赫晨, 王建禮, 程廣超
(北方民族大學(xué)生物科學(xué)與工程學(xué)院,銀川750021)
可卡因?qū)Υ菩宰厣锸蟮倪\(yùn)動性、社會行為及中樞精氨酸加壓素、催產(chǎn)素和酪氨酸羥化酶表達(dá)的影響
赫晨, 王建禮*, 程廣超
(北方民族大學(xué)生物科學(xué)與工程學(xué)院,銀川750021)
精氨酸加壓素(AVP)和催產(chǎn)素(OT)能夠調(diào)節(jié)社會行為,并通過調(diào)節(jié)多巴胺(DA)的活動參與藥物成癮。棕色田鼠Lasiopodomysmandarinus是一種單配制田鼠,具有較復(fù)雜的社會行為。本研究以酪氨酸羥化酶(TH)標(biāo)記DA神經(jīng)元,對雌性棕色田鼠連續(xù)注射可卡因[20 mg·(kg·d)-1]4 d,24 h后測量其運(yùn)動性、焦慮水平和社會行為以及AVP、OT和TH的變化。結(jié)果發(fā)現(xiàn),與對照組相比,可卡因組運(yùn)動性提高,社會探究行為和攻擊行為下降,但焦慮水平差異沒有統(tǒng)計學(xué)意義。同時,可卡因組下丘腦前區(qū)AVP和下丘腦室旁核OT的免疫活性神經(jīng)元數(shù)量減少;室旁核和中腦腹側(cè)被蓋區(qū)TH的免疫活性神經(jīng)元數(shù)量增加。這些結(jié)果說明反復(fù)暴露于可卡因能夠改變雌性棕色田鼠的行為敏感化及社會行為。AVP、OT和DA參與了這一調(diào)節(jié)過程。
可卡因;焦慮;攻擊行為;神經(jīng)肽;多巴胺
可卡因是藥物濫用者常用的成癮性藥物,能夠影響多種神經(jīng)遞質(zhì)系統(tǒng),如增加大腦多巴胺(dopamine,DA)、5-羥色胺(5-hydroxytryptamine,5-HT)和去甲腎上腺素(norepinephrine,NE)等遞質(zhì)(Ritzetal.,1990;Kahlig & Galli,2003),這些遞質(zhì)系統(tǒng)反過來會影響行為以及涉及行為變化的激素,如雌激素、孕酮和催乳素(Johnetal.,1998;Nelsonetal.,1998)。精氨酸加壓素(arginine vasopressin,AVP)和催產(chǎn)素(oxytocin,OT)是2種重要的神經(jīng)肽,主要由下丘腦室旁核(paraventricular nucleus,PVN)與視上核(supraoptic nucleus,SON)產(chǎn)生,涉及調(diào)節(jié)社會行為、攻擊行為和情緒(Skuse & Gallagher,2009),尤其對調(diào)節(jié)單配制動物的行為具有重要作用(Ahern & Young,2009;Youngetal.,2011)。此外,大量研究表明這2種神經(jīng)肽也參與藥物獎賞和成癮。例如,AVP參與調(diào)節(jié)可卡因戒斷及可卡因誘導(dǎo)的條件位置偏愛(conditioned place preference,CPP)、運(yùn)動性、自給藥等行為敏感化(de Vryetal.,1988;Sarnyaietal.,1992a;Chuietal.,1998;Rodríguez-Borreroetal.,2010);OT能減少可卡因誘導(dǎo)的CPP、高運(yùn)動性、刻板行為(stereotyped behavior)、自給藥以及可卡因的復(fù)吸等(Sarnyai & Kovács,1994;Sarnyaietal.,2011;McGregor & Bowen,2012)。因此,AVP和OT系統(tǒng)是研究社會行為和藥物濫用關(guān)系的重要樞紐(王建禮等,2011)。
社會行為及調(diào)控社會行為的神經(jīng)化學(xué)物質(zhì)與物種的婚配制度或社會組織有關(guān)(Razzolietal.,2003)。物種的社會性水平會影響成癮藥物的敏感性(Cailhol & Mormede,1999;Curtis & Wang,2007)。因此,藥物對神經(jīng)肽及社會行為的影響可能具有種特異性和變異性。與實(shí)驗(yàn)大鼠和小鼠相比,棕色田鼠Lasiopodomysmandarinus在野外以家庭群維持社群生活,具有穩(wěn)定的配偶聯(lián)系(邰發(fā)道等,2001;邰發(fā)道,王廷正,2001;王建禮等,2005)和較復(fù)雜的社會行為,而且雌性較雄性表現(xiàn)出更多的攻擊行為(翟培源等,2008;Wuetal.,2011)。酪氨酸羥化酶(tyrosine hydroxylase,TH)是DA合成的限速酶,可以標(biāo)記DA神經(jīng)元。先前的研究已發(fā)現(xiàn)可卡因能夠?qū)ψ厣锸笮纬瑟勝p效應(yīng)(Wangetal.,2012)。在可卡因誘導(dǎo)棕色田鼠的行為變化中,AVP、OT和DA的作用還不清楚。本文通過對雌性棕色田鼠反復(fù)注射可卡因,檢測其運(yùn)動性、焦慮水平、社會行為以及AVP、OT和TH的變化,以期探討可卡因?qū)ι鐣詣游锏男袨橛绊懠皟?nèi)在機(jī)制。
