孟慶昌,張志宏,李啟杰
(海軍工程大學(xué)理學(xué)院,湖北 武漢 430033)
高速射彈超空泡流動(dòng)的重力和壓縮性效應(yīng)*
孟慶昌,張志宏,李啟杰
(海軍工程大學(xué)理學(xué)院,湖北 武漢 430033)
超空泡射彈是一種新型的水下高速動(dòng)能武器。基于理想可壓縮勢(shì)流理論,考慮流體的重力效應(yīng),建立了水下細(xì)長(zhǎng)錐形射彈超空泡流動(dòng)的統(tǒng)一理論模型和數(shù)值計(jì)算方法,分別導(dǎo)出了亞、超聲速條件下用于計(jì)算細(xì)長(zhǎng)錐形射彈超空泡形態(tài)的積分-微分方程。采用二次多項(xiàng)式局部擬合空泡,提出了超空泡形態(tài)的數(shù)值離散和遞推求解方法。通過(guò)超空泡長(zhǎng)細(xì)比的漸近解與數(shù)值解計(jì)算結(jié)果比較,驗(yàn)證了所建立的理論模型和計(jì)算方法的有效性。通過(guò)分析細(xì)長(zhǎng)錐形射彈在不同運(yùn)動(dòng)方式、深度、速度條件下的超空泡形態(tài)和流體動(dòng)力系數(shù)計(jì)算結(jié)果,明確了流體重力和壓縮性效應(yīng)對(duì)超空泡尺度、射彈表面壓力分布和壓差阻力系數(shù)的影響。
流體力學(xué);壓縮性;勢(shì)流理論;超空泡;射彈;亞聲速;超聲速;重力
利用超空泡現(xiàn)象可以大幅度減小水下運(yùn)動(dòng)物體的摩擦阻力,從而大大提高其航行速度。基于超空泡原理的高速射彈,利用其彈道末端的剩余動(dòng)能可攔截魚雷、擊毀水雷和破除水下障礙等。20世紀(jì)末,在美國(guó),機(jī)載快速滅雷系統(tǒng)(RAMICS)已經(jīng)裝備部隊(duì),超空泡射彈水下速度超過(guò)1 000 m/s。Y.D.Vlasenko[1]、Y.N.Savchenko[2]、I.N.Kirschner[3]開展的超空泡射彈實(shí)驗(yàn)水下運(yùn)動(dòng)速度分別達(dá)到1 300、1 350和1 549 m/s,已超過(guò)了水中聲速1 450 m/s。目前,超空泡射彈還在進(jìn)一步向高速方向發(fā)展[4-6]。在不考慮流體的壓縮性效應(yīng)時(shí),Y.S.Chou[7]、S.S.Kulkarni等[8]、K.Ohtani等[9]對(duì)射彈超空泡流動(dòng)和彈體運(yùn)動(dòng)特性進(jìn)行了計(jì)算。由于射彈高速?zèng)_擊導(dǎo)致的流體壓縮性效應(yīng)不容忽視,A.N.Varghese等[10]、A.D.Vasin[11-13]、V.V.Serebryakov等[4-6]基于細(xì)長(zhǎng)體理論和漸近匹配展開法對(duì)超空泡形態(tài)影響的可壓縮效應(yīng)進(jìn)行了理論研究,張志宏等[14-15]進(jìn)一步拓展得到了亞、超聲速條件下細(xì)長(zhǎng)錐形射彈的超空泡形態(tài)二階近似解,金永剛等[16]、張志宏等[17]建立了高速射彈超空泡流場(chǎng)的數(shù)值計(jì)算方法。
超聲速超空泡射彈發(fā)射后在水下依靠慣性無(wú)動(dòng)力飛行,其速度從超聲速逐漸減至亞聲速,期間需要經(jīng)歷壓縮性效應(yīng)顯著的跨聲速階段。另外,超空泡射彈還需在變水深條件下運(yùn)動(dòng),水深變化引起的重力效應(yīng)(環(huán)境壓力和空泡數(shù)的變化)也不容忽視。因而,需要綜合分析流體壓縮性和重力效應(yīng)對(duì)高速射彈超空泡形態(tài)和流體動(dòng)力特性的影響。文獻(xiàn)[14-17]僅能反映流體壓縮性效應(yīng)對(duì)超空泡形態(tài)和流場(chǎng)的影響,沒有反映流體的重力效應(yīng)。本文中,針對(duì)高速細(xì)長(zhǎng)錐形超空泡射彈的實(shí)際應(yīng)用背景,綜合計(jì)及流體的重力和壓縮性效應(yīng)影響,統(tǒng)一建立亞、超聲速條件下超空泡流動(dòng)的理論模型和數(shù)值計(jì)算方法,系統(tǒng)完整地解決高速射彈的超空泡形態(tài)、射彈表面壓力分布和壓差阻力系數(shù)等計(jì)算問(wèn)題,擬為下一步超空泡射彈的彈型優(yōu)化設(shè)計(jì)和水下彈道預(yù)報(bào)提供理論基礎(chǔ)。
在細(xì)長(zhǎng)錐形射彈底部建立柱坐標(biāo)系(x,r),如圖1所示。設(shè)射彈繞流為理想可壓縮流體無(wú)旋運(yùn)動(dòng),來(lái)流速度為U。根據(jù)亞、超聲速流動(dòng)特點(diǎn),假定亞聲速時(shí)超空泡尾部采用Riabouchinsky閉合方式,超聲速時(shí)則不需提供閉合方式。考慮重力對(duì)超空泡流動(dòng)的影響,假定重力加速度g指向x軸負(fù)方向,當(dāng)射彈沿x軸負(fù)方向運(yùn)動(dòng)時(shí),對(duì)應(yīng)于流體重力勢(shì)能減小即垂直入水方向,反之為垂直出水方向。由于入水開空泡通大氣的復(fù)雜性,本文中只考慮射彈在液體中的水平、垂直向下和向上的運(yùn)動(dòng),不考慮氣水交界面上的入水問(wèn)題。射彈半徑r=r1(x)=ε(x+l)預(yù)先給定,超空泡半徑r=R(x)和長(zhǎng)度L則需通過(guò)計(jì)算確定,其中l(wèi)和Rn分別為射彈長(zhǎng)度和底部半徑,取小參數(shù)ε=Rn/l。
