示。根據(jù)圖7a中PIV試驗測量結(jié)果可知,液力偶合器主流區(qū)域PIV試驗測量流速值的范圍約為0~0.7 m/s,PIV試驗測量近壁面高流速區(qū)域最大流速值范圍為1.60~1.65 m/s。通過仿真結(jié)果與PIV試驗測量結(jié)果對比可知,采用DES模型仿真近壁面高流速區(qū)域流速大小與PIV試驗結(jié)果接近,而采用標準k-ε模型和LES模型仿真結(jié)果誤差較大;采用LES模型仿真主流區(qū)域流速值范圍趨近于PIV試驗結(jié)果,采用DES模型仿真結(jié)果誤差較小,而采用標準k-ε模型誤差較大。
4.2渦量場
從定性分析渦量場結(jié)構(gòu)分布的角度來看,采用LES模型仿真主流區(qū)域多尺度渦旋結(jié)構(gòu)與PIV試驗結(jié)果更加接近,LES模型仿真結(jié)果能夠體現(xiàn)出真實而復(fù)雜的湍流演化過程,能夠闡明主流區(qū)域上多尺度渦旋運動規(guī)律和能量耗散機理,如圖8所示。采用DES模型和LES模型可以模擬液力偶合器角渦區(qū)域的多尺度渦旋,但是采用DES模型模擬漩渦流場結(jié)構(gòu)更加精細,渦旋結(jié)構(gòu)分布層次感更強,更能夠體現(xiàn)角渦處多梯度下的渦量場分布,這與圖7b中的PIV試驗渦量場測量結(jié)果保持一致。對于標準k-ε模型,由于它假定湍流動力黏度為各向同性的標量,因此對于湍流為各向異性的角渦區(qū)域強旋流的模擬會出現(xiàn)失真。
從定量分析渦量場中渦量大小的角度來看,對于液力偶合器角渦流動區(qū)域,采用標準k-ε模型仿真最大渦量值為243 s-1,采用DES模型仿真最大渦量值為654 s-1,采用LES模型仿真最大渦量值為892 s-1。根據(jù)圖7b中PIV試驗測量結(jié)果可知,液力偶合器角渦區(qū)域PIV試驗測量渦量值的范圍為800~900 s-1。通過仿真結(jié)果與PIV試驗測量結(jié)果對比可知,采用LES模型對于角渦區(qū)域渦量值仿真更加趨于真實,而采用標準k-ε模型和DES模型模擬結(jié)果誤差較大。
采用標準k-ε模型、分離渦(detached eddy simulation,DES)模型和大渦模擬(large eddy simulation,LES)模型分別仿真制動工況下方形腔液力偶合器流場,將流速場和渦量場仿真結(jié)果與粒子圖像測速(particle image velocimetry,PIV)試驗結(jié)果進行對比后發(fā)現(xiàn)。
1)采用標準k-ε模型仿真結(jié)果失真,流速場和渦量場仿真結(jié)果與PIV試驗結(jié)果誤差較大。
2)采用LES模型仿真液力偶合器主流區(qū)域上多尺度漩渦流場結(jié)構(gòu)更加真實,通過分析流速場和渦量場的結(jié)構(gòu)分布能夠闡明主流區(qū)域上多尺度渦旋運動規(guī)律和能量耗散機理,但是采用LES模型仿真近壁面流動區(qū)域結(jié)果失真,對于角渦區(qū)域流場仿真結(jié)果不夠理想。
3)采用DES模型仿真液力偶合器近壁面和角渦區(qū)域高流速流場結(jié)構(gòu)更加真實,采用DES模型能夠準確體現(xiàn)角渦區(qū)域高梯度流場結(jié)構(gòu),但是采用DES模型對于主流區(qū)域的仿真結(jié)果不夠理想。
[參考文獻]
[1] 初長祥,馬文星. 工程機械液壓與液力傳動系統(tǒng)(液力卷)[M]. 北京:化學工業(yè)出版社,2015.
