苗紅霞孫佩光張凱星金志強(qiáng),徐碧玉
(1. 中國熱帶農(nóng)業(yè)科學(xué)院熱帶生物技術(shù)研究所 農(nóng)業(yè)部熱帶作物生物技術(shù)重點(diǎn)開放實(shí)驗(yàn)室,???571101;2. 中國熱帶農(nóng)業(yè)科學(xué)院??趯?shí)驗(yàn)站海南省香蕉遺傳育種改良重點(diǎn)實(shí)驗(yàn)室,???570102;3. 海南大學(xué)農(nóng)學(xué)院,???570228)
植物顆粒結(jié)合淀粉合成酶(GBSS)基因的表達(dá)調(diào)控機(jī)制研究進(jìn)展
苗紅霞1孫佩光2張凱星3金志強(qiáng)1,2徐碧玉1
(1. 中國熱帶農(nóng)業(yè)科學(xué)院熱帶生物技術(shù)研究所 農(nóng)業(yè)部熱帶作物生物技術(shù)重點(diǎn)開放實(shí)驗(yàn)室,???571101;2. 中國熱帶農(nóng)業(yè)科學(xué)院??趯?shí)驗(yàn)站海南省香蕉遺傳育種改良重點(diǎn)實(shí)驗(yàn)室,???570102;3. 海南大學(xué)農(nóng)學(xué)院,???570228)
顆粒結(jié)合淀粉合成酶(granule-bound starch synthase,GBSS)是決定直鏈淀粉合成的關(guān)鍵酶,單子葉植物GBSS包含兩種同工酶,分別是GBSSI和GBSSII,雙子葉植物只有GBSSII一種同工酶。GBSSI基因的表達(dá)主要控制種子、胚、胚乳等貯藏器官中直鏈淀粉的合成,而GBSSII主要控制根、莖、葉等營養(yǎng)器官中直鏈淀粉的合成。綜述了模式植物及農(nóng)作物中GBSS基因表達(dá)調(diào)控機(jī)制的最新研究進(jìn)展,以期為其他植物GBSS基因的研究提供借鑒。
GBSS基因;直鏈淀粉;表達(dá)分析;調(diào)控機(jī)制
淀粉是谷類作物或以塊根、塊莖為收獲對象的農(nóng)作物中碳水化合物的主要貯藏形式,為人類日常飲食提供必需的熱量。淀粉生物合成是一個復(fù)雜的生化過程[1],在此過程中存在5種關(guān)鍵酶:ADP-葡萄糖焦磷酸化酶(ADP-glucose pyrophosphorylase,ADPGase)、顆粒結(jié)合淀粉合成酶(granule-bound starch synthase,GBSS)、可溶性淀粉合成酶(soluble starch synthase,SSS)、淀粉分支酶(starch branchingenzymes,SBE)及淀粉去分支酶(starch debranching enzymes,DBE)[2]。
GBSS是決定直鏈淀粉合成的關(guān)鍵酶,它可以通過α-1,4-D-糖苷鍵將ADPG中的葡萄糖殘基添加到葡聚糖的非還原端,能夠延長葡聚糖的直鏈。在植物細(xì)胞中GBSS與淀粉顆粒緊密結(jié)合,使合成的直鏈淀粉保持未分支狀態(tài),是與發(fā)育中的淀粉結(jié)合的唯一有活力的蛋白[3]。單子葉植物GBSS有兩種同工酶,分別是GBSSI和GBSSII,GBSSI由waxy基因編碼,在小麥中位于第7染色體上[4],水稻和玉米中該基因分別位于第6[5]、第9染色體上[6],主要控制種子、胚乳等貯藏器官中直鏈淀粉的合成,而GBSSII主要控制根、莖、葉等營養(yǎng)器官中直鏈淀粉的合成,雙子葉植物只有GBSSII單個家族,且功能與單子葉植物GBSSII相似[4]。轉(zhuǎn)基因或RNAi實(shí)驗(yàn)進(jìn)一步研究發(fā)現(xiàn),過表達(dá)或降低GBSSI表達(dá)將導(dǎo)致貯藏器官中GBSSI酶活性和直鏈淀粉含量明顯上升或下降[7,8]。