圖1 細(xì)長(zhǎng)錐形射彈及超空泡坐標(biāo)系Fig.1 Coordinate system on slender conical projectile and supercavity
設(shè)高速射彈引起的流場(chǎng)擾動(dòng)速度勢(shì)為φ,則描述亞、超聲速超空泡流動(dòng)的數(shù)學(xué)問(wèn)題是:
(1)
(2)
(3)
(4)
式中:Ma=U/a為無(wú)窮遠(yuǎn)處來(lái)流馬赫數(shù),a為無(wú)窮遠(yuǎn)處來(lái)流聲速。
流體壓力與密度關(guān)系采用Tait狀態(tài)方程描述,即:
(5)
式中:p、ρ為無(wú)窮遠(yuǎn)處來(lái)流壓力和密度;p、ρ為流場(chǎng)中某點(diǎn)壓力和密度;n=7.15;B=298 MPa。
計(jì)及重力效應(yīng)的伯努利方程為:
(6)
式中:x為重力場(chǎng)參考平面坐標(biāo),取x=0時(shí)對(duì)應(yīng)于射彈底面的中心位置。
對(duì)細(xì)長(zhǎng)錐形射彈,流場(chǎng)壓力系數(shù)可導(dǎo)出:
(7)
式中:傅魯?shù)聰?shù)Fr=U
根據(jù)亞、超聲速流動(dòng)特點(diǎn),流場(chǎng)擾動(dòng)速度勢(shì)可分別寫為:
(8)
(9)
利用式(2)和式(4),將式(8)、式(9)分別代入式(7),得到描述亞、超聲速細(xì)長(zhǎng)錐形射彈超空泡形態(tài)(0≤x≤L-l)的非線性積分-微分方程分別為:
(10)
(11)
求解超空泡形態(tài),可將超空泡沿長(zhǎng)度方向均勻分成N段,有N+1個(gè)節(jié)點(diǎn),且x1=0,xN+1=L-l。設(shè)ζ在每段的相鄰兩節(jié)點(diǎn)之間按x(xi≤x≤xi+1)的二次多項(xiàng)式變化,即:
ζ=ζi+ai(x-xi)+bi(x-xi)2i=1,2,…,N
(12)
式中:ai和bi是待定系數(shù)。
利用式(4)及dζ/dx在各節(jié)點(diǎn)處連續(xù)的條件,得a1=2εRn以及ai+1的遞推公式為:
ai+1=ai+2bi(xi+1-xi)i=1,2,…,N
(13)
利用式(12),可得計(jì)算各節(jié)點(diǎn)xk處超空泡ζk的累加表達(dá)式為:
(14)
系數(shù)bi(i=1,2,…,N)的確定成為超空泡形態(tài)計(jì)算的關(guān)鍵。在亞、超聲速條件下,將式(12)分別代入式(10)和式(11),得到求解bi的線性代數(shù)方程組和遞推公式分別為:
k=1,2,…,N,Ma<1 (15)
(16)
Ma<1 (17)
(18)
(19)
式中:D為射彈的壓差阻力。
取射彈幾何參數(shù)為:l=120 mm,Rn=6 mm,ε=0.05。由文獻(xiàn)[4-6],超空泡長(zhǎng)細(xì)比λ的漸近解為:
(20)
在已知射彈運(yùn)動(dòng)速度時(shí),可以計(jì)算來(lái)流馬赫數(shù)Ma和空化數(shù)σ,通過(guò)式(10)或式(11)和式(14),可以計(jì)算亞聲速或超聲速條件下細(xì)長(zhǎng)錐形射彈的超空泡形態(tài),并進(jìn)一步得到超空泡長(zhǎng)細(xì)比與馬赫數(shù)的變化關(guān)系。不同深度射彈水平運(yùn)動(dòng)時(shí)超空泡長(zhǎng)細(xì)比的漸近解與數(shù)值解結(jié)果比較如圖2所示,兩者整體上符合較好,驗(yàn)證了本文理論模型和數(shù)值解法的正確性。在大部分情況下,λ隨Ma基本呈線性變化,即隨Ma增加超空泡形態(tài)將變得更加細(xì)長(zhǎng)。但在跨聲速(0.8 在射彈深度和速度恒定(如h=20 m,Ma=0.7,1.2)時(shí),計(jì)算射彈水平及出、入水運(yùn)動(dòng)的超空泡形態(tài)。當(dāng)射彈水平運(yùn)動(dòng)(對(duì)應(yīng)于Fr→)時(shí),計(jì)算得到的超空泡形態(tài)在亞聲速時(shí)前后對(duì)稱,在超聲速時(shí)前后稍微不對(duì)稱,主要原因是:亞聲速時(shí)擾動(dòng)可向流場(chǎng)四周傳播,而超聲速時(shí)擾動(dòng)僅在馬赫錐內(nèi)向下游傳播。在射彈垂直入水(對(duì)應(yīng)于Fr2>0)或垂直出水(因射彈運(yùn)動(dòng)方向與重力加速度g方向相反,對(duì)應(yīng)于Fr2<0)時(shí),由于重力效應(yīng)的影響,推遲或加速了超空泡尾部的封閉,使超空泡的長(zhǎng)度拉長(zhǎng)或縮短,如圖3所示。射彈出入水時(shí)重力效應(yīng)主要影響超空泡的尾部形態(tài),并使超空泡前后呈現(xiàn)不對(duì)稱。 