1.1 材料
棕色田鼠種鼠捕自河南省靈寶市農(nóng)作區(qū)(111°21′E,34°41′N,海拔650 m)。實(shí)驗(yàn)雌鼠為F3代鼠,塑料飼養(yǎng)籠(長0.4 m×寬0.28 m×高0.15 m)飼養(yǎng),3~4只一籠。木屑做墊料,棉花做巢材,以胡蘿卜為食。室溫21 ℃±2 ℃,光照周期12L∶12D,食物、飲水充足。
1.2 行為實(shí)驗(yàn)
1.2.1 曠場行為 實(shí)驗(yàn)分為2組??煽ㄒ蚪M(n=12),每天09∶00皮下注射20 mg·kg-1鹽酸可卡因(青海制藥廠,以生理鹽水溶解),連續(xù)注射4 d,24 h后即第5天進(jìn)行行為實(shí)驗(yàn)。對照組(n=10)每天注射等體積的生理鹽水。曠場行為觀察在曠場箱(長50 cm×寬50 cm×高25 cm)中進(jìn)行。在曠場箱正上方1.5 m處安放4×60 W燈泡照明,使曠場箱中心光照強(qiáng)度達(dá)到400 lx。曠場箱被16等分,其中中間4等分為中央?yún)^(qū)域(central area),剩余12等分為周圍區(qū)域(peripheral area)(Fiore & Ratti,2007)。行為觀察開始時,被測棕色田鼠被置于曠場箱中央?yún)^(qū)域,使用數(shù)碼攝像機(jī)拍攝5 min。每只棕色田鼠行為觀察結(jié)束后,分別使用75%的酒精和蒸餾水對曠場箱進(jìn)行清洗。拍攝完成后使用Noldus Observe 5.0(Noldus,Holland)分析棕色田鼠在中央?yún)^(qū)域停留時間和穿格次數(shù)。以中央?yún)^(qū)域停留時間占總時間的百分比評估焦慮樣行為,穿格次數(shù)評估運(yùn)動性。
1.2.2 社會互作 曠場實(shí)驗(yàn)結(jié)束后進(jìn)行社會互作實(shí)驗(yàn)。選擇一日齡和體質(zhì)量與被測雌鼠相似的雌性作為刺激鼠,刺激鼠以背部剪毛標(biāo)記。觀察箱(長44 cm×寬22 cm×高16 cm)底部覆以2 cm厚的木屑。測試時將實(shí)驗(yàn)鼠和刺激鼠分別置于觀察箱兩側(cè),中央用木板隔開,待適應(yīng)3 min后取掉擋板,用數(shù)碼攝像機(jī)拍攝15 min。實(shí)驗(yàn)結(jié)束后通過Noldus Observe 5.0分析以下行為的持續(xù)時間:
社會探究(social investigation):嗅聞身體的任何部位(包括肛殖區(qū)、面部及軀體)。
親密行為(affiliative behavior):跨越身體、聚團(tuán)和相互修飾等。
攻擊行為(aggressive behavior):撲擊、嘶咬、翻滾和追擊等。
自飾行為(self-grooming behavior):用爪有節(jié)律地在口部、面部、耳部、腹下、側(cè)肋、肛殖區(qū)等處撓動。
1.3 免疫組織化學(xué)染色
實(shí)驗(yàn)鼠經(jīng)腹腔注射戊巴比妥鈉麻醉。先用4%多聚甲醛進(jìn)行灌注固定;取出腦組織放入4%多聚甲醛后固定過夜(4 ℃),其后4 ℃下置于30%蔗糖溶液直至組織沉底。用冰凍切片機(jī)將腦作冠狀切片,切片厚40 μm。用山羊血清封閉液在37 ℃濕盒內(nèi)封閉1 h。滴加由抗體稀釋液稀釋的一抗:AVP(1∶2 000;AB1565,Upstate,Lake Placid,USA),OT(1∶2 000;AB911,Upstate,Lake Placid,USA)和TH(1∶1 500;ab112,Abcam,Hong Kong),4 ℃孵育72 h。0.01 M 磷酸鹽緩沖液(PBS)漂洗5 min×4次。滴加生物素化羊抗兔IgG(博士德生物工程有限公司,武漢),37 ℃濕盒內(nèi)孵育1.5 h。0.01 M PBS漂洗5 min×4次。滴加SABC試劑(博士德生物工程有限公司,武漢),37 ℃濕盒內(nèi)孵育2.5 h。0.01 M PBS漂洗10 min×4次。DAB顯色劑顯色。常規(guī)酒精脫水,二甲苯透明,中性樹膠封片。
各腦區(qū)參照《大鼠腦立體定位圖譜》(包新民,舒斯云,1991)定位。每只鼠選擇同一腦區(qū)的3張切片,利用顯微測微尺在顯微鏡下計算相同面積內(nèi)單側(cè)腦區(qū)核團(tuán)的免疫活性(immunoreactive,IR)神經(jīng)元數(shù)量,包括下丘腦前區(qū)(anterior hypothalamus,AH)和PVN的AVP,PVN的OT以及中腦腹側(cè)被蓋區(qū)(ventral tegmental area,VTA)和PVN的TH。使用Olympus顯微成像系統(tǒng)拍照。
1.4 統(tǒng)計分析
所有數(shù)據(jù)用SPSS 13.0進(jìn)行統(tǒng)計分析。獨(dú)立樣本t檢驗(yàn)分析組間差異。數(shù)據(jù)結(jié)果以平均值±標(biāo)準(zhǔn)誤(Mean±SE)表示,顯著性水平為α=0.05。