通過突變體實(shí)驗(yàn)也發(fā)現(xiàn),缺失GBSSI表達(dá)將獲得直鏈淀粉缺失的轉(zhuǎn)基因植株[9]。但GBSS表達(dá)調(diào)控的機(jī)制目前還不完全清楚。除基因結(jié)構(gòu)發(fā)生改變,影響其表達(dá)和蛋白功能外,可能受多個水平、多種因子的協(xié)同調(diào)控,目前研究比較多的是GBSSI啟動子、轉(zhuǎn)錄因子等。本文重點(diǎn)從基因結(jié)構(gòu)特征、啟動子和轉(zhuǎn)錄因子角度介紹模式植物和農(nóng)作物中GBSSI基因表達(dá)調(diào)控機(jī)制的最新研究進(jìn)展,以期為其他植物GBSS基因的研究提供借鑒。
GBSSI 基因是一個基因家族編碼的單拷貝或低拷貝基因,其cDNA全長為0.6-2.4 kb,包含6-13個外顯子,編碼200-800 個氨基酸,蛋白大小為30.0-70 kD。GBSSII 的氨基酸序列與GBSSI同源性較高,但GBSSII比GBSSI蛋白大,分子量約為70-100 kD。此外,GBSSII即可附著于淀粉顆粒上也可游離于顆粒之間。目前,在水稻(OsGBSSI,OsGBSSII)[5]、小麥(TaGBSSI,TaGBSSII)[4]、玉米(ZmGBSSI,ZmGBSSII)[6]、馬鈴薯(StGBSS)[10]、大麥(GBSSI)[11]、莧菜(GBSSI)[12]、擬南芥(AtGBSS)[13]、苦蕎麥(FtGBSS1)[14]及蘋果(MdGBSSII-1,MdGBSSII-2,MdGBSSII-3)、桃(PpGBSSII-1,PpGBSSII-2)、柑橘(CsGBSSII-1,CsGBSSII-2)[13]、天寶蕉(MaGBSSI)[15]、巴西蕉(MaGBSSI-1,MaGBSSI-2,MaGBSSI-3,MaGBSSI-4,MaGBSSII-1,MaGBSSII-2)[16]等多種植物中均克隆到編碼GBSSI 和GBSSII 的基因。GBSSI 主要在花、果實(shí)、胚乳等貯藏器官中表達(dá),GBSSII主要在根、莖、葉等營養(yǎng)器官中表達(dá)[13,14]。目前,大多數(shù)研究主要集中在GBSSI基因。
GBSSI基因外顯子和內(nèi)含子結(jié)構(gòu)發(fā)生改變,將影響其表達(dá)量和蛋白功能。Olsen等[17]報道糯稻的產(chǎn)生主要是由于GBSSI基因第1內(nèi)含子5'端G/T突變和第2外顯子23 bp堿基片段的插入,引起premRNA不能正常剪切,其表達(dá)量減少所致,并且糯稻GBSSI基因第一內(nèi)含子5'端的突變位點(diǎn)以T為主,粘稻的突變位點(diǎn)以G為主[18]。Fan等[19]發(fā)現(xiàn)了糯玉米的缺失突變體Wx-D7,究其原因是由于GBSSI基因第7個外顯子3'端30個堿基缺失,導(dǎo)致終止子TAA提早出現(xiàn)翻譯提前終止,進(jìn)而GBSSI蛋白功能缺失所引起的。糯玉米的另一種缺失突變體Wx-D10是由于GBSSI第10個外顯子內(nèi)部15個堿基缺失,導(dǎo)致糖基轉(zhuǎn)移酶功能域缺失所致[20]。目前在小麥中也篩選到多個糯性缺失突變體,其中Wx-A1b突變體在GBSSI內(nèi)含子和外顯子的連接區(qū)存在一個23 bp片段缺失,Wx-D1b突變體存在一個588 bp片段缺失和12 bp的填充序列,而Wx-B1b突變體缺失了整個編碼區(qū)。隨著GBSSI基因結(jié)構(gòu)研究的不斷深入,多位研究者針對GBSSI基因的不同突變位點(diǎn)開發(fā)出特異性引物[17,19,20],實(shí)現(xiàn)了不同位點(diǎn)的高效、快速的基因鑒定,為糯稻、糯玉米和糯小麥的分子輔助育種奠定了基礎(chǔ)。