圖2 超空泡長(zhǎng)細(xì)比的數(shù)值解與漸近解Fig.2 Supercavity aspect ratio between numerical and asymptotic solution 圖3 運(yùn)動(dòng)方式對(duì)超空泡形態(tài)的影響Fig.3 Effect of movement mode on supercavity profile 另外,重力效應(yīng)并不完全體現(xiàn)在Fr數(shù)的大小上,由式(10)和式(11)可以看出,它同時(shí)還與超空泡的尺度坐標(biāo)x有關(guān)。計(jì)算分析表明,當(dāng)射彈沿水平方向或沿垂直出水方向運(yùn)動(dòng)時(shí),超空泡尾部可以自然封閉,因而可以得到超空泡形態(tài)的收斂解。當(dāng)射彈沿垂直入水方向運(yùn)動(dòng)時(shí),由于超空泡長(zhǎng)度隨Ma增加而增加,當(dāng)Ma過(guò)大導(dǎo)致超空泡長(zhǎng)度過(guò)長(zhǎng)而入水深度不足時(shí),由于超空泡來(lái)不及封閉,則無(wú)法滿足超空泡尾部的閉合準(zhǔn)則,理論計(jì)算將得不到收斂的超空泡形態(tài)數(shù)值解。 重力效應(yīng)對(duì)超空泡尺度的影響還與水深大小有關(guān),如圖4所示。圖中縱坐標(biāo)Lu/Lh、Ru/Rh分別為射彈出水和水平運(yùn)動(dòng)的超空泡長(zhǎng)度和最大半徑之比。在水深較小(如水深為零)時(shí),超空泡尺度受重力效應(yīng)的影響較大,且隨Ma的增加而增加。相對(duì)于射彈水平運(yùn)動(dòng)的超空泡尺度,射彈出水時(shí)超空泡長(zhǎng)度比半徑減小得更快,即在同樣的Ma下,Lu/Lh偏離1的位置比Ru/Rh大。當(dāng)水深增加(如h=20 m)時(shí),Lu/Lh和Ru/Rh偏離1的位置減小。說(shuō)明水深較大時(shí),射彈出水時(shí)的超空泡尺度受重力效應(yīng)的影響相對(duì)減小,即更加接近于射彈水平運(yùn)動(dòng)時(shí)的超空泡尺度。因此,水深越大,無(wú)論射彈是水平運(yùn)動(dòng)還是垂向運(yùn)動(dòng),他們的超空泡尺度大小就越接近,重力效應(yīng)對(duì)射彈不同運(yùn)動(dòng)方式形成的超空泡尺度的影響就越小。 在射彈速度恒定時(shí),進(jìn)一步計(jì)算水深變化對(duì)射彈出水超空泡形態(tài)的影響。當(dāng)射彈沿垂直方向(垂直向下或垂直向上)運(yùn)動(dòng)時(shí),其超空泡在垂向?qū)⒃馐懿煌闹亓ψ饔?。圖5為射彈以速度Ma=0.7垂直出水的超空泡形態(tài),水深h分別為10、20、30、40 m??梢姡S著水深增加,超空泡長(zhǎng)度和半徑將依次縮小,但縮小的趨勢(shì)逐漸減緩。 圖4 出水與水平運(yùn)動(dòng)超空泡長(zhǎng)度和最大半徑之比Fig.4 Ratio of supercavity length to maximum radius for upward to horizontal movement 圖5 深度對(duì)出水超空泡尺度的影響Fig.5 Effect of depth on supercavity scale for upward movement 當(dāng)射彈沿水平方向運(yùn)動(dòng)時(shí),由于不同深度條件下空化數(shù)不同,也將導(dǎo)致所形成的超空泡尺度不同。當(dāng)射彈以亞聲速M(fèi)a=0.8和超聲速M(fèi)a=1.2作水平運(yùn)動(dòng)時(shí),深度增加將使超空泡長(zhǎng)度和最大半徑相應(yīng)縮小。水深小時(shí)減小得快,水深大時(shí)減小得慢,如圖6所示。說(shuō)明水深較小時(shí),超空泡尺度對(duì)深度變化比較敏感,而水深較大時(shí),深度變化對(duì)超空泡尺度的影響較小。 考慮重力和壓縮性效應(yīng), 計(jì)算射彈表面壓力分布和壓差阻力系數(shù)隨馬赫數(shù)的變化關(guān)系。在水深一定(如h=20 m)時(shí),Ma的變化對(duì)射彈表面壓力分布有較大影響,射彈表面的壓力系數(shù)在錐尖處為駐點(diǎn)壓力,亞聲速時(shí)由錐尖至錐底逐漸減小,在錐底處壓力系數(shù)減小為各自水深和速度下的負(fù)空化數(shù),如圖7所示。當(dāng)Ma由0.3增加至0.7時(shí),壓力系數(shù)增加較慢,當(dāng)Ma由0.7增加至0.9時(shí),壓力系數(shù)增加較快,而當(dāng)Ma由0.9增加至0.99時(shí),壓力系數(shù)則急劇增加。Ma的變化反映了流體壓縮性效應(yīng)的影響。 超聲速條件下,由式(18)可知,相同速度時(shí)射彈表面壓力系數(shù)與水深無(wú)關(guān)。由于超聲速時(shí)Fr很大,而射彈尺度又很小,因此無(wú)論射彈是水平運(yùn)動(dòng)還是出水或入水運(yùn)動(dòng),射彈表面的壓力系數(shù)將基本保持不變,且近似為常數(shù)。 