[2] 楊貴華. 液力傳動節(jié)能裝置:液力偶合器、液黏調(diào)速離合器[M]. 北京:化學工業(yè)出版社,2010.
[3] 劉應(yīng)誠. 液力偶合器實用手冊[M]. 北京:化學工業(yè)出版社,2008.
[4] Bai L, Fiebig M, Mitra N K. Numerical analysis of turbulent flow in fluid couplings[J]. Journal of Fluids Engineering, 1997, 119: 569-576.
[5] 張德勝,趙繼云,劉立寶,等. 基于CFD的桃形腔偶合器流場分析及結(jié)構(gòu)優(yōu)化[J]. 中國礦業(yè)大學學報,2010,39(5):687-692. Zhang Desheng, Zhao Jiyun, Liu Libao, et al. Flow field analysis and structure optimization of peach shaped chamber hydrodynamic coupling based on CFD[J] . Journal of China University of Mining & Technology, 2010, 39(5): 687-692. (in Chinese with English abstract)
[6] 柴博森,劉春寶. 基于粒子圖像測速技術(shù)的液力偶合器漩渦流動特性研究[J]. 農(nóng)業(yè)工程學報,2013,29(23):86-92. Chai Bosen, Liu Chunbao. Study on vortex flow characteristics of hydrodynamic coupling based on particle image velocimetry technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(23): 86-92. (in Chinese with English abstract)
[7] 吳賢芳,劉厚林,楊洪鑌,等. 基于粒子圖像測速的離心泵葉輪內(nèi)流動分離測試與分析[J]. 農(nóng)業(yè)工程學報,2014,30(20):51-57. Wu Xianfang, Liu Houlin, Yang Hongbin, et al. Test and analysis on flow separation in centrifugal pump impeller based on particle image velocimetry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(20): 51-57. (in Chinese with English abstract)
[8] 馬文星,何延東,劉春寶. 液力傳動研究現(xiàn)狀分析與展望[J].農(nóng)業(yè)機械學報,2008,39(7):51-55. Ma Wenxing, He Yandong, Liu Chunbao. Situation and prospects of research on hydrodynamic transmission[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(7): 51-55. (in Chinese with English abstract)
[9] 劉春寶,馬文星,朱喜林. 液力變矩器三維瞬態(tài)流場計算[J].機械工程學報,2010,46(14):161-166. Liu Chunbao, Ma Wenxing, Zhu Xilin. 3D transient calculation of internal flow field for hydrodynamic torque converter[J]. Chinese Journal of Mechanical Engineering, 2010, 46(14): 161-166. (in Chinese with English abstract)
[10] Westerweel J, Elsinga G E, Adrian R J. Particle image velocimetry for complex and turbulent flows[J]. Annual Review of Fluid Mechanics, 2013, 45(1): 409-436.
[11] Adrian R J. Particle Image Velocimetry[M]. Cambridgeshire: Cambridge University Press, 2010.
[12] Adrian R J. Particle imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23: 261-304.
[13] 唐洪武. 現(xiàn)代流動測試技術(shù)及應(yīng)用[M]. 北京:科學出版社,2009.
[14] Huitenga H, Mitra N K. Improving startup behavior of fluid couplings through modification of runner geometry: Part I-fluid flow analysis and proposed improvement[J]. Journal of Fluids Engineering, 2000(4): 683-688.
[15] Huitenga H, Mitra N K. Improving startup behavior of fluid couplings through modification of runner geometry: Part II-modification of runner geometry and its effects on the operation characteristics[J]. Journal of Fluids Engineering, 2000(4): 689-693.
[16] Magagnato F, Pritz B, Gabi M. Calculation of the VKI turbine blade with LES and DES[J]. Journal of Thermal Science, 2007, 16(4): 321-327.