Sano 等[21]較早發(fā)現(xiàn)水稻OsGBSSI表達(dá)受阻,導(dǎo)致胚乳中幾乎不含直鏈淀粉。Williams等[7]利用RNA沉默技術(shù)降低GBSSI表達(dá)發(fā)現(xiàn),小麥籽粒胚乳中GBSSI酶活性和直鏈淀粉含量明顯下降;同樣抑制甘薯中GBSSI表達(dá),直鏈淀粉含量也明顯降低[8]。將甘薯GBSSI基因的反義cDNA鏈轉(zhuǎn)到甘薯基因組中從而獲得了直鏈淀粉缺失的轉(zhuǎn)基因植株[9]。最近,在馬鈴薯微管中通過反義RNA技術(shù)降低GBSSI活性,淀粉中直鏈淀粉含量隨之降低[22]。Hunt等[23]突變體實(shí)驗(yàn)發(fā)現(xiàn),谷子胚乳中直鏈淀粉含量主要由GBSSI-S位點(diǎn)控制,而直鏈淀粉合成效率下降主要與GBSSI-L位點(diǎn)有關(guān)。Liu等[24]將OsGBSSI 蛋白中8個氨基酸位點(diǎn)缺失,導(dǎo)致其活性明顯下降,結(jié)合淀粉顆粒的能力減弱。最新研究還發(fā)現(xiàn),GBSSI不僅影響大麥籽粒淀粉直鏈淀粉濃度,而且與支鏈淀粉的鏈長相關(guān)[25]。高粱籽粒中缺失GBSSI,導(dǎo)致其淀粉顆粒中支鏈淀粉含量增加[26]。通過調(diào)控GBSSI表達(dá),人們獲得了含直鏈淀粉比例不同的淀粉,如直鏈淀粉缺失型淀粉、高直鏈淀粉等,前者可以用于食品工業(yè),而后者則可用于糖果和塑料工業(yè)。
目前應(yīng)用APCR、IPCR或PCR技術(shù)從玉米[27]、小麥[28]、大麥[29]、水稻[30]、馬鈴薯[31]、擬南芥[32]中克隆到多個GBSS啟動子,發(fā)現(xiàn)了一些可能與組織特異性表達(dá)相關(guān)的響應(yīng)元件,如CCGTCC-box、SORLIP5AT等;脫落酸響應(yīng)的順式作用元件CACCG;茉莉酸響應(yīng)有關(guān)的順式調(diào)節(jié)元件CGTCA-motif、TGACG-motif;赤霉素應(yīng)答相關(guān)元件P-box、TATC-box;水楊酸反應(yīng)的順式元件TCA-element;糖代謝相關(guān)的元件CGACGOSAMY3、WBOXHVISO1等。5'端片段缺失突變是確定啟動子調(diào)控區(qū)域響應(yīng)元件的常用方法,Hu等[33]通過5'端片段缺失突變實(shí)驗(yàn)證明淀粉合成酶I(starch synthase I,SSI)啟動子在玉米胚乳中特異表達(dá)受ABA響應(yīng)的順式元件CACCG誘導(dǎo),但不受蔗糖、果糖及赤霉素等相關(guān)元件的影響。姚彩萍等[34]將GBSSI啟動子區(qū)5'端12個不同長度的缺失片段與GUS融合,導(dǎo)入水稻原生質(zhì)體,找到了與基因表達(dá)強(qiáng)度有關(guān)的區(qū)段(-861-640 bp)。凝膠滯后法和足印法檢測出該區(qū)段中包含一個31 bp的胚乳核蛋白結(jié)合序列[35]。將包含或不包含該31 bp序列的GBSSI 啟動子區(qū)與GUS分別連接,同時轉(zhuǎn)化水稻幼胚愈傷組織,含有31 bp序列比不含此序列的GBSSI啟動區(qū)的GUS報告基因表達(dá)水平高出2-3倍[36],該研究結(jié)果表明此31 bp序列很可能是GBSSI表達(dá)調(diào)控中的一個關(guān)鍵響應(yīng)元件。