圖6 深度對(duì)超空泡長(zhǎng)度和半徑的影響Fig.6 Effect of depth on supercavity length and radius 圖7 不同馬赫數(shù)下的壓力系數(shù)分布Fig.7 Pressure coefficients for different Mach number 射彈的壓差阻力系數(shù)與其表面的壓力系數(shù)和空化數(shù)的大小有關(guān)。通過(guò)射彈表面的壓力系數(shù)分布,可以定性反映射彈運(yùn)動(dòng)的壓差阻力系數(shù)大小。在亞聲速時(shí),壓差阻力系數(shù)隨水深增加有明顯增加,主要是由水深變化導(dǎo)致的空化數(shù)增加而引起的,如圖8所示。在超聲速時(shí),由于射彈速度大,水深增加引起的空化數(shù)變化小,不同水深、相同速度時(shí)射彈表面的壓力系數(shù)分布基本保持不變,因而壓差阻力系數(shù)與水深變化關(guān)系不大。因此,在亞聲速時(shí)流體重力效應(yīng)對(duì)壓差阻力系數(shù)的影響較大,而在超聲速時(shí)則影響較小。 在0.8 圖8 不同深度時(shí)壓差阻力系數(shù)與馬赫數(shù)的關(guān)系Fig.8 Base drag coefficient vs. Mach number at different depths 圖9 可壓縮與不可壓縮流動(dòng)參數(shù)之比Fig.9 Flow parameter ratio of compressibility to incompressibility 建立的亞、超聲速細(xì)長(zhǎng)錐形射彈超空泡流動(dòng)的理論模型和計(jì)算方法,考慮了流體的壓縮性特別是重力效應(yīng),可以計(jì)算細(xì)長(zhǎng)錐形射彈運(yùn)動(dòng)方式、深度、速度的變化對(duì)超空泡形態(tài)和流體動(dòng)力系數(shù)的影響。對(duì)細(xì)長(zhǎng)錐形射彈垂直出入水運(yùn)動(dòng),流體重力效應(yīng)主要體現(xiàn)在沿深度方向空泡周圍的壓力改變上。對(duì)細(xì)長(zhǎng)錐形射彈水平運(yùn)動(dòng),流體重力效應(yīng)主要體現(xiàn)在水深變化導(dǎo)致的空泡數(shù)改變上。亞聲速時(shí),流體重力效應(yīng)對(duì)細(xì)長(zhǎng)錐形射彈壓差阻力系數(shù)有明顯影響,而超聲速時(shí)影響較小。流體壓縮性效應(yīng)對(duì)超空泡形態(tài)、細(xì)長(zhǎng)錐形射彈表面壓力分布和射彈壓差阻力系數(shù)的影響主要體現(xiàn)在跨臨界速度和高超聲速范圍內(nèi)。由于理論模型中未計(jì)及跨聲速時(shí)的非線性效應(yīng)影響,因而在跨聲速范圍時(shí)計(jì)算結(jié)果只能定性反映超空泡射彈的流動(dòng)特性變化。 [1] Vlasenko Y D. Experimental investigation of supercavitation flow regimes at subsonic and transonic speeds[C]∥Fifth International Symposium on Cavitation (CAV2003). Osaka, Japan, 2003. [2] Savchenko Y N. Investigation of high-speed supercavitating underwater motion of bodies[C]∥North Atlantic Treaty Organization. High Speed Body Motion in Water. Hull, Canada: Communication Group Inc, 1998:203-214. [3] Kirschner I N. Results of selected experiments involving supercavitating flows[C]∥The Research and Technology Organization of NATO. Supercavitating Flows (RTO EN-010/AVT-058). Ottawa, Canada: St Joseph Corporation Company, 2002:343-356. [4] Serebryakov V V, Kirschner I N, Schnerr G H. High speed motion in water with supercavitation for sub-, trans-, supersonic Mach numbers[C]∥Seventh International Symposium on Cavitation (CAV2009). NY, USA: Curran Associates, 2011:219-236. [5] Serebryakov V V. Problems of hydrodynamics for high speed motion in water with supercavitation[C]∥Sixth International Symposium on Cavitation (CAV2006). Wageningen, Netherlands, 