[17] 褚亞旭,劉春寶,馬文星. 液力耦合器三維瞬態(tài)流場大渦模擬與特性預(yù)測[J]. 農(nóng)業(yè)機械學報,2008,39(10):169-173. Chu Yaxu, Liu Chunbao, Ma Wenxing. Large eddy simulation of the 3D transient flow field in hydrodynamic coupling and characteristics prediction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(10): 169-173. (in Chinese with English abstract)
[18] 柴博森. 液力偶合器內(nèi)部流動可視化與流速識別方法研究[D]. 長春:吉林大學,2012. Chai Bosen. Study on Visualization of Internal Flow in Hydrodynamic Coupling and Recognition Method of Flow Velocity[D]. Changchun: Jilin University, 2012. (in Chinese with English abstract)
[19] 柴博森,馬文星,盧秀泉,等. 基于粒子跟蹤測速技術(shù)的液力偶合器內(nèi)部流速測定方法[J]. 農(nóng)業(yè)工程學報,2011,27(7):140-145. Chai Bosen, Ma Wenxing, Lu Xiuquan, et al. Internal flow velocimetry of hydrodynamic coupling based on particle tracking velocimetry technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(7): 140-145. (in Chinese with English abstract)
[20] 范麗丹,馬文星,柴博森,等. 液力偶合器氣液兩相流動的數(shù)值模擬與粒子圖像測速[J]. 農(nóng)業(yè)工程學報,2011,27(11):66-70. Fan Lidan, Ma Wenxing, Chai Bosen, et al. Numerical simulation and particle image velocimetry for gas-liquid two-phase flow in hydraulic couplings [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 66-70. (in Chinese with English abstract)
[21] 雷林,王智祥,孫鵬,等. 計算流體力學k-ε二方程湍流模型應(yīng)用研究[J]. 船舶工程,2010,32(3):5-8. Lei Lin, Wang Zhixiang, Sun Peng, et al. Application study on the turbulence models of k-ε quadratic equation on CFD calculation[J]. Ship Engineering, 2010, 32(3): 5-8. (in Chinese with English abstract)
[22] 余國保,周云波. 基于大渦模擬法的液力緩速器內(nèi)流場仿真分析[J]. 機械工程與自動化,2014,2014(1):52-54. Yu Guobao, Zhou Yunbo. Internal flow field analysis based on large eddy simulation for hydrodynamic retarder[J]. Mechanical Engineering & Automation, 2014, 2014(1): 52-54. (in Chinese with English abstract)
[23] 顧春偉,陳美蘭,李雪松,等. DES模型在壓氣機葉柵中的應(yīng)用研究[J]. 工程熱物理學報,2008,29(12):2007-2010. Gu Chunwei, Chen Meilan, Li Xuesong, et al. Application of DES model in the compressor cascade flow[J]. Journal of Engineering Thermophysics, 2008, 29(12): 2007-2010. (in Chinese with English abstract)
[24] 柴博森,王玉建,劉春寶,等. 基于粒子圖像測速技術(shù)的液力變矩器渦輪內(nèi)流場測試與分析[J]. 農(nóng)業(yè)工程學報,2015,31(12):92-97. Chai Bosen, Wang Yujian, Liu Chunbao, et al. Test and analysis of internal flow field in turbine of hydrodynamic torque converter based on particle image velocimetry[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(12): 92-97. (in Chinese with English abstract)
[25] 柴博森,馬文星,劉春寶. 基于互相關(guān)算法的液力偶合器內(nèi)部流場分析[J]. 農(nóng)業(yè)機械學報,2011,42(12):38-42. Chai Bosen, Ma Wenxing, Liu Chunbao. Analysis of internal flow field in hydrodynamic coupling based on cross-correlation algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 38-42. (in Chinese with English abstract)
Analysis and experimental verification of turbulence models in flow simulation for hydrodynamic coupling under braking condition
Chai Bosen1, Xiang Yue2, Ma Wenxing1※, Yu Chao1, Kou Zunquan1
(1. College of Mechanical Science and Engineering, Jilin University, Changchun 130022, China; 2. Jilin Province Product Quality Supervision Test Institute, Changchun 130103, China)