2.1 曠場行為
與對照組相比,可卡因組的穿格次數(shù)明顯增加(t=2.451,P<0.05)(圖1:A),但在中央?yún)^(qū)域所占時間的百分比差異沒有統(tǒng)計學(xué)意義(t=0.997,P>0.05)(圖1:B)。
2.2 社會互作
與對照組相比,可卡因組的社會探究(t=-5.488,P<0.001)和攻擊行為(t=-4.667,P<0.001)的持續(xù)時間減少,自飾行為的時間增多(t=2.354,P<0.05),但親密行為之間差異沒有統(tǒng)計學(xué)意義(t=0.117,P>0.05)(圖2)。
2.3 AVP-,OT-和TH-IR神經(jīng)元數(shù)量
免疫組織化學(xué)染色結(jié)果表明,AH內(nèi)AVP-IR神經(jīng)元數(shù)量顯著降低(t=2.549,P<0.05),但PVN內(nèi)的AVP-IR神經(jīng)元數(shù)量差異沒有統(tǒng)計學(xué)意義(t=1.287,P>0.05)(圖3:A,圖4:A,B)。PVN內(nèi)的OT-IR神經(jīng)元數(shù)量顯著減少(t=2.845,P<0.05)(圖3:B,圖4:C,D)。此外,在PVN(t=2.763,P<0.05)和VTA(t=2.453,P<0.05)內(nèi)的TH-IR神經(jīng)元數(shù)量顯著增加(圖3:C,圖4:E~H)。
圖1 生理鹽水和可卡因處理后雌性棕色田鼠的曠場行為Fig. 1 Behaviors of saline- and cocaine-treated female Lasiopodomysmandarinus in an open field test
A. 穿格次數(shù), B. 中央?yún)^(qū)域停留時間百分比;*對照組和可卡因組比較差異有統(tǒng)計學(xué)意義(P<0.05); 下同。
A. Number of transitions, B. The percent of time in the central area of the open field;*there is a significant difference between saline-treated group and cocaine-treated group (P<0.05); the same below.
圖2 生理鹽水和可卡因處理后雌性棕色田鼠的社會互作Fig. 2 Social interaction in saline- and cocaine-treated femaleLasiopodomys mandarinus
本實(shí)驗(yàn)發(fā)現(xiàn)反復(fù)注射可卡因24 h后,與對照組相比,雌性棕色田鼠的運(yùn)動性增強(qiáng),但焦慮行為差異沒有統(tǒng)計學(xué)意義。引起動物運(yùn)動性增加是獎賞性藥物的屬性特征,也是行為敏感化的一種表現(xiàn)(Wise &Bozarth,1987)。許多研究證實(shí)可卡因顯著地增加運(yùn)動性(Johanson & Fischman,1989;Careyetal.,2005)。之前的研究也發(fā)現(xiàn)可卡因戒斷24 h增加了大鼠(de Oliveira Citóetal.,2012)和C57BL/6J小鼠的運(yùn)動性,但對BALB/cJ小鼠的運(yùn)動性沒有影響(Wangetal.,2014)??煽ㄒ蚰苷T導(dǎo)焦慮行為(Blanchard & Blanchard,1999;Paineetal.,2002)。本實(shí)驗(yàn)沒有發(fā)現(xiàn)焦慮行為,有人對小鼠研究發(fā)現(xiàn),可卡因戒斷對焦慮水平?jīng)]有影響(Niigakietal.,2010;Stoker & Markou,2011)。但是通過高架十字迷宮研究發(fā)現(xiàn),連續(xù)注射14 d可卡因,戒斷4周后測試發(fā)現(xiàn)大鼠呈現(xiàn)持續(xù)的焦慮行為(El Hageetal.,2012)。結(jié)合本實(shí)驗(yàn)結(jié)果,暗示物種差異、藥物注射的范式及戒斷時間會影響焦慮水平。
圖3 生理鹽水和可卡因處理后雌性棕色田鼠 AVP-IR(A)、OT-IR(B)和TH-IR(C)神經(jīng)元數(shù)目Fig. 3 The number of AVP- (A),OT- (B) and TH-IR neurons (C) in saline- and cocaine-treated female Lasiopodomys mandarinus
AH. 下丘腦前區(qū), PVN. 下丘腦室旁核, VTA. 中腦腹側(cè)被蓋區(qū)。
AH. anterior hypothalamus, PVN. paraventricular nucleus, VTA. ventral tegmental area.
社會互作包括許多行為成分,各成分具有不同的功能和神經(jīng)化學(xué)環(huán)路(Varlinskaya & Spear,2008)。我們發(fā)現(xiàn)可卡因戒斷減少了攻擊行為和社會探究,這與一些研究結(jié)果相似(Sarnyai,1993;Lubinetal.,2001;Rademacheretal.,2002;Estellesetal.,2004)。反復(fù)注射可卡因,24 h后檢測發(fā)現(xiàn)C57BL/6J小鼠的攻擊行為減少,但對BALB/cJ小鼠沒有影響(Wangetal.,2014)。Lubin等(2001)曾發(fā)現(xiàn),雌性大鼠在連續(xù)注射30 mg·kg-1的可卡因后,攻擊頻次減少。也有研究報道藥物的使用和戒斷與攻擊行為的變化沒有相關(guān)性(Dhossche,1999;Estellesetal.,2004)。這些結(jié)果與物種、測量參數(shù)、攻擊類型(保護(hù)性攻擊、親本攻擊、社會性攻擊)及藥物劑量有關(guān)(Estellesetal.,2004)。自飾行為的變化能夠反映情緒的變化(Summavielleetal.,2002;Careyetal.,2005),本實(shí)驗(yàn)中自飾行為增加可能與可卡因引起的情緒改變有關(guān)。
與對照組相比,可卡因降低了AH的AVP表達(dá)及PVN的OT表達(dá),同時增加了PVN和VTA的TH表達(dá)。對動物而言,AVP系統(tǒng)主要調(diào)節(jié)雄性的社會行為,OT系統(tǒng)主要調(diào)節(jié)雌性的社會行為,也調(diào)節(jié)雄性的攻擊行為,而雌性攻擊行為的調(diào)節(jié)也不排除AVP的參與(Veenema & Neumann,2007)。在雄性的焦慮和攻擊行為中,PVN的AVP具有重要的調(diào)節(jié)作用(Keverne & Curley,2004;Panetal.,2009)。本實(shí)驗(yàn)中,PVN的AVP水平?jīng)]有變化,這可能與焦慮水平?jīng)]有改變有關(guān)。Sarnyai等(1992b)曾發(fā)現(xiàn)急性可卡因給藥對下丘腦的AVP沒有影響,但慢性處理會減少下丘腦的AVP。AH的AVP神經(jīng)元是控制攻擊行為的中心,AH內(nèi)AVP的激活會易化攻擊行為(Ferrisetal.,1989;Gobroggeetal.,2007),相反,AH的AVP神經(jīng)元的減少與攻擊行為的減少有關(guān)(Ferrisetal.,1989),因此,可卡因?qū)е鹿粜袨榈臏p少也與AH內(nèi)AVP水平降低有關(guān)。此外,AVP并不影響可卡因誘導(dǎo)的運(yùn)動能力(Sarnyai,1992a)。
Lubin等(2001)發(fā)現(xiàn)慢性可卡因注射導(dǎo)致處女大鼠攻擊頻次減少,海馬體中OT水平降低。產(chǎn)后雌鼠在急性或慢性注射可卡因后攻擊行為改變,同時內(nèi)側(cè)視前區(qū)(medial preoptic area,MPOA)、杏仁核及PVN的OT降低(Elliottetal.,2001;Johnsetal.,2010)。對去卵巢的雌性大鼠急性注射可卡因,海馬體中OT的水平降低,但不影響杏仁核的水平(Johnsetal.,1993)。說明可卡因?qū)T水平的影響與核區(qū)有關(guān),并與體內(nèi)雌激素水平有關(guān)。OT可以增加社會行為、減少焦慮(Keverneetal.,2004;Veenema & Neumann,2008)。OT對調(diào)節(jié)雌性之間的攻擊行為尤其有效,例如,新生棕色田鼠幼仔注射OT,攻擊行為會增加(Jiaetal.,2008)。降低OT會減少雌性大鼠的拮抗行為(Razzolietal.,2003)。因此,本實(shí)驗(yàn)中由于可卡因經(jīng)歷導(dǎo)致雌性攻擊行為的下降也與OT下降有關(guān)。
對照組(A, C, E, G); 可卡因組(B, D, F, H); PVN. 下丘腦室旁核, AH. 下丘腦前區(qū), VTA. 中腦腹側(cè)被蓋區(qū); 比例尺=200 μm。
Saline-treated group (A, C, E, G); cocaine-treated group (B, D, F, H); PVN. paraventricular nucleus, AH. anterior hypothalamus, VTA. ventral tegmental area; Scale bars=200 μm.