2006. [6] Serebryakov V V, Schnerr G H. Some problems of hydrodynamics for high sub- and supersonic motion in water with supercavitation[C]∥Fifth International Symposium on Cavitation (CAV2003). Osaka, Japan, 2003. [7] Chou Y S. Axisymmetric cavity flows past slender bodies of revolution[J]. Journal of Hydronautics, 1974,8(1):13-18. [8] Kulkarni S S, Pratap R. Studies on the dynamics of a supercavitating projectile[J]. Applied Mathematical Modeling, 2000,24(2):113-129. [9] Ohtani K, Kikuchi T, Numata D, et al. Study on supercavitation phenomena induced by a high-speed slender projectile on water[C]∥23rd International Association for Hydraulic Research Symposium (IAHR). Yokohama, Japan, 2006:17-21. [10] Varghese A N, Uhlman J S, Kirschner I N. Axisymmetric slender-body analysis of supercavitating high-speed bodies in subsonic flow[C]∥Proceedings of the Third International Symposium on Performance Enhancement for Marine Applications. Gieseke: British Library, 1997:225-240. [11] Vasin A D. Supercavitating flows at Supersonic speed in compressible water[C]∥North Atlantic Treaty Organization. High Speed Body Motion in Water (AGARD-R827). Hull, Canada: Communication Group Inc, 1998:2101-2110. [12] Vasin A D. Some problems of supersonic cavitation flows[C]∥Fourth International Symposium on Cavitation (CAV2001). Pasadena, CA, 2001:20-23. [13] Vasin A D. Supercavities in compressible fluid[C]∥The Research and Technology Organization of NATO. Supercavitating Flows (RTO EN-010/AVT-058). Ottawa, Canada: St Joseph Corporation Company, 2002:1601-1629. [14] 張志宏,孟慶昌,顧建農(nóng),等.水下亞聲速細(xì)長(zhǎng)錐形射彈超空泡形態(tài)的計(jì)算方法[J].爆炸與沖擊,2010,30(3):254-261. Zhang Zhihong, Meng Qingchang, Gu Jiannong, et al. A calculation method for supercavity profile about a slender cone-shaped projectile traveling in water at subsonic speed[J]. Explosion and Shock Waves, 2010,30(3):254-261. [15] 張志宏,孟慶昌,顧建農(nóng),等.水下超聲速細(xì)長(zhǎng)錐形射彈超空泡形態(tài)的計(jì)算方法[J].爆炸與沖擊,2011,31(1):49-54. Zhang Zhihong, Meng Qingchang, Gu Jiannong, et al. A calculation method for supercavity profile about a slender cone-shaped projectile traveling in water at supersonic speed[J]. Explosion and Shock Waves, 2011,31(1):49-54. [16] 金永剛,張志宏,王沖,等.水下亞聲速細(xì)長(zhǎng)錐形射彈超空泡流的數(shù)值計(jì)算方法[J].