Abstract:Hydrodynamic coupling is used for power transmission in heavy duty drives, such as power stations, ship propulsion, band conveyers, mills, and larger transport vehicles. Their hydrodynamic principle enables a low-wear torque to convert from a drive to a load. The flow in a hydrodynamic coupling is one of the most complex problems encountered in engineering fluid mechanics. The external performance of hydrodynamic coupling is determined by its internal distribution of flow field. It is very important to make a deep research on the internal distribution of flow field for the performance improvement and structural optimization in the design of hydrodynamic coupling. Numerical simulation is a main way to study the internal flow field of hydrodynamic coupling. The results of numerical simulation that are calculated by different turbulence models are quite different. In order to obtain accurate and reliable results of numerical simulation, it is a key to choose a reasonable turbulence model. The integrated computer engineering and manufacturing (ICEM) software was used to mesh the whole flow channel model of hydrodynamic coupling by hexahedral grids, and the total mesh number was 470 944 and the number of nodes was 521 887. Numerical simulation of three-dimensional unsteady turbulent flows in hydrodynamic coupling was carried out by numerically solving the Navier-Stokes equations in a rotating coordinate system. In order to analyze the applicability of different turbulence models in the calculation of flow field in hydrodynamic coupling, 3 different turbulence models (standard k-ε model, detached eddy simulation model, large eddy simulation model) were chosen to simulate the internal flow field of square cavity hydrodynamic coupling under braking condition. The quantity and quality of mesh was consistent during the numerical simulation of different turbulence models. The velocity field and vorticity field of radial section in hydrodynamic coupling were simulated and extracted through ANSYS CFX software. In addition, the transparent prototype of hydrodynamic coupling was manufactured and used in the complex flow test experiment, the internal flow field of hydrodynamic coupling under braking condition was tested based on particle image velocimetry (PIV), the characteristics of flow images were extracted by image processing technique, and the velocity field and vorticity field of radial cross-section were calculated by image cross correlation algorithm. Then numerical simulation and PIV experimental results were compared. The PIV test results were used as the evaluation criteria, and the differences of numerical simulation results by 3 kinds of turbulence models were analyzed. Moreover, the applicability of 3 turbulence models was analyzed. The results showed that the simulation results by standard k-ε model were far different from PIV experimental results, the distribution of flow field in main flow region simulated by the large eddy simulation model was much more real than others, the simulation results could be used to explain the law of multi-scale vortex movement and the mechanism of energy dissipation in the main flow region, and the high-gradient flow field distribution of near-wall area and corner area could be captured more accurately by the detached eddy simulation model. The results of analysis will provide a basis for accurate calculation of flow field and performance prediction of hydrodynamic coupling.
Keywords:computer simulation; visualization; models; hydrodynamic coupling; particle image velocimetry; flow velocity field; vorticity field; vortex
通信作者:※馬文星,男(漢族),吉林梨樹人,教授,博士生導(dǎo)師,研究方向為液力傳動與自動變速。長春吉林大學機械科學與工程學院,130022。Email:mawx@jlu.edu.cn
作者簡介:柴博森,男(漢族),吉林長春人,講師,研究方向為液力傳動與自動變速。長春吉林大學機械科學與工程學院,130022。
基金項目:國家自然科學基金資助項目(51405184);吉林大學基本科研業(yè)務(wù)費青年教師創(chuàng)新項目(450060501267)
收稿日期:2015-08-21
修訂日期:2015-12-10
中圖分類號:TH137.331
文獻標志碼:A
文章編號:1002-6819(2016)-03-0034-07
doi:10.11975/j.issn.1002-6819.2016.03.006