可卡因成癮效應(yīng)主要通過抑制DA轉(zhuǎn)運(yùn)體,使其無法與DA正常結(jié)合,從而抑制DA的重攝取和轉(zhuǎn)運(yùn),導(dǎo)致突觸間隙DA濃度升高(Uhletal.,2002;Kahlig & Galli,2003),DA能神經(jīng)元持續(xù)興奮,令使用者產(chǎn)生快感。許多動物實(shí)驗(yàn)研究表明,實(shí)現(xiàn)藥物獎賞效應(yīng)的神經(jīng)結(jié)構(gòu)主要是中腦-邊緣-皮質(zhì)DA系統(tǒng)(mesocorticolimbic dopamine system,MCLDS)(Insel,2003),在此系統(tǒng)中,VTA-伏核(nucleus accumbens,NAc)的神經(jīng)通路尤其關(guān)鍵。DA能神經(jīng)元的胞體主要位于VTA。NAc接受VTA的DA能傳入纖維,激活DA功能,導(dǎo)致成癮(Koob & Moal,1997;Ikemoto,2007)。因此,VTA是藥物獎賞和成癮的重要位點(diǎn)。中腦邊緣系統(tǒng)的DA活動與可卡因誘導(dǎo)的行為和高運(yùn)動性有關(guān)(Sarnyai,1993;Tran-Nguyenetal.,1998)。Ito等(2007)認(rèn)為藥物誘導(dǎo)的高運(yùn)動性主要由中腦邊緣DA系統(tǒng)調(diào)節(jié),刻板行為主要由黑質(zhì)紋狀體(nigrostriatal)DA系統(tǒng)調(diào)節(jié)。VTA中TH表達(dá)的升高意味著DA合成和釋放。已有研究發(fā)現(xiàn)TH與藥物誘導(dǎo)的行為敏感化存在著密切關(guān)系,尼古丁或嗎啡處理明顯增加VTA或NAc的TH表達(dá)(陳洪,高國棟,2003;李雙成等,2010)。本實(shí)驗(yàn)中,VTA的DA能神經(jīng)元通過增加TH的表達(dá)促進(jìn)DA的合成,說明可卡因處理導(dǎo)致VTA-NAc通路的DA活動增強(qiáng),這可能是導(dǎo)致運(yùn)動性升高的一個原因。而且高水平DA與直立行為增加有關(guān)(Summavielleetal.,2002)。中腦邊緣系統(tǒng)的DA也是OT調(diào)節(jié)的潛在下游位點(diǎn)(Shahrokhetal.,2010),也不排除OT通過影響DA傳遞調(diào)節(jié)可卡因誘導(dǎo)的行為效應(yīng)(Sarnyai & Kovàcs,1994;Sarnyai,1999),如OT能夠干擾DA對運(yùn)動性增強(qiáng)的效應(yīng)(Kovàcsetal.,1990)。
PVN的TH是兒茶酚胺的限速酶,它標(biāo)記的神經(jīng)元還包括NE(Lipositsetal.,1986;Babovicetal.,2004)。由于NE在PVN的活動中具有突出作用,PVN的TH升高更多地與NE釋放有關(guān)(Zhangetal.,2010;Flaketal.,2014)。研究發(fā)現(xiàn)前額葉皮質(zhì)(prefrontal cortex,PFC)的NE具有調(diào)節(jié)攻擊行為的作用(Cambonetal.,2010),VTA的TH也參與攻擊行為(Filipenkoetal.,2001)。因此,本研究不能排除可卡因?qū)е碌墓魷p少與PVN和VTA的TH變化有關(guān)。
總之,反復(fù)暴露于可卡因會誘導(dǎo)雌性棕色田鼠行為敏感化并改變其社會行為。AVP、OT和TH的變化對調(diào)節(jié)這些行為具有重要作用。大量臨床和預(yù)臨床研究已證實(shí)藥物成癮具有性別差異,雌性比雄性對成癮藥物更敏感,例如,雌性大鼠習(xí)得可卡因自給藥的時間和形成CPP的時間更短,并表現(xiàn)出更強(qiáng)的行為敏感化(Anker & Carroll,2011)。當(dāng)前,藥物濫用者中的女性比例正在增加(US.Department of Health and Human Services,2013),因此,研究雌性成癮行為及機(jī)制對于制定針對女性藥物濫用者的治療策略具有重要的參考價值。
包新民, 舒斯云. 1991. 大鼠腦立體定位圖譜[M]. 北京: 人民衛(wèi)生出版社.
陳洪, 高國棟. 2003. 慢性嗎啡給藥誘導(dǎo)大鼠地點(diǎn)偏好和被蓋腹側(cè)區(qū)酪氨酸羥化酶同步變化[J]. 第四軍醫(yī)大學(xué)學(xué)報, 24(17): 1589-1591.
李雙成, 石葛明, 康云霄, 等. 2010. 尼古丁處理對大鼠腦內(nèi)多巴胺轉(zhuǎn)運(yùn)體和酪氨酸羥化酶的影響[J]. 解剖學(xué)報, 41(4): 525-527.
邰發(fā)道, 王廷正, 趙亞軍. 2001. 棕色田鼠的配偶選擇和相關(guān)特征[J]. 動物學(xué)報, 47(3): 266 -271.
邰發(fā)道, 王廷正. 2001. 棕色田鼠洞群內(nèi)社會組織[J]. 獸類學(xué)報, 21(1): 50-56.
王建禮, 邰發(fā)道, 安書成. 2005. 哺乳期棕色田鼠對配偶的識別記憶[J]. 動物學(xué)雜志, 40(6): 25-29.
王建禮, 邰發(fā)道, 趙清梅. 2011. 社會互作獎賞效應(yīng)的多巴胺依賴機(jī)制[J]. 生命科學(xué), 23(5): 423-428.
翟培源, 薛慧, 邰發(fā)道, 等. 2008. 棕色田鼠腦中雌激素α受體分布和社會互作的兩性差異[J]. 動物學(xué)報, 54(6): 1020-1028.