計(jì)算力學(xué)學(xué)報(bào),2012,29(3):393-398. Jin Yonggang, Zhang Zhihong, Wang Chong, et al. Numerical method of supercaviting flow past a slender cone type projectile traveling in water at subsonic speed[J]. Chinese Journal of Computational Mechanics, 2012,29(3):393-398. [17] 張志宏,孟慶昌,金永剛,等.超聲速錐形射彈超空泡流動(dòng)數(shù)值計(jì)算方法[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,42(1):39-43. Zhang Zhihong, Meng Qingchang, Jin Yonggang. Numerical method of supercavitating flow past a slender cone type projectile traveling at supersonic speed[J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2014,42(1):39-43. (責(zé)任編輯 丁 峰) Effects of gravity and compressibility on supercavitating flow caused by high speed projectile Meng Qingchang, Zhang Zhihong, Li Qijie (CollegeofScience,NavalUniversityofEngineering,Wuhan430033,Hubei,China) The supercavitating projectile is a new underwater weapon with high speed and kinetic energy. Based on the theory of the ideal compressible potential flow, and taking into account of the gravity effect, an unified theoretical model and numerical calculation for the supercavitating flow caused by an underwater slender conical projectile were constructed, the integral-differential equations for computing the supercavity profiles at subsonic and supersonic speed were derived, and the numerical discrete scheme and a recursive solution were proposed using local fitting of quadratic polynomial, thus obtaining the supercavity profile. The theoretical model and numerical calculation were verified by comparing the asymptotic solutions with the numerical ones of the supercavity aspect ratio. The effects of gravity and compressibility on the supercavity scale, pressure distribution over the projectile and base drag coefficient were summarized through analysis of the supercavity profiles and hydrodynamic coefficients in different movement modes, depths and speeds for the slender conical projectile. fluid mechanics; compressibility; potential flow theory; supercavity; projectile; subsonic; supersonic; gravity 10.11883/1001-1455(2016)06-0781-08 2015-04-27; < class="emphasis_bold">修回日期:2015-06-15 2015-06-15 國(guó)家自然科學(xué)基金項(xiàng)目(51309230,51479202); 中國(guó)博士后科學(xué)基金項(xiàng)目(2013M542531,2014T70992) 孟慶昌(1981— ),男,博士,講師; 張志宏,zhangzhihong_999@163.com。 O353.4 <國(guó)標(biāo)學(xué)科代碼:1302534 class="emphasis_bold"> 國(guó)標(biