何俊君,劉龍飛 ,周賢
(南華大學(xué)附屬南華醫(yī)院 ,湖南衡陽(yáng)421002 )
?
·綜述·
結(jié)直腸癌中上皮間質(zhì)化相關(guān)轉(zhuǎn)錄調(diào)控和信號(hào)通路研究進(jìn)展
何俊君,劉龍飛 ,周賢
(南華大學(xué)附屬南華醫(yī)院 ,湖南衡陽(yáng)421002 )
上皮間質(zhì)化(EMT)在結(jié)直腸癌的轉(zhuǎn)移、侵襲中起重要作用。EMT可通過(guò)核心轉(zhuǎn)錄因子、Brachyury蛋白、叉頭轉(zhuǎn)錄因子等轉(zhuǎn)錄因子調(diào)節(jié)E-鈣蛋白和波形蛋白的表達(dá)來(lái)調(diào)控結(jié)直腸癌的轉(zhuǎn)移和侵襲;也可通過(guò)轉(zhuǎn)化生長(zhǎng)因子β信號(hào)通路、Wnt信號(hào)回路、RAS/ERK1/2 信號(hào)環(huán)路、PI3K/AKT信號(hào)環(huán)路等信號(hào)通路調(diào)控結(jié)直腸癌的轉(zhuǎn)移和侵襲。
上皮間質(zhì)化;結(jié)直腸癌;信號(hào)通路;轉(zhuǎn)錄調(diào)控
結(jié)直腸癌的發(fā)病率居全球常見(jiàn)惡性腫瘤第3位[1], 40%~50%結(jié)直腸癌患者確診時(shí)已發(fā)生遠(yuǎn)處轉(zhuǎn)移,且復(fù)發(fā)率較高,5年生存率極低[2]。上皮間質(zhì)化(EMT)是公認(rèn)的介導(dǎo)腫瘤播散的重要因素之一[3], 上皮細(xì)胞發(fā)生EMT時(shí),細(xì)胞間連接黏附成分、細(xì)胞基質(zhì)、基質(zhì)金屬蛋白酶(MMP)均降低,細(xì)胞骨架重構(gòu)蛋白明顯增多。E-鈣蛋白表達(dá)降低標(biāo)志細(xì)胞發(fā)生EMT,腫瘤分化程度低,且更易發(fā)生淋巴結(jié)轉(zhuǎn)移,提示患者預(yù)后不良。波形蛋白的表達(dá)升高可增加患者腫瘤遠(yuǎn)處轉(zhuǎn)移概率,提示患者預(yù)后不良。因此,E-鈣蛋白低表達(dá)及波形蛋白高表達(dá)被認(rèn)為是上皮細(xì)胞經(jīng)EMT過(guò)程促進(jìn)腫瘤遷移侵襲的可靠預(yù)測(cè)指標(biāo)。研究發(fā)現(xiàn),EMT在結(jié)直腸癌、乳腺癌、前列腺的轉(zhuǎn)移及侵襲過(guò)程中發(fā)揮重要作用[4]。本文就EMT相關(guān)的轉(zhuǎn)錄調(diào)控及信號(hào)通路在結(jié)直腸癌轉(zhuǎn)移、侵襲中的作用作一綜述。
研究發(fā)現(xiàn),EMT主要通過(guò)3類核心轉(zhuǎn)錄因子直接或者間接地下調(diào)E-鈣蛋白的表達(dá)來(lái)調(diào)控結(jié)直腸癌的發(fā)展。第1類是SNAIL鋅指蛋白家族的轉(zhuǎn)錄因子,包括SNAIL1、SNAIL2[5];第2類是E盒結(jié)合鋅指蛋白同源蛋白家族ZEB1和ZEB2[6];第3類是堿性螺旋-環(huán)-螺旋家族轉(zhuǎn)錄因子,包括TWIST1、TWIST2和E12[7]。研究發(fā)現(xiàn),85%結(jié)直腸癌離體組織標(biāo)本中存在TWIST1表達(dá)升高,SNAIL1 和SLUG的表達(dá)并未明顯升高; 尿激酶型纖溶酶原激活劑(uPA)通過(guò)促進(jìn)EMT相關(guān)的細(xì)胞外基質(zhì)的降解來(lái)促進(jìn)EMT的過(guò)程,而ZEB1則具有激活uPA 的潛能[8]。SLUG 和ZEB1可下調(diào)E-鈣蛋白的表達(dá),導(dǎo)致腫瘤的浸潤(rùn)、遷移能力增強(qiáng),可明顯縮短患者生存時(shí)間[9]。ZEB2表達(dá)的上調(diào)促進(jìn)腫瘤的局部浸潤(rùn)及遠(yuǎn)處轉(zhuǎn)移。ZEB1對(duì)SLUG、ZEB2都具有協(xié)同調(diào)控作用。同時(shí)研究發(fā)現(xiàn),SLUG與波形蛋白的表達(dá)呈正相關(guān),可成為腫瘤遠(yuǎn)處轉(zhuǎn)移和血管生長(zhǎng)的預(yù)測(cè)指標(biāo)[10]。Zhang等[11]采用TWIST1免疫組化染色和熒光原位雜交技術(shù)對(duì)人結(jié)直腸癌細(xì)胞進(jìn)行染色體易位分析,發(fā)現(xiàn)85%的TWIST1陽(yáng)性的結(jié)腸癌細(xì)胞中都發(fā)現(xiàn)有間質(zhì)細(xì)胞表型,TWIST1的過(guò)表達(dá)與結(jié)直腸癌對(duì)淋巴結(jié)的浸潤(rùn)能力及患者不良預(yù)后均呈正相關(guān),可能是腫瘤微環(huán)境中的低氧誘導(dǎo)因子1α誘導(dǎo)了TWIST1的高表達(dá)。
許多其他種類的EMT轉(zhuǎn)錄因子與結(jié)直腸癌的發(fā)展也有著密切的關(guān)系。EMT可通過(guò)鼠短尾突變體表型蛋白36(Brachyury)蛋白、敗醬草多糖(AP4)、叉頭轉(zhuǎn)錄因子、T細(xì)胞因子4、 胚胎干細(xì)胞關(guān)鍵蛋白、配對(duì)相關(guān)同源框-1、高遷移率蛋白家族A1、 鋅指蛋白281等轉(zhuǎn)錄因子調(diào)控結(jié)直腸癌的發(fā)生發(fā)展[12]。Brachyury蛋白和AP4可直接結(jié)合上皮鈣粘連素基因的啟動(dòng)子,觸發(fā)結(jié)直腸癌細(xì)胞EMT;其他轉(zhuǎn)錄因子則首先與核心轉(zhuǎn)錄因子結(jié)合,通過(guò)結(jié)合后復(fù)合物來(lái)下調(diào)E-鈣蛋白的表達(dá),進(jìn)而調(diào)控結(jié)直腸癌的轉(zhuǎn)移、侵襲。無(wú)論其具體機(jī)制如何,在發(fā)生EMT的所有細(xì)胞中共同的調(diào)控機(jī)制是抑制E-鈣蛋白表達(dá)、促進(jìn)波形蛋白的表達(dá)增高。
腫瘤細(xì)胞發(fā)生EMT時(shí)不僅需要各種轉(zhuǎn)錄因子,更需要有細(xì)胞內(nèi)外的多條信號(hào)通路參與才能完成。研究發(fā)現(xiàn),結(jié)直腸癌發(fā)生EMT相關(guān)的主要信號(hào)通路有轉(zhuǎn)錄生長(zhǎng)因子(TGF)β信號(hào)通路、Wnt信號(hào)回路、RAS/ERK1/2 信號(hào)環(huán)路、PI3K/AKT信號(hào)環(huán)路等。
2.1TGF-β信號(hào)通路EMT可通過(guò)調(diào)控TGF-β信號(hào)通路調(diào)控結(jié)直腸癌的轉(zhuǎn)移及侵襲。細(xì)胞膜上TGF-β配體TbRⅠ與TbRⅡ受體結(jié)合成二聚體可激活Smad蛋白發(fā)生磷酸化,最終調(diào)控E-鈣蛋白表達(dá)降低。Smad蛋白定位于細(xì)胞核內(nèi),在結(jié)直腸癌的發(fā)生、發(fā)展中起轉(zhuǎn)錄調(diào)控作用。研究發(fā)現(xiàn),已發(fā)生轉(zhuǎn)移的結(jié)直腸癌患者癌組織中Smad4基因發(fā)生突變、E-鈣蛋白表達(dá)降低、β鏈蛋白表達(dá)升高[13]。Voomeveld等[14]研究發(fā)現(xiàn),敲除Smad4基因的結(jié)直腸癌細(xì)胞株侵襲以及其遠(yuǎn)處轉(zhuǎn)移能力明顯強(qiáng)于未敲減細(xì)胞株,添加TGF-β受體激酶抑制劑孵育后,敲除Smad4基因的結(jié)直腸癌細(xì)胞株出現(xiàn)EMT。說(shuō)明Smad4可通過(guò)抑制TGF-β信號(hào)環(huán)路逆轉(zhuǎn)結(jié)直腸癌細(xì)胞發(fā)生EMT,其具體機(jī)制可能是與葡萄糖轉(zhuǎn)運(yùn)蛋白1促進(jìn)MMP9的表達(dá)有關(guān)。Smad4還可抑制SW480細(xì)胞的浸潤(rùn),也能將具有間質(zhì)表型的SW480細(xì)胞逆轉(zhuǎn)。此外,當(dāng)內(nèi)源性TGF-β下調(diào)時(shí),Smad4的表達(dá)明顯增加,這說(shuō)明自分泌的TGF-β與結(jié)直腸癌中的EMT有著緊密的聯(lián)系。Smad4也是骨形態(tài)形成蛋白(BMP)信號(hào)通路的重要組成部分。當(dāng)Smad4失活時(shí)細(xì)胞會(huì)觸發(fā)EMT,加強(qiáng)BMP的促腫瘤功能。因此,Smad4可通過(guò)TGF-β通路和BMP回路介導(dǎo)結(jié)直腸癌細(xì)胞發(fā)生EMT[15]。同時(shí),Smad4也可以被認(rèn)為是TGF-β信號(hào)環(huán)路與其他通路共同促進(jìn)EMT的關(guān)鍵環(huán)節(jié)。
2.2 Wnt信號(hào)通路Wnt信號(hào)通路也是EMT影響結(jié)直腸癌發(fā)展不可或缺的信號(hào)通路,其典型突變是在結(jié)直腸癌中APC或β-鏈蛋白(β-catenin)發(fā)生的功能性突變。β-catenin轉(zhuǎn)錄復(fù)合物可直接激活ZEB1,上調(diào)MMP9的表達(dá)。DKK1是Wnt信號(hào)通路的一種強(qiáng)力抑制劑,而上調(diào)DDK1則能通過(guò)抑制EMT進(jìn)而抑制結(jié)直腸癌的進(jìn)展。上皮源性細(xì)胞中β-catenin相關(guān)基因發(fā)生功能性突變時(shí),β-catenin在細(xì)胞內(nèi)表達(dá)升高,異常激活Wnt信號(hào)通路,導(dǎo)致細(xì)胞內(nèi)E-鈣蛋白表達(dá)降低[16]。Wnt信號(hào)通路轉(zhuǎn)導(dǎo)蛋白TCF4的轉(zhuǎn)錄復(fù)合物可直接激活ZEB1,同時(shí)上調(diào)MT1-MMP9、LAMC2、 DKK1等與結(jié)直腸癌侵襲相關(guān)的基因表達(dá)[17]。Axin2是一種典型的Wnt通路抑制因子,能通過(guò)上調(diào)SNAIL1來(lái)促進(jìn)結(jié)直腸癌侵襲轉(zhuǎn)移[18]??赡茉?yàn)锳xin2能激活其他信號(hào)通路來(lái)介導(dǎo)結(jié)直腸癌中EMT的發(fā)生、發(fā)展。SNAIL1能激活Wnt靶基因,促進(jìn)β-catenin高表達(dá),說(shuō)明SNAIL1對(duì)Wnt通路存在正反饋調(diào)節(jié)。
2.3RAS/ERK1/2 信號(hào)通路RAS/ERK1信號(hào)通路是被公認(rèn)的與結(jié)直腸癌EMT存在明顯相關(guān)性的信號(hào)通路。RAS與PI3K通路都是胞膜受體絡(luò)氨酸激酶(RTKs)的下游通路。既往研究發(fā)現(xiàn),結(jié)直腸腺癌細(xì)細(xì)胞中RAS 基因的高表達(dá)可干擾組蛋白的共價(jià)修飾,下調(diào)Cyclin D1蛋白和 E-鈣蛋白表達(dá),最終導(dǎo)致細(xì)胞發(fā)生EMT[19]。研究發(fā)現(xiàn),RAS通路可與TGF-β信號(hào)通路協(xié)同促進(jìn)結(jié)直腸癌的侵襲和轉(zhuǎn)移,SLUG 是RAS信號(hào)通路的一個(gè)轉(zhuǎn)錄激活因子,其可能是治療因RAS基因突變誘導(dǎo)的結(jié)腸癌的一個(gè)有效靶點(diǎn)。有報(bào)道稱,E-鈣蛋白低表達(dá)的結(jié)直腸癌細(xì)胞的轉(zhuǎn)移侵襲能力均通過(guò)激活RAS癌基因下游的RAS相似物 GTP酶來(lái)調(diào)節(jié)[20]。已證實(shí)在腸上皮細(xì)胞中激活MEK1可導(dǎo)致細(xì)胞發(fā)生EMT。研究發(fā)現(xiàn),氧鐵還原蛋白類似物(AP-1)早期生長(zhǎng)反應(yīng)基因-1(Egr-1)和Fra-1分別受MEK1介導(dǎo)的SNAIL1和SLUG調(diào)控,ERK/AKT通路激活可激活A(yù)P-1,上調(diào)EZH2基因的表達(dá),導(dǎo)致細(xì)胞發(fā)生EMT,從而實(shí)現(xiàn)對(duì)結(jié)直腸癌的調(diào)控[21]。PHLPP基因是通過(guò)RAS信號(hào)途徑來(lái)抑制EMT的基因,同時(shí)也是一個(gè)腫瘤抑制基因[22]。Li等[23]發(fā)現(xiàn)PHLPP基因可通過(guò)抑制EMT來(lái)降低結(jié)直腸癌細(xì)胞的浸潤(rùn)和腫瘤的遠(yuǎn)處轉(zhuǎn)移。
2.4PI3K/AKT信號(hào)通路研究發(fā)現(xiàn),結(jié)直腸癌組織中存在第10號(hào)染色體缺失的磷酸酶及張力蛋白同源的基因(PTEN)的失活及PIK3CA基因的突變,導(dǎo)致PI3K/AKT信號(hào)通路異常激活。Wang等[24]研究發(fā)現(xiàn),AKT通路可上調(diào)SNAIL1和SLUG等EMT相關(guān)轉(zhuǎn)錄因子,調(diào)控腫瘤組織血管生成,介導(dǎo)結(jié)直腸癌的侵襲轉(zhuǎn)移[25]。PI3K/AKT信號(hào)通路的上游分子肝再生磷酸酶-3可抑制PTEN基因的表達(dá),促使結(jié)直腸癌細(xì)胞發(fā)生EMT[26]。PI3K/AKT信號(hào)通路的下游效應(yīng)基因mTORC1 和 mTORC2可通過(guò)激活RhoA和 Rac1信號(hào)通路來(lái)介導(dǎo)結(jié)直腸癌的侵襲轉(zhuǎn)移調(diào)控[27]。糖原合成酶激酶-3是Wnt信號(hào)通路和PI3K-AKT信號(hào)通路的具有共同組成部分,可促進(jìn)腫瘤細(xì)胞核內(nèi)β鏈蛋白和SNAIL1表達(dá)升高,從而促進(jìn)結(jié)直腸癌細(xì)胞發(fā)生EMT[25]。
綜上所述,EMT通過(guò)核心轉(zhuǎn)錄因子、Brachyury蛋白、叉頭轉(zhuǎn)錄因子等轉(zhuǎn)錄因子調(diào)節(jié)E-鈣蛋白和波形蛋白的表達(dá)來(lái)調(diào)控結(jié)直腸癌的轉(zhuǎn)移和侵襲;也可通過(guò)TGF-β信號(hào)通路、Wnt信號(hào)回路、RAS/ERK1/2 信號(hào)環(huán)路、PI3K/AKT信號(hào)環(huán)路等信號(hào)通路調(diào)控結(jié)直腸癌的轉(zhuǎn)移和侵襲。深入研究結(jié)直腸癌細(xì)胞EMT與各類轉(zhuǎn)錄因子、信號(hào)通路之間的具體作用機(jī)制將為結(jié)直腸癌的治療提供新方法。
[1] Ferlay J, Shin HR, Bray F, et al.Estimates of worldwide burden of cancer in 2008[J], Int J Cancer, 2010,127(12):2893-2917.
[2] Manfredi S, Lepage C, Hatem C, et al. Bouvier epidemiology and management of liver metastases from colorectal cancer[J]. Ann Surg, 2006,244(2):254-259.
[3]Gao D, Vahdat LT, Wong S, et al. Microenvironmental regulation of epithelial-mesenchymal transitions in cancer[J]. Cancer Res, 2012,72(19):4883-4889.
[4]Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease[J]. Annu Rev Cell Dev Biol, 2011(27):347-376.
[5] Hajra KM,Chen DY, Fearon ER, et al. The SLUG zinc-finger protein represses E-cadherin in breast cancer[J]. Advances Brief,2002,62(6):1613-1638.
[6] Baldus G, Fluegen D, Vallbhmer SE, et al. Snail1 expression in colorectal cancer and its correlation with clinical and pathological parameters[J]. BMC Cancer, 2013(13):145.
[7] Singh AB, Sharma A, Smith JJ, et al. Claudin-1 up-regulates the repressor ZEB-1 to inhibit E-cadherin expression in colon cancer cells[J].Gastroenterology,2011,141(6):2140-2153.
[8] Celesti G, Di Caro G, Bianchi P, et al. Presence of twist1-positive neoplastic cells in the stroma of chromosome-unstable colorectal tumors[J].Gastroenterology, 2013,143(5):647-657.
[9] Okada T, Suehiro Y, Ueno K, et al. TWIST1 hypermethylation is observed frequently in colorectal tumors and its overexpression is associated with unfavorable outcomes in patients with colorectal cancer[J]. Genes Chrom Can, 2010,49(5):452-462.
[10] Cao H, Xu E, Liu H, et al. Epithelial-mesenchymal transition in colorectal cancer metastasis: A system review[J]. Pathol Res Pract,2015, 211(8):557-569.
[11] Zhang W, Wang J, Zou B, et al. Four and a half LIM protein 2 (FHL2) negatively regulates the transcription of E-cadherin through interaction with Snail1[J]. Eur J Cancer,2011,47(1):121-130.