瞬時表達(dá)分析發(fā)現(xiàn),GBSSI啟動子為組織特異性啟動子,啟動活性與35S啟動子相近[37]。Kluth等[28]通過構(gòu)建小麥gbssI基因啟動子(8.0 kb)和GUS基因的表達(dá)載體并轉(zhuǎn)化小麥發(fā)現(xiàn),上游-4.0 kb的啟動區(qū)介導(dǎo)的GUS基因的表達(dá)與GBSSI內(nèi)源啟動子的組織表達(dá)模式相似,只在胚乳和花藥中表達(dá)。將啟動區(qū)縮減至-1.9和-1.0 kb發(fā)現(xiàn)仍然在胚乳和花藥中表達(dá),但隨著啟動子區(qū)的縮短GUS活性呈下降趨勢。同時,在玉米[38]和大麥[29]中也報道GBSSI啟動區(qū)使GUS報告基因主要在胚乳中表達(dá),而馬鈴薯主要在塊莖中表達(dá)[31],這些結(jié)果證明了GBSSI基因啟動子的啟動調(diào)控模式。但是,當(dāng)GBSS啟動子序列發(fā)生重復(fù)、缺失或替換時,將影響GBSS啟動活性和直鏈淀粉合成。Heilersig等[31]實(shí)驗(yàn)發(fā)現(xiàn)馬鈴薯GBSSI轉(zhuǎn)錄后沉默效率依賴于一段重復(fù)的啟動子區(qū)域。Patron等[29]報道低直鏈淀粉含量的大麥品種是由于GBSSI啟動子區(qū)413 bp堿基缺失所導(dǎo)致的。Wang等[30]實(shí)驗(yàn)證明,水稻直鏈淀粉含量降低是由于GBSSI啟動子497 bp位置發(fā)生了單核苷酸的替換。Ma等[39]實(shí)驗(yàn)發(fā)現(xiàn),非糯性大麥GBSSI啟動子(1 029 bp)比糯性大麥GBSSI啟動子(822 bp)啟動活性強(qiáng),可能是由于糯性大麥GBSSI啟動子區(qū)397 bp堿基缺失所導(dǎo)致的。
擬南芥GBSSI基因的表達(dá)是由于轉(zhuǎn)錄因子CCA1和LHY與GBSSI啟動子直接互作的結(jié)果[40]。水稻轉(zhuǎn)錄因子bZIP蛋白REB、OsbZIP20和OsbZIP58通過結(jié)合GBSS基因5'上游區(qū)Ha-2片段的3個ACGT元件(WG1、WG2和WG3)來調(diào)節(jié)GBSS基因表達(dá),從而影響水稻籽粒直鏈淀粉的生物合成[41]。Albani等[42]報道水稻bZIP家族的轉(zhuǎn)錄因子也可通過結(jié)合GBSSI啟動子區(qū)胚乳盒(endosperm box,EB)中的GCN4 基序調(diào)控GBSSI基因在種子中的專一性表達(dá)。程世軍等[43]進(jìn)一步研究發(fā)現(xiàn),水稻bZIP家族的轉(zhuǎn)錄因子REB既能識別GBSSI啟動子區(qū)的GCN4基序,參與對GBSSI基因的組織特異性表達(dá)調(diào)控,也能結(jié)合α-globulin啟動子上的靶位點(diǎn),參與對glb基因表達(dá)的協(xié)同調(diào)控。通過分析水稻籽粒灌漿期基因芯片數(shù)據(jù),另外發(fā)現(xiàn)RSR1基因(AP2/EREBP轉(zhuǎn)錄因子家族成員)負(fù)調(diào)控水稻種子中GBSSI基因的表達(dá)[44]。OsSERF1在水稻籽粒灌漿期也可負(fù)調(diào)控GBSSI基因的表達(dá),染色質(zhì)免疫共沉淀分析發(fā)現(xiàn)OsSERF1可結(jié)合在GBSSI的啟動子區(qū),是GBSSI的直接上游調(diào)控因子[45]。而RSp29和RSZp23x,兩種富含絲氨酸/蘇氨酸的蛋白,通過增強(qiáng)OsGBSSI mRNA前體的剪切效率,影響OsGBSSI表達(dá)和直鏈淀粉合成[46]。此外,MYC轉(zhuǎn)錄因子OsBP-5與乙烯響應(yīng)元件結(jié)合蛋白(EREBP)形成異源二聚體OsEBP-89調(diào)控水稻OsGBSSI表達(dá),利用RNAi技術(shù)干涉OsBP-5轉(zhuǎn)錄因子,OsGBSSI表達(dá)量降低,種子中直鏈淀粉含量下降[47]。
近幾年,酵母單雜交技術(shù)被用來篩選調(diào)控淀粉合成相關(guān)基因表達(dá)的轉(zhuǎn)錄因子,如Wang等[48]利用酵母單雜交技術(shù)獲得了bZIP類轉(zhuǎn)錄因子OsbZIP58,它可直接結(jié)合在6個淀粉合成相關(guān)基因(OsAGPL3、OsGBSSI、OsSSIIa、SBE1、OsBEIIb和ISA2)的啟動區(qū)并調(diào)控它們的表達(dá)活性,且Osbzip58缺失突變體表現(xiàn)出種子形態(tài)不正常,淀粉積累速率下降,總淀粉和直鏈淀粉含量降低等現(xiàn)象。ZmaNAC36在玉米胚乳中也可與大多數(shù)的淀粉合成相關(guān)基因(AGPL2、AGPL3、AGPs2、AGPs3和GBSSIIb)共表達(dá),是玉米胚乳合成淀粉的關(guān)鍵調(diào)節(jié)因子之一[49]。截止目前,共發(fā)現(xiàn)4大類轉(zhuǎn)錄因子家族(bZIP、AP2/EREBP、MYC和NAC)成員參與了GBSSI基因的表達(dá)調(diào)控,是否還有其他轉(zhuǎn)錄因子家族成員參與其表達(dá)調(diào)控,仍需進(jìn)一步深入研究。
在生產(chǎn)中如何有效調(diào)控植物直鏈淀粉的合成,以滿足食品、醫(yī)療、工業(yè)等行業(yè)對不同含量直鏈淀粉的需求,將是未來的研究方向。然而,深入解析直鏈淀粉合成關(guān)鍵酶基因GBSS的表達(dá)調(diào)控機(jī)制,有針對性的通過激素、光照等外界刺激來調(diào)節(jié)GBSS的表達(dá)水平,將是改良谷類作物以及淀粉轉(zhuǎn)化型果實(shí)的品質(zhì)、提高產(chǎn)量的有效方法之一。
[1]Calvert P. Biopolymers:the structure of starch[J]. Nature, 1997, 389:338-339.
[2]Zeeman SC, Kossmann J, Smith AM. Starch:its metabolism,evolution, and biotechnological modification in plants[J]. Annu Rev Plant Biol, 2010, 61:209-234.
[3]Krishnan HB, Chen M. Identification of an abundant 56 kDa protein implicated in food allergy as granule-bound starch synthase[J]. J Agr Food Chem, 2013, 61:5404-5409.
[4]Vrinten PL, Nakamura T. Wheat granule-bound starch synthase I and II are encoded by separate genes that are expressed in different tissues[J]. Plant Physiol, 2000, 122(1):255-264.
[5]Dian W, Jiang H, Chen Q, et al. Cloning and characterization of the granule-bound starch synthase II gene in rice:gene expression is regulated by the nitrogen level, sugar and circadian rhythm[J]. Planta, 2003, 218:261-268.
[6]Hylton CM, Denyer K, Keeling PL, et al. The effect of waxy mutations on the granule-bound starch synthases of barley and maize endosperms[J]. Planta, 1996, 198:230-237.
[7]Williams PN, Villada A, Deacon C, et al. Greatly enhanced arsenic shoot assimilation in rice leads to elevated grain levels compared to wheat and barley[J]. Environ Sci Technol, 2007, 41:6854-6859.
[8]Otani M, Hamada T, Katayama K, et al. Inhibition of the gene expression for granule-bound starch synthase I by RNA interference in sweet potato plants[J]. Plant Cell Rep, 2007, 26:1801-1807.
[9]Kimura T, Saito A. Heterogeneity of poly(A)sites in the granulebound starch synthase I gene in sweet potato(Ipomoea batatas(L.)Lam. )[J]. Biosci Biotech Bioch, 2010, 74:667-669.
[10]Dry I, Smith A, Edwards A, et al. Characterization of cDNAs encoding two isoforms of granule-bound starch synthase which show differential expression in developing storage organs of pea and potato[J]. Plant J, 1992, 2(2):193-202.
[11]Li Z, Li D, Du X, et al. The barley amo1 locus is tightly linked to the starch synthase IIIa gene and negatively regulates expression of granule-bound starch synthetic genes[J]. J Exp Bot, 2011, 62(14):5217-5231.
[12]Park Y, Nemoto K, Nishikawa T, et al. Genetic diversity and expression analysis of granule bound starch synthase I gene in the new world grain amaranth(Amaranthus cruentus L. )[J]. J Cereal Sci, 2011, 53(3):298-305.
[13]Cheng J, Khan MA, Qiu WM, et al. Diversification of genes encoding granule-bound starch synthase in monocots and dicots ismarked by multiple genome-wide duplication events[J]. PLoS One, 2012, 7:1-10.
[14]Wang X, Feng B, Xu Z, et al. Identification and characterization of granule bound starch synthase I(GBSSI)gene of tartary buckwheat(Fagopyrum tataricum Gaerth. )[J]. Gene, 2014,534(2):229-235.
[15]匡云波, 賴鐘雄. 香蕉葉片顆粒結(jié)合性淀粉合成酶Ⅰ和可溶性淀粉合成酶Ⅲ基因的克隆與序列分析[J]. 熱帶作物學(xué)報,2012(1):70-78.
[16]Miao HX, Sun PG, Liu WX, et al. Identification of genes encoding granule-bound starch synthase involved in amylose metabolism in banana fruit[J]. PLoS One, 2014, 9(2):88077-88085.
[17]Olsen KM, Purugganan MD. Molecular evidence on the origin,evolution of glutinous rice[J]. Genetics, 2002, 162(2):941-950.
[18]李枝樺, 陸春明, 盧寶榮, 等. 云南傳統(tǒng)栽培稻品種Waxy基因序列分析[J]. 分子植物育種, 2011, 9(6):665-671.
[19] Fan LJ, Quan LY, Leng XD, et al. Molecular evidence for postdomestication selection in the Waxy gene of Chinese Waxy maize[J]. Mol Breed, 2008(22):329-338.
[20]田孟良, 黃玉碧, 譚功燮, 等. 西南糯玉米地方品種Waxy基因序列多態(tài)性分析[J]. 作物學(xué)報, 2008, 34(5):729-736.
[21]Sano Y, Maekawa M, Kikuchi H. Temperature effects on the Wx protein level and amylose content in the endosperm of rice[J]. J Hered, 1985, 76:221-222.
[22]Asare EK, B?ga M, Rossnagel BG, et al. Polymorphism in the barley granule bound starch synthase I(GbssI)gene associated with grain starch variant amylose concentration[J]. J Agric Food Chem, 2012, 60(40):10082-10092.
[23]Hunt HV, Moots HM, Graybosch RA, et al. Waxy phenotype evolution in the allotetraploid cereal broomcorn miller:mutations at the GBSSI locus in their functional and phylogenetic context[J]. Mol Biol Evol, 2013, 30(1):109-122.
[24]Liu D, Wang W, Cai X. Modulation of amylose content by structurebased modification of OsGBSSI activity in rice(Oryza sativa L. ). Plant Biotechnol J, 2014, 12(9):1297-1307.
[25]Eric KA, Monica B, Brian GR, et al. Polymorphism in the barley granule bound starch synthase I(GBSSI)gene associated with grain starch variant amylose concentration[J]. J Agric Food Chem, 2012, 60:10082-10092.
[26]Funnell-Harris DL, Sattler SE, O'Neill PM, et al. Effect of waxy(low amylose)on fungal infection of Sorghum grain[J]. Phytopathology, 2015, doi. org/10. 1094/PHYTO-09-14-0255-R.
[27]Russell DA, Fromm ME. Tissue-specific expression in transgenic maize of four endosperm promoters from maize and rice[J]. Transgenic Res, 1997, 6(2):157-168.
[28]Kluth A, Sprunck S, Beeker D, et al. 5'deletion of a gbssI promoter region from wheat leads to changes in tissue and developmental specificities[J]. Plant Mol Biol, 2002, 49(6):665-678.
[29]Patron NJ, Smith AM, Fahy BF, et al. The altered pattern of amylose accumulation in the endosperm of low-amylose barley cultivars is attributable to a single mutant allele of granule-bound starch synthase I with a deletion in the 5'-noncoding region[J]. Plant Physiol, 2002, 130(1):190-198.
[30]Wang SJ, Liu LF, Chen CK, et al. Regulation of granule-bound starch synthase I gene expression in rice leaves by temperature and drought stress[J]. Biol Plantarum, 2006, 50(4):537-541.
[31]Heilersig BH, Loonen AE, Janssen EM, et al. Efficiency of transcriptional gene silencing of GBSSI in potato depends on the promoter region that is used in an inverted repeat[J]. Mol Gen Genet, 2006, 275:437-449.
[32]Schwarte S, Brust H, Steup M, et al. Intraspecific sequence variation and differential expression in starch synthase genes of Arabidopsis thaliana[J]. BMC Research Notes, 2013, 6:84.
[33]Hu YF, Li YP, Zhang JJ, et al. Binding of ABI4 to a CACCG motif mediates the ABA-induced expression of the ZmSSI gene in maize(Zea mays L. )endosperm[J]. J Exp Bot, 2012, 63(16):5979-5989.
[34]姚彩萍, 王宗陽, 蔡秀玲, 等. 水稻蠟質(zhì)基因5'上游區(qū)缺失對基因表達(dá)的影響[J]. 植物生理學(xué)報, 1996, 22(4):431-436.
[35]陳麗, 王宗陽, 張景六, 等. 一個能與水稻未成熟種子核蛋白特異結(jié)合的31bp的DNA片段[J]. 植物生理學(xué)報, 1997, 23(3):257-261.
[36]葛鴻飛, 王宗陽, 洪孟民. 水稻蠟質(zhì)232蠟質(zhì)基因轉(zhuǎn)錄起始位點(diǎn)的鑒定[J]. 遺傳學(xué)報, 1995, 22(6):431-436.
[37]Bansal A, Kumari V, Taneja D, et al. Molecular cloning and characterization of granule-bound starch synthase I(GBSSI)alleles from potato and sequence analysis for detection of cisregulatory motifs[J]. Plant Cell Tiss Organ, 2012, 109:247-261.
[38]Chen J, Zeng B, Zhang M, et al. Dynamic transcriptome landscape of maize embryo and endosperm development[J]. Plant Physiol,2014, 166(1):252-264.
[39]Ma J, Jiang QT, Zhao QZ, et al. Characterization and expression analysis of waxy alleles in barley accessions[J]. Genetica, 2013,141(4-6):227-238.
[40]Tenorio G, Orea A, Romero JM, et al. Oscillation of mRNA level and activity of granule-bound starch synthase I in Arabidopsis leaves during the day/night cycle[J]. Plant Mol Biol, 2003, 51(6):949-958.