Ahern H, Young LJ. 2009. The impact of early life family structure on adult social attachment, alloparental behavior, and the neuropeptide systems regulating affiliative behaviors in the monogamous prairie vole (Microtusochrogaster)[J]. Frontiers in Behavioral Neuroscience, 3: 17.
Anker JJ, Carroll ME. 2011. Females are more vulnerable to drug abuse than males: evidence from preclinical studies and the role of ovarian hormones[J]. Current Topics in Behavioral Neurosciences, 8: 73-96.
Babovic SS, Mijatov-Ukropina L, Stojsic-Dzunja L,etal. 2004. Development of paraventricular nucleus (PVN) associated with immunoreactivity to tyrosine hydroxylase (TH) in the second half of gestation[J]. Medicinski Pregled, 57(9-10): 421-428.
Blanchard D, Blanchard R. 1999. Cocaine potentiates defensive behaviors related to fear and anxiety[J]. Neuroscience and Biobehavioral Reviews, 23(7): 981-991.
Cailhol S, Mormede P. 1999. Strain and sex differences in the locomotor response and behavioral sensitization to cocaine in hyperative rats[J]. Brain Research, 842(1): 200-205.
Cambon K, Dos-Santos Coura R, Groc L,etal. 2010. Aggressive behavior during social interaction in mice is controlled by the modulation of tyrosine hydroxylase expression in the prefrontal cortex[J]. Neuroscience, 171(3): 840-851.
Carey RJ, DePalma G, Damianopoulos E. 2005. Acute and chronic cocaine behavioral effects in novel versus familiar environments: open-field familiarity differentiates cocaine locomotor stimulant effects from cocaine emotional behavioral effects[J]. Behaviour Brain Research, 158(2): 321-330.
Chui J, Kalant H, Le DA. 1998. Vasopressin opposes locomotor stimulation by ethanol, cocaine and amphetamine in mice[J]. European Journal of Pharmacology, 355(1): 11-17.
Curtis JT,Wang Z. 2007. Amphetamine effects in microtine rodents: a comparative study using monogamous and promiscuous vole species[J]. Neuroscience, 148(4): 857-866.
de Oliveira Citó Mdo C, da Silva FC, Silva MI,etal. 2012. Reversal of cocaine withdrawal-induced anxiety by ondansetron, buspirone and propranolol[J]. Behaviour Brain Research, 231(1): 116-123.
de Vry J, Donselaar I, van Ree JM. 1988. Effects of desglycinamide9, (Arg8) vasopressin and vasopressin antiserum on the acquisition of intravenous cocaine self-administration in the rat[J]. Life Sciences, 42(26): 2709-2715.
Dhossche DM. 1999. Aggression and recent substance abuse: absence of association in psychiatric emergency room patients[J]. Comprehensive Psychiatry, 40(5): 343-346.
El Hage C, Rappeneau V, Etievant A,etal. 2012. Enhanced anxiety observed in cocaine withdrawn rats is associated with altered reactivity of the dorsomedial prefrontal cortex[J]. PLoS ONE, 7(8): e43535.
Elliott J, Lubin D, Walker C,etal. 2001. Acute cocaine alters oxytocin levels in the medial preoptic area and amygdala in lactating rat dams: implications for cocaine-induced changes in maternal behavior and maternal aggression[J]. Neuropeptides, 35(2): 127-134.
Estelles J, Rodriíguez-Arias M, Aguilar MA,etal. 2004. Social behavioural profile of cocaine in isolated and grouped male mice[J]. Drug and Alcohol Dependence, 76(2): 115-123.
Ferris CF, Axelson JF, Martin AM,etal. 1989. Vasopressin immunoreactivity in the anterior hypothalamus is altered during the establishment of dominant/subordinate relationships between hamsters[J]. Neuroscience, 29(3): 675-683.Filipenko ML, Alekseyenko OV, Beilina AG,etal. 2001. Increase of tyrosine hydroxylase and dopamine transporter mRNA levels in ventral tegmental area of male mice under influence of repeated aggression experience[J]. Brain Research Molecular Brain Research, 96(1-2): 77-81.
Fiore L, Ratti G. 2007. Remote laboratory and animal behaviour: an interactive open field system[J]. Computers & Education, 49(4): 1299-1307.
Flak JN, Myers B, Solomon MB,etal. 2014. Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress[J]. European Journal of Neuroscience, 39(11): 1903-1911.
Gobrogge KL, Liu Y, Jia X,etal. 2007. Anterior hypothalamic neural activation and neurochemical associations with aggression in pair-bonded male prairie voles[J]. Journal of Comparative Neurology, 502(6): 1109-1122.
Ikemoto S. 2007. Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex[J]. Brain Research Reviews, 56(1): 27-78.
Insel TR. 2003. Is social attachment an addictive disorder?[J]. Physiology & Behavior, 79(3): 351-357.
Ito S, Mori T, Namiki M,etal. 2007. Complicated interaction between psychostimulants and morphine in expression of phenotype of behavior in the dopaminergic system of BALB/c mice[J]. Journal of Pharmaceutical Sciences, 105(4): 326-333.
Jia R, Tai FD, An SC,etal. 2008. Effects of neonatal oxytocin treatment on aggression and neural activities in mandarin voles[J]. Physiology & Behavior, 95(1-2): 56-62.
