武成,楊民
(皖南醫(yī)學(xué)院弋磯山醫(yī)院創(chuàng)傷骨科,安徽蕪湖241001)
?
缺氧及缺氧再復(fù)氧環(huán)境對(duì)成骨細(xì)胞影響的研究進(jìn)展
武成,楊民*
(皖南醫(yī)學(xué)院弋磯山醫(yī)院創(chuàng)傷骨科,安徽蕪湖241001)
[摘要]隨著社會(huì)老年化的加劇,老年性骨質(zhì)疏松癥是高齡患者易發(fā)生創(chuàng)傷后骨折的主要原因之一。隨著年齡的增加,老年人血管彈性及血紅蛋白攜氧能力也逐步下降,缺血性股骨頭壞死也因此易在老年人群中發(fā)生。而成骨細(xì)胞代謝的改變是骨質(zhì)疏松癥和缺血性股骨頭壞死的主要因素。近年來不少學(xué)者已對(duì)缺氧以及缺氧再復(fù)氧條件下成骨細(xì)胞的生理學(xué)改變做了詳盡的研究,本文就近年來缺氧及缺氧再復(fù)氧環(huán)境對(duì)成骨細(xì)胞影響的研究進(jìn)展作一綜述。
[關(guān)鍵詞]缺氧;缺氧復(fù)氧;成骨細(xì)胞;老年性骨質(zhì)疏松癥
老年性骨質(zhì)疏松癥是一種常見的代謝性骨病,其主要特點(diǎn)為骨組織量減少和骨脆性增加,骨組織減少的主要原因是成骨細(xì)胞作用被抑制,破骨細(xì)胞活性增加,成骨細(xì)胞的作用被抑制占主要地位。任何因素使得成骨細(xì)胞成骨作用被抑制,都將導(dǎo)致骨形成降低,導(dǎo)致骨量丟失。研究表明骨質(zhì)疏松癥的發(fā)生也與血管損傷導(dǎo)致的機(jī)體缺氧環(huán)境有關(guān)[1-4]。缺氧常出現(xiàn)在血流中斷或減少的組織中,骨折常伴有血管損傷,血流中斷時(shí)骨折斷端氧分壓顯著降低,進(jìn)而限制了成骨細(xì)胞的生長(zhǎng)和對(duì)骨組織的修復(fù)[5-10]。本文主要通過查閱近年來在缺氧和缺氧后復(fù)氧環(huán)境對(duì)成骨細(xì)胞的影響及其研究進(jìn)展對(duì)其展開綜述。
1缺氧對(duì)成骨細(xì)胞的影響
1.1缺氧對(duì)成骨細(xì)胞增殖及相關(guān)因子表達(dá)的影響成骨細(xì)胞以骨小梁為框架生長(zhǎng),當(dāng)骨內(nèi)血供發(fā)生變化時(shí),其可較快察覺,且其對(duì)氧體積分?jǐn)?shù)下降的反應(yīng)也十分敏感。已有研究證明:缺氧導(dǎo)致成骨細(xì)胞不能產(chǎn)生足夠的ATP維持細(xì)胞基本功能[11]。導(dǎo)致成骨細(xì)胞在增殖時(shí)不能獲得充足的能量供應(yīng),表現(xiàn)為抑制現(xiàn)象,并且缺氧時(shí)間越長(zhǎng),其線粒體產(chǎn)生ATP的量越少,其增殖能力也越低。顧九君等[12]在氧分壓為2.5 mmHg的條件下得出缺氧組的成骨細(xì)胞增殖率明顯低于常氧組。其測(cè)定成骨細(xì)胞增殖功能實(shí)驗(yàn)的結(jié)果同樣表明:缺氧環(huán)境下成骨細(xì)胞的增殖表現(xiàn)為抑制,并且對(duì)不同缺氧時(shí)間組之間進(jìn)行比較得出,缺氧時(shí)間越長(zhǎng),成骨細(xì)胞的增殖能力下降越明顯。與Ma等[13]在缺氧環(huán)境下培養(yǎng)成骨細(xì)胞所得出的實(shí)驗(yàn)結(jié)果基本一致。Utting等[14]在2%氧濃度中培養(yǎng)大鼠成骨細(xì)胞大于18 d,發(fā)現(xiàn)缺氧在抑制成骨細(xì)胞增殖和堿性磷酸酶(alkaline phosphatase,ALP)活性的同時(shí),減少成骨細(xì)胞ALP和骨鈣素(osteocalcin,BGP)mRNA的表達(dá)。體外培養(yǎng)的成骨細(xì)胞在缺氧環(huán)境下其代謝反應(yīng)變化除上述的ALP和BGP mRNA外,還表現(xiàn)為血管內(nèi)皮生長(zhǎng)因子(VEGF)、轉(zhuǎn)化生長(zhǎng)因子β1(TGF-β1)和胰島素生長(zhǎng)因子2(insulin-like growth factor 2,IGF-2)表達(dá)的下降[15-17]。這反映了缺氧在基因水平影響成骨細(xì)胞相關(guān)因子的表達(dá)。戴俊峰等[18]的實(shí)驗(yàn)證明:在缺氧處理的12 h內(nèi)成骨細(xì)胞VEGF mRNA的表達(dá)量隨缺氧時(shí)間延長(zhǎng)而增加,12 h其表達(dá)量最高,在缺氧處理24 h后開始逐漸下降,缺氧處理48 h后降至與常氧組一致。但同時(shí)也有相關(guān)研究表明,短時(shí)間的缺氧處理可促進(jìn)成骨細(xì)胞的增殖及相關(guān)因子的表達(dá)。Warren等[19]的研究表明短期缺氧(5%氧濃度中培養(yǎng)小于96 h)可促進(jìn)體外培養(yǎng)的成骨細(xì)胞的生成,上調(diào)膠原Ⅰ、膠原Ⅲ mRNA和TGF-β1 mRNA的表達(dá),這可能是缺氧環(huán)境下出現(xiàn)的適應(yīng)性反應(yīng),因?yàn)槎唐谇疫m度缺氧刺激下可使成骨細(xì)胞反應(yīng)性上調(diào)相關(guān)因子的表達(dá)以維持其正常代謝。關(guān)鍵等[20]研究也發(fā)現(xiàn):在體外培養(yǎng)成骨細(xì)胞時(shí),缺氧組成骨細(xì)胞VEGF表達(dá)量較常氧組增加,并且在缺氧處理后的9 h內(nèi),VEGF的表達(dá)量隨缺氧時(shí)間的延長(zhǎng)而增加,隨后逐漸降至與常氧組一致;缺氧組成骨細(xì)胞TGF-β1的表達(dá)量在缺氧后3 h內(nèi)顯著增加,之后也逐漸降至正常水平。自以上諸多研究可以得出:長(zhǎng)時(shí)間缺氧可抑制成骨細(xì)胞增殖及VEGF、TGF-β1等相關(guān)因子的表達(dá),而短時(shí)間缺氧可反應(yīng)性刺激成骨細(xì)胞使其VEGF、TGF-β1等相關(guān)因子表達(dá)增加。
1.2缺氧對(duì)成骨細(xì)胞凋亡的影響已有研究表明,細(xì)胞凋亡主要是通過Caspase分子家族參與的死亡受體依賴途徑和Bcl-2分子參與的線粒體依賴途徑2種主要途徑。缺氧可導(dǎo)致成骨細(xì)胞凋亡,而成骨細(xì)胞凋亡又是骨質(zhì)疏松癥和骨壞死的主要病因。有研究證明缺氧可促進(jìn)成骨細(xì)胞凋亡并抑制成骨性分化[21-22]。顧九君等[23]的研究發(fā)現(xiàn),在體外氧濃度為0.3%的條件下培養(yǎng)大鼠成骨細(xì)胞時(shí),缺氧環(huán)境可抑制其增殖,促進(jìn)其凋亡,同時(shí)觀察到缺氧時(shí)間越長(zhǎng)成骨細(xì)胞凋亡率越高。楊峰等[24]的研究證實(shí)在缺氧處理后的成骨細(xì)胞大量表達(dá)Caspase-3分子,并且缺氧時(shí)間越長(zhǎng)其表達(dá)量越高;而Bcl-2的表達(dá)則與Caspase-3恰恰相反。其中Caspase-3分子的作用是促進(jìn)細(xì)胞凋亡,而Bcl-2分子的作用則相反。進(jìn)而證實(shí)了缺氧促進(jìn)成骨細(xì)胞凋亡是通過Caspase-3和Bcl-2 2種受體依賴途徑來實(shí)現(xiàn)的。諸多研究可以得出:缺氧促進(jìn)成骨細(xì)胞凋亡。并且研究發(fā)現(xiàn)缺氧時(shí)間不同對(duì)成骨細(xì)胞凋亡的影響不同,缺氧時(shí)間越長(zhǎng),成骨細(xì)胞凋亡率越高。
1.3缺氧對(duì)骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stem cell,BMSCs)向成骨細(xì)胞分化的影響大量研究已經(jīng)證明:BMSCs在核心結(jié)合因子α1(core-binding factor α1,Cbfαl)的誘導(dǎo)下,可定向分化為成骨細(xì)胞。近年來關(guān)于氧濃度對(duì)BMSCs功能影響的研究發(fā)現(xiàn),不同氧濃度條件下體外培養(yǎng)的BMSCs的分化呈現(xiàn)多樣化的效應(yīng)。Malladi等[25]在誘導(dǎo)BMSCs向成骨細(xì)胞系分化時(shí)發(fā)現(xiàn),在氧濃度為21%條件下,成骨細(xì)胞標(biāo)志性基因骨鈣蛋白(ONC)、骨涎蛋白(BSP)及ALP的表達(dá)活性上升;但在氧濃度為3%條件下時(shí),上述基因及蛋白的表達(dá)受到明顯阻滯;在誘導(dǎo)BMSCs向成骨細(xì)胞分化并長(zhǎng)期培養(yǎng)時(shí),當(dāng)氧含量為21%時(shí)可以檢測(cè)到大量礦物質(zhì)沉積,但當(dāng)氧含量為3%時(shí)幾乎檢測(cè)不出礦物質(zhì)沉積。李寧等[26]觀察不同氧濃度條件下BMSCs向成骨細(xì)胞分化影響的實(shí)驗(yàn)中發(fā)現(xiàn):氧濃度越高BMSCs向成骨細(xì)胞和脂肪細(xì)胞分化越快,而低氧濃度則恰恰相反。但金小嵐等[27]的實(shí)驗(yàn)結(jié)果表明:缺氧環(huán)境下BMSCs向脂肪細(xì)胞和成骨細(xì)胞的分化表現(xiàn)為完全相反的結(jié)果,對(duì)前者有明顯的抑制作用,對(duì)后者則表現(xiàn)為促進(jìn)作用。以上不同學(xué)者研究結(jié)果的不同,可能與實(shí)驗(yàn)研究方向不同及實(shí)驗(yàn)的具體操作方法的不同有關(guān),所以缺氧誘導(dǎo)BMSCs向成骨細(xì)胞的分化及其具體分子機(jī)制還有待于進(jìn)一步研究。
2缺氧再復(fù)氧對(duì)成骨細(xì)胞的影響
骨壞死在臨床上較為常見,其中創(chuàng)傷性骨壞死最為常見,其主要的發(fā)生機(jī)制為骨折后斷端的缺血性損傷。細(xì)胞缺血得到糾正后,但細(xì)胞損傷并未停止[28-29]。這說明,在細(xì)胞缺血缺氧后雖然及時(shí)恢復(fù)其血流及氧供應(yīng),但這會(huì)對(duì)細(xì)胞造成比缺血缺氧更為嚴(yán)重的損傷,即缺血再灌注損傷(ischemia-reperfusion injury,IRI)。目前認(rèn)為IRI的發(fā)生主要是細(xì)胞內(nèi)氧自由基過量和鈣離子超載所致[30]。細(xì)胞內(nèi)氧自由基過量與鈣離子超載既互為因果又相互作用,并且持續(xù)加重對(duì)細(xì)胞的損害。IRI的3大主要機(jī)制已被多個(gè)研究證實(shí),即氧自由基過量、鈣離子超載和白細(xì)胞激活[31-32]。三者共同導(dǎo)致了細(xì)胞在缺血再灌注后損傷較缺血時(shí)加重。創(chuàng)傷后骨壞死在臨床上較為常見,IRI的相關(guān)機(jī)制中氧自由基的代謝參與了創(chuàng)傷性骨壞死的發(fā)生發(fā)展過程。IRI對(duì)成骨細(xì)胞的影響的研究在國內(nèi)外相對(duì)較少,Baik等[33]以缺氧再復(fù)氧模型模擬缺血再灌注的研究表明,成骨細(xì)胞在缺氧再復(fù)氧處理后,其細(xì)胞活力明顯低于常氧對(duì)照組,且相關(guān)因子的表達(dá)也降低。王福生等[14]研究缺氧在復(fù)氧條件下培養(yǎng)的成骨細(xì)胞與正常成骨細(xì)胞相比其增殖率明顯下降。但Hiyama等[35]在臨床研究阻塞性睡眠呼吸暫停(obstructive sleep apnea,OSA)時(shí)發(fā)現(xiàn),實(shí)驗(yàn)組骨吸收標(biāo)記物與對(duì)照組相比明顯增多,而骨形成標(biāo)記物相比對(duì)照組明顯降低,且OSA患者缺氧越重,檢測(cè)出的骨吸收標(biāo)記物越多,骨形成標(biāo)記物越少。其進(jìn)一步研究發(fā)現(xiàn):經(jīng)過連續(xù)3個(gè)月持續(xù)氣道正壓通氣治療后,OSA患者骨代謝指標(biāo)可恢復(fù)正常水平。該研究提示臨床研究中成骨細(xì)胞復(fù)氧后并沒有出現(xiàn)IRI類似的損傷。上述臨床實(shí)驗(yàn)研究與體外成骨細(xì)胞培養(yǎng)實(shí)驗(yàn)研究結(jié)果的不同可能與缺血缺氧的條件不同等有關(guān)。
3小結(jié)
缺氧作為導(dǎo)致骨質(zhì)疏松癥及骨壞死的主要原因之一,其作用表現(xiàn)為顯著影響人體成骨細(xì)胞的代謝。不同的實(shí)驗(yàn)得出的結(jié)果不同,可能與研究條件和研究者本身有關(guān)。但總體認(rèn)為,短期缺氧可導(dǎo)致成骨細(xì)胞產(chǎn)生應(yīng)激反應(yīng),在早期發(fā)生代償致VEGF及TGF-β1等相關(guān)因子表達(dá)增加,但長(zhǎng)時(shí)間缺氧環(huán)境下成骨細(xì)胞的增殖及相關(guān)因子的表達(dá)會(huì)受到明顯的抑制,細(xì)胞的凋亡過程也加快。成骨細(xì)胞缺血再灌注(缺氧再復(fù)氧模型)的相關(guān)研究結(jié)果國內(nèi)外并不多,且臨床與細(xì)胞培養(yǎng)實(shí)驗(yàn)結(jié)果也不盡相同,所以缺氧復(fù)氧對(duì)成骨細(xì)胞代謝的影響及其分子機(jī)制的研究還有待于深入研究,從而為防治骨質(zhì)疏松癥及骨壞死等臨床疾病提供堅(jiān)實(shí)的理論依據(jù)。
參考文獻(xiàn):
[1]Park JH,Park BH,Kim HK,et al.Hypoxia decreases Runx2/Cbfa1 expression in human osteoblast-like cells[J].Mol Cell Endocrinol,2002,192(1-2):197-203.
[2]Pandit RS,Glueck CJ.Testosterone,anastrozole,factor V Leiden heterozygosity and osteonecrosis of the jaws[J].Blood Coagul Fibrinolysis,2014,25(3):286-288.
[3]趙海燕,夏亞一,康鵬德.股骨頭壞死病因與發(fā)病機(jī)制研究進(jìn)展[J].中國矯形外科雜志,2009,17(8):604-607.
[4]Chin KY,Ima-Nirwana S.Can soy prevent male osteoporosis? A review of the current evidence[J].Curr Drug Targets,2013,14(14):1632-1641.
[5]Lewis JS,Lee JA,Underwood JC,et al.Macrophage responses to hypoxia:relevance to disease mechanisms[J].J Leukoc Biol,1999,66(6):889-900.
[6]Piechota-Polanczyk A,F(xiàn)ichna J.Review article:the role of oxidative stress in pathogenesis and treatment of inflammatory bowel diseases[J].Naunyn-Schmiedebergs Arch Pharmacol,2014,387(7):605-620.
[7]Harrison JS,Rameshwar P,Chang V,et al.Oxygen saturation in the bone marrow of healthy volunteers[J].Blood,2002,99(1):394.
[8]Wang Y,Wan C,Gilbert SR,et al.Oxygen sensing and osteogenesis[J].Ann N Y Acad Sci,2007,1117:1-11.
[9]Hossain M,Ramavath A,Kulangara J,et al.Current management of isolated sternal fractures in the UK:time for evidence based practice? A cross-sectional survey and review of literature[J].Injury,2010,41(5):495-498.
[10]Gordillo GM,Sen CK.Revisiting the essential role of oxygen in wound healing[J].Am J Surg,2003,186(3):259-263.
[11]Leijten J,Moreira Teixeira LS,Landman EB,et al.Hypoxia inhibits hypertrophic differentiation and endochondral ossification in explanted tibiae[J].Plos One,2012,7(11):e49896.
[12]顧九君,劉興炎,白孟海,等.缺氧對(duì)大鼠成骨細(xì)胞增殖、分化及礦化功能的影響[J].實(shí)用醫(yī)學(xué)雜志,2007,23(8):1121-1123.
[13]Ma HP,Ma XN,Ge BF,et al.Icariin attenuates hypoxia-induced oxidative stress and apoptosis in osteoblasts and preserves their osteogenic differentiation potential in vitro[J].Cell Prolif,2014,47(6):527-539.
[14]Utting JC,Robins SP,Brandao-Burch A,et al.Hypoxia inhibits the growth,differentiation and bone-forming capacity of rat osteoblasts[J].Exp Cell Res,2006,312(10):1693-1702.
[15]Lee YA,Ji HI,Lee SH,et al.The role of adiponectin in the production of IL-6,IL-8,VEGF and MMPs in human endothelial cells and osteoblasts:implications for arthritic joints[J].Exp Mol Med,2014,46:e72.
[16]Browne G,Nesbitt H,Ming L,et al.Bicalutamide-induced hypoxia potentiates RUNX2-mediated Bcl-2 expression resulting in apoptosis resistance[J].Br J Cancer,2012,107(10):1714-1721.
[17]Maes C,Carmeliet G,Schipani E.Hypoxia-driven pathways in bone development,regeneration and disease[J].Nat Rev Rheumatol,2012,8(6):358-366.
[18]戴俊峰,王海燕,王稚英.缺氧誘導(dǎo)成骨細(xì)胞VEGF的表達(dá)[J].錦州醫(yī)學(xué)院學(xué)報(bào),2003,24(6):56-57.
[19]Warren SM,Steinbrech DS,Mehrara BJ,et al.Hypoxia regulates osteoblast gene expression[J].J Surg Res,2001,99(1):147-155.
[20]關(guān)鍵,王健平,車笑非,等.缺氧條件對(duì)成骨細(xì)胞VEGF和TGF-β1表達(dá)影響的實(shí)驗(yàn)研究[J].中國修復(fù)重建外科雜志,2008,22(8):984-988.
[21]D’ippolito G,Diabira S,Howard GA,et al.Low oxygen tension inhibits osteogenic differentiation and enhances stemness of human MIAMI cells[J].Bone,2006,39(3):513-522.
[22]Zahm AM,Bucaro MA,Srinivas V,et al.Oxygen tension regulates preosteocyte maturation and mineralization[J].Bone,2008,43(1):25-31.
[23]顧九君,劉興炎,盛俊東,等.缺氧對(duì)大鼠成骨細(xì)胞增殖及凋亡的影響[J].臨床軍醫(yī)雜志,2007,35(2):171-173.
[24]楊峰,張震,湯欣.低氧誘導(dǎo)因子-1α介導(dǎo)成骨細(xì)胞凋亡的實(shí)驗(yàn)研究[J].中國傷殘醫(yī)學(xué),2012,20(1):21-24.
[25]Malladi P,Xu YM,Chiou M,et al.Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells[J].Am J Physiol Cell Physiol,2006,290(4):C1139-C1146.
[26]李寧,吳桂英,李啟明,等.不同氧濃度微環(huán)境對(duì)大鼠骨髓間充質(zhì)干細(xì)胞成骨及成脂肪分化的影響[J].重慶醫(yī)學(xué),2009,38(19):2448-2450.
[27]金小嵐,郎紅梅,萬勇,等.不同氧濃度對(duì)骨髓基質(zhì)細(xì)胞向成骨細(xì)胞分化的影響[J].中國病理生理雜志,2010,26(5):982-986.
[28]Liu B,Ma ZY,Wu G,et al.Butyrate protects rats from hepatic ischemia/reperfusion injury[J].Int J Clin Exp Med,2015,8(4):5406-5413.
[29]Fouad AA,Jresat I.Therapeutic potential of cannabidiol against ischemia/reperfusion liver injury in rats[J].Eur J Pharmacol,2011,670(1):216-223.
[30]譚文波,李奉權(quán).富硒板黨對(duì)大鼠心肌缺血/再灌注損傷的保護(hù)作用及其機(jī)制[J].中國應(yīng)用生理學(xué)雜志,2015,31(2):147-149.
[31]Lapi D,Colantuoni A.Remodeling of cerebral microcirculation after ischemia-reperfusion[J].J Vasc Res,2015,52(1):22-31.
[32]Guo Y,F(xiàn)eng L,Zhou Y,et al.Systematic review with meta-analysis:HIF-1α attenuates liver ischemia-reperfusion injury[J].Transplant Rev (Orlando),2015,29(3):127-134.
[33]Baik SW,Park BS,Kim YH,et al.Effects of remifentanil preconditioning on osteoblasts under hypoxia-reoxygenation condition[J].Int J Med Sci,2015,12(7):583-589.
[34]王福生,王立德,谷玲,等.丹參對(duì)人成骨細(xì)胞缺血-再灌注損傷的保護(hù)作用[J].中國現(xiàn)代醫(yī)學(xué)雜志,2000,10(5):1-3.
[35]Hiyama E,Kodama T,Shinbara K,et al.Telomerase activity is detected in pancreatic cancer but not in benign tumors[J].Cancer Res,1997,57(2):326-331.
(文敏編輯)
Recent Advances in the Effects of Hypoxia and Hypoxia Reoxygenation on Osteoblasts
WU Cheng,YANG Min*
(Department of Orthopedics and Traumatology,Yijishan Hospital,Wannan Medical College,Wuhu 241001,China)
[Abstract]With the aging of society intensifies,senile osteoporosis has became an important factor of fractures after the trauma among the elderlies.Along with the age increasing,vascular elasticity and the oxygen-carrying ability of the elderlies has gradually decreased.Therefore,avascular osteonecrosis is more likely to be occurred in the elderlies.The changes of osteoblasts metabolism play the major role in osteoporosis and avascular osteonecrosis.Recently,a lot of studies have been done about metabolism of osteoblasts cells under the conditions of hypoxia and hypoxia-reoxygenation.This review will summarize the recent advances in the effects of hypoxia and hypoxia-reoxygenation on osteoblasts.
[Key words]hypoxa;hypoxia-reoxygenation;osteoblasts;senile osteoporosis
[收稿日期]2015-11-30
doi:10.16753/j.cnki.1008-2344.2016.02.017
[中圖分類號(hào)]R65
[文獻(xiàn)標(biāo)識(shí)碼]A
[文章編號(hào)]1008-2344(2016)02-0106-03
[通訊作者]楊民(1971—),男(漢),主任醫(yī)師,研究方向:脊柱外科,組織工程.E-mail:pkuyang@hotmail.com
[基金項(xiàng)目]國家自然科學(xué)基金(No.81341054;81171732);皖南醫(yī)學(xué)院人才引進(jìn)基金(No.YJRC2009010)