[41]Cai J, Yang Y, Man J, et al. Structural and functional properties of alkali-treated high-amylose rice starch[J]. Food Chem, 2014,145:245-253.
[42]Albani D, Hammond-Kosack MC, Smith C, et al. The wheat transcriptional activator SPA:a seed-specific bZIP protein that recognizes the GCN4-like motif in the bifactorial endosperm box of prolamin genes[J]. Plant Cell, 1997, 9(2):171-184.
[43]程世軍, 王宗陽, 洪孟民. 水稻bZIP蛋白REB結(jié)合Wx基因啟動子的GCN4基序[J]. 中國科學(xué)(C輯), 2002, 32(1):23-29.
[44]Fu FF, Xue HW. Coexpression analysis identifies rice starch regulator1, a rice AP2/EREBP family transcription factor, as a novel rice starch biosynthesis regulator[J]. Plant Physiol, 2010,154(2):927-938.
[45]Schmidt R, Schippers JH, Mieulet D, et al. SALT-RESPONSIVE ERF1 is a negative regulator of grain filling and gibberellin-mediated seedling establishment in rice[J]. Mol Plant, 2014, 7(2):404-421.
[46]Liu DR, Huang WX, Cai XL. Oligomerization of rice granule-bound starch synthase 1 modulates its activity regulation[J]. Plant Sci,2013, 210:141-150.
[47]Zhu Y, Cai XL, Wang ZY, et al. An interaction between a MYC protein and an EREBP protein is involved in transcriptional regulation of the rice Wx gene[J]. J Biol Chem, 2003, 278:47803-47811.
[48]Wang JC, Xu H, Zhu Y, et al. OsbZIP58, a basic leucine zipper transcription factor, regulates starch biosynthesis in rice endosperm[J]. J Exp Bot, 2013, 64:3453-3466.
[49]Zhang J, Chen J, Yi Q, et al. Novel role of ZmaNAC36 in coexpression of starch synthetic genes in maize endosperm[J]. Plant Mol Biol, 2014, 84:359-369.
(責(zé)任編輯 狄艷紅)
Research Progress on Expression Regulation Mechanism of Genes Encoding Granule-bound Starch Synthase in Plants
MIAO Hong-xia1SUN Pei-guang2ZHANG Kai-xing3JIN Zhi-qiang1,2XU Bi-yu1
(1. Institute of Tropical Bioscience and Biotechnology,Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crop Bioscience and Biotechnology,Ministry of Agriculture,Haikou 571101;2. Haikou Experimental Station,Chinese Academy of Tropical Agricultural Sciences/Hainan Provincial Key Laboratory for Genetics and Breeding of Banana,Haikou 570102;3. Department of Agriculture,Hainan University,Haikou 570228)
Granule-bound starch synthase(GBSS)is a key enzyme to determine the amylose synthesis of plants. In monocots,GBSS includes two isoenzymes,designated as GBSSI and GBSSII. Dicot plants contain only one of GBSSII isoenzyme. The expression of gene GBSSI mainly controls the amylose synthesis in the storage organs such as seeds,embryos,and endosperms etc,while the expression of gene GBSSII mainly controls the amylose synthesis in the vegetative organs such as roots,stems,and leaves etc. In this paper,the latest research progress on expression regulation mechanism of GBSS genes in model plants and crops was reviewed. These results are expected to provide a reference for the study of GBSS genes from other plants.
GBSS gene;amylose;expression analysis;regulatory mechanism
10.13560/j.cnki.biotech.bull.1985.2016.03.004
2015-04-08
國家自然科學(xué)基金項(xiàng)目(31401843),海南省自然科學(xué)基金項(xiàng)目(314116,314100),現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項(xiàng)資金資助項(xiàng)目(CARS-32)
苗紅霞,女,博士,副研究員,研究方向:香蕉分子生物學(xué);E-mail:miaohongxia@itbb.org.cn
徐碧玉,女,博士,研究員,研究方向:香蕉生物技術(shù);E-mail:biyuxu@126.com