Johanson CE, Fischman MW. 1989. The pharmacology of cocaine related to its abuse[J]. Pharmacological Reviews, 41(1): 3-52.
Johns JM, Caldwell JD, Pedersen CA. 1993. Acute cocaine treatment decreases oxytocin levels in the rat hippocampus[J]. Neuropeptides, 24(3): 165-169.
Johns JM, McMurray MS, Joyner PW,etal. 2010. Effects of chronic and intermittent cocaine treatment on dominance, aggression, and oxytocin levels in post-lactational rats[J]. Psychopharmacology (Berl), 211(2): 175-185.
Johns JM, Noonan LR, Zimmerman LI,etal. 1998. Chronic cocaine treatment alters social/aggressive behavior in Sprague-Dawley rat dams and in their prenatally exposed offspring[J]. Annals of the New York Academy of Sciences, 846: 399-404.
Kahlig KM, Galli A. 2003. Regulation of dopamine transporter function and plasma membrane expression by dopamine, amphetamine, and cocaine[J]. European Journal of Pharmacology, 479(1-3): 153-158.
Keverne EB, Curley JP. 2004. Vasopressin, oxytocin and social behaviour[J]. Current Opinion in Neurobiology, 14(6): 777-783.
Koob GF, Moal ML. 1997. Drug abuse: hedonic homeostatic dysregulation[J]. Science, 278(5335): 52-58.
Kovàcs GL, Sarnyai Z, Barbarczi E,etal. 1990. The role of oxytocin-dopamine interactions in cocaine-induced locomotor hyperactivity[J]. Neuropharmacology, 29(4): 365-368.Liposits Z, Sherman D, Phelix C,etal. 1986. A combined light and electron microscopic immunocytochemical method for the simultaneous localization of multiple tissue antigens. Tyrosine hydroxylase immunoreactive innervation of corticotropin releasing factor synthesizing neurons in the paraventricular nucleus of the rat[J]. Histochemistry, 85(2): 95-106.
Lubin DA, Meter KE, Walker CH,etal. 2001. Effects of chronic cocaine administration on aggressive behavior in virgin rats[J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 25(7): 1421-1433.
McGregor IS, Bowen MT. 2012. Breaking the loop: oxytocin as a potential treatment for drug addiction[J]. Hormones and Behavior, 61(3): 331-339.
Nelson CJ, Meter KE, Walker CH,etal. 1998. A dose-response study of chronic cocaine on maternal behavior in rats[J]. Neurotoxicology & Teratology, 20(6): 657-660.
Niigaki ST, Silva RH, Patti CL,etal. 2010. Amnestic effect of cocaine after the termination of its stimulant action[J]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 34(1): 212-218.
Paine T, Jackman S, Olmstead M. 2002. Cocaine-induced anxiety: alleviation by diazepam, but not buspirone, dimenhydrinate or diphenhydramine[J]. Behavioural Pharmacology, 13(7): 511-523.
Pan Y, Liu Y, Young KA,etal. 2009. Post-weaning social isolation alters anxiety-related behavior and neurochemical gene expression in the brain of male prairie voles[J]. Neuroscience Letter, 454(1): 67-71.
Rademacher DJ, Schuyler AL, Kruschel CK,etal. 2002. Effects of cocaine and putative a typical antipsychotics on rat social behavior: an ethopharmacological study[J]. Pharmacology Biochemistry & Behavior, 73(4): 769-778.
Razzoli M, Cushing BS, Carter CS,etal. 2003. Hormonal regulation of agonistic and affiliative behavior in female mongolian gerbils (Merionesunguiculatus)[J]. Hormones and Behavior, 43(5): 549-553.
Ritz MC, Cone EJ, Kuhar MJ. 1990. Cocaine inhibition of ligand binding at dopamine, norepinephrine and serotonin transporters: a structure-activity study[J]. Life Science, 46(9): 635-645.
Rodríguez-Borrero E, Rivera-Escalera F, Candelas F,etal. 2010. Arginine vasopressin gene expression changes within the nucleus accumbens during environment elicited cocaine-conditioned response in rats[J]. Neuropharmacology, 58(1): 88-101.
Sarnyai Z, Kovàcs GL. 1994. Role of oxytocin in the neuroadaptation to drugs of abuse[J]. Psychoneuroendocrinology, 19(1): 85-117.
Sarnyai Z, Szabó G, Kovàcs G,etal. 1992a. Opposite actions of oxytocin and vasopressin in the development of cocaine-induced behavioral sensitization in mice[J]. Pharmacology Biochemistry and Behavior, 43(2): 491-494.
Sarnyai Z, Vecsernyes M, Laczi FE,etal. 1992b. Effects of cocaine on the contents of neurohypophyseal hormones in the plasma and in different brain structures in rats[J]. Neuropeptides, 23(1): 27-31.
Sarnyai Z. 1993. Measurement of cocaine-induced stereotyped behavior in response to neuropeptides[M]// Conn PM. Methods in neurosciences paradigms for the study of behavior. San Diego, CA: Academic Press: 153-165.
Sarnyai Z. 1999. Oxytocin and neuroadaptation to cocaine[J]. Progress in Brain Research, 119: 449-466.
Sarnyai Z. 2011. Oxytocin as a potential mediator and modulator of drug addiction[J]. Addiction Biology, 16(2): 199-201.
Shahrokh DK, Zhang TY, Diorio J,etal. 2010. Oxytocin-depamine interactions mediate variations in maternal behavior in the rat[J]. Endocrinology, 151(5): 2276-2286.
Skuse DH, Gallagher L. 2009. Dopaminergic-neuropeptide interactions in the social brain[J]. Trends in Cognitive Sciences, 13(1): 27-35.
Stoker AK, Markou A. 2011. Withdrawal from chronic cocaine administration induces deficits in brain reward function in C57BL/6J mice[J]. Behavioural Brain Research, 223(1): 176-181.
Summavielle T, Magalh?es A, Castro-Vale I,etal. 2002. Neonatal exposure to cocaine: altered dopamine levels in the amygdala and behavioral outcomes in the developing rat[J]. Annals of the New York Academy of Sciences, 965: 515-521.
Tran-Nguyen LT, Fuchs RA, Coffey GP,etal. 1998. Time-dependent changes in cocaine-seeking behavior and extracellular dopamine levels in the amygdala duringcocaine withdrawal[J]. Neuropsychopharmacology, 19(1): 48-59.
Uhl GR, Hall FS, Sora I. 2002. Cocaine, reward, movement and monoamine transporters[J]. Molecular Psychiatry, 7(1): 21-26.
US. Department of Health and Human Services. 2013. Results from the 2012 National survey on drug use and health: summary of national findings[R]. Rockville MD: Substance Abuse and Mental Health Services Administration.
Varlinskaya EI, Spear LP. 2008. Social interactions in adolescent and adult Sprague-Dawley rats: impact of social deprivation and test context familiarity[J]. Behavioural Brain Research, 188(2): 398-405.
Veenema AH, Neumann ID. 2008. Central vasopressin and oxytocin release: regulation of complex social behaviours[J]. Progress in Brain Research, 170: 261-276.
Wang JL, Tai FD, Yu P,etal. 2012. Reinforcing properties of pups versus cocaine for fathers and associated central expression of Fos and tyrosine hydroxylase in mandarin voles (Microtusmandarinus)[J]. Behavioural Brain Research, 230(1): 149-157.Wang JL, Wang B, Chen W. 2014. Differences in cocaine-induced place preference persistence, locomotion and social behaviors between C57BL/6J and BALB/cJ mice[J]. Zoological Research, 35(5): 426-435.
Wise RA, Bozarth MA. 1987. A psychomotor stimulant theory of addiction[J]. Psychological Review, 94(4): 469-492.
Wu R, Yuan A, Yuan Q,etal. 2011. Comparison of sociability, parental care and central estrogen receptor alpha expression between two populations of mandarin voles (Microtusmandarinus)[J]. Journal of Comparative Physiology A, 197(3): 267-277.
Young KA, Gobrogge KL, Liu Y,etal. 2011. The neurobiology of pair bonding: insights from a socially monogamous rodent[J]. Frontiers in Neuroendocrinology, 32(1): 53-69.
Zhang R, Jankord R, Flak JN,etal. 2010. Role of glucocorticoids in tuning hindbrain stress integration[J]. The Journal of Neuroscience, 30(44): 14907-14914.
Effects of Cocaine on Locomotion, Social Behaviors and the Expression of Central Arginine Vasopressin, Oxytocin and Tyrosine Hydroxylase in Female Mandarin Voles
HE Chen, WANG Jianli*, CHENG Guangchao
(College of Biological Sciences and Engineering, Beifang University of Nationalities, Yinchuan 750021, China)
Arginine vasopressin (AVP) and oxytocin (OT) are associated with the regulation of social behaviors and involved in drug abuse by mediating dopamine (DA) activity. Mandarin voles (Lasiopodomysmandarinus) are socially monogamous rodents with complex social behaviors. Tyrosine hydroxylase (TH) is an indicator of DA production. In this study, female mandarin voles were treated by cocaine [20 mg·(kg·d)-1] for 4 days, and the locomotion, anxiety levels and social behaviors as well as the expression of AVP, OT and TH-immunoreactive (IR) neurons were then assessed after 24 h of withdrawal. Compared to the saline control, cocaine-treated group exhibited higher levels of locomotion and less social behaviors and aggressive behavior. However, anxiety levels were not altered. In addition, we found that cocaine resulted in a reduction of AVP-IR neurons in the anterior hypothalamus and OT-IR neurons in the paraventricular nucleus (PVN). Furthermore, more TH-IR neurons in the PVN and VTA were found in the cocaine-treated group. Taken together, these results suggested that repeated cocaine exposure may alter behavioral sensitization and social behaviors in female mandarin voles, and AVP, OT and DA may play potential regulatory roles.
cocaine; anxiety; aggressive behavior; neuropeptide; dopamine
2016-04-16 接受日期:2016-06-08
國家自然科學(xué)基金項(xiàng)目(No.31260513; 31460565); 國家級大學(xué)生創(chuàng)新訓(xùn)練計劃項(xiàng)目(201611407018)
10.11984/j.issn.1000-7083.20160086
Q955
A
1000-7083(2016)04-0488-08
*通信作者Corresponding author, E-mail:wang_jianli@163.com