[12] Lampropoulos P, Zizi-Sermpetzoglou A, Rizos S, et al. TGF-beta signalling in colon carcinogenesis[J]. Cancer Lett, 2012,314(1):1-7.
[13] Freeman TJ, Smith JJ., Chen X, et al. Smad4-mediated signaling inhibits intestinal neoplasia by inhibiting expression of beta-catenin[J]. Gastroenterology, 2012,142(3):562-571.
[14] Voomeveld PW, Kodach LL, Jacobs RJ, et al. Loss of SMAD4 alters BMP signaling to promote colorectal cancer cell metastasis via activation of Rho and ROCK[J].Gastroenterology, 2014,144(1):196-208.
[15] Clevers H. Wnt/beta-catenin signaling in development and disease[J]. Cell, 2006,127(3):469-480.
[16] Brabletz T, Hlubek F, Spaderna S, et al. Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin[J]. Cells Tissues Organs, 2005,179(1-2):56-65.
[17] Sanchez-Tillo E, De Barrios O, et al.Beta-catenin/TCF4 complex induces the epithelial-to-mesenchymal transition (EMT)- activator ZEB1 to regulate tumor invasiveness[J]. Proc Natl Acad Sci USA, 2011,108(48):19204-19209.
[18] Zhao QW, Thomas B, Eric F, et al. Canonical wnt suppressor, Axin2, promotes colon carcinoma oncogenic activity[J]. Proc Natl Acad Sci USA, 2012,109(28):11312-11317.
[19] Pelaez IM, Kalogeropoulou M, Ferraro A,et al. Oncogenic RAS alters the global and gene-specific histone modification pattern during epithelial-mesenchymal transition in colorectal carcinoma cells[J]. Int J Biochem Cell Biol, 2010,42(6):911-920.
[20] Makrodouli E, Oikonomou E, Koc M, et al. BRAF and RAS oncogenes regulate rho GTPase pathways to mediate migration and invasion properties in human colon cancer cells: a comparative study[J]. Mol Cancer, 2011(10):118.
[21] Ferraro A, Mourtzoukou D, Kosmidou V, et al. EZH2 is regulated by ERK/AKT and targets integrin alpha2 gene to control Epithelial-Mesenchymal Transition and anoikis in colon cancer cells[J]. Int J Biochem Cell Biol, 2013,45(2):243-254.
[22] Suman S, Kurisetty V, Das TP, et al. Activation of AKT signaling promote sepithelial-mesenchymal transition and tumor growth in colorectal cancercells[J]. Mol Carcinog, 2014,53(1):151-160.
[23] Li X, Stevens PD, Liu J , et al. PHLPP is anegative regulator of RAF1, which reduces colorectal cancer cell motility and prevents tumor progression in mice[J]. Gastroenterology, 2014,144(5):1301-1312.
[24] Wang H, Quah SY, Dong JM, et al. PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition[J]. Cancer Res, 2007,67(7):2922-2926.
[25] Gulhati P, Bowen KA, Liu J, et al. mTORC1 and mTORC2 regulate EMT, motility, and metastasis of colorectal cancer via RhoA and Rac1 signaling pathways[J]. Cancer Res, 2011,71(9):3246-3256.
[26] Katoh K, Katoh M. Cross-talk of WNT and FGF signaling pathways at GSK3beta to regulate beta-catenin and SNAIL signaling cascades[J].Cancer Biol Ther, 2006,5(9):1059-1064.
[27] Tang FY, Pai MH, Chiang EP. Consumption of high-fat diet induces tumor progression and epithelial-mesenchymal transition of colorectal cancer in a mouse xenograft model[J]. Nutr Biochem, 2012,23 (10):1302-1313.
湖南省科技廳科研基金資助項(xiàng)目(2015JC3084)。
劉龍飛(E-mail: 1987868044@qq.com)
10.3969/j.issn.1002-266X.2016.18.038
R730.2
A
1002-266X(2016)18-0096-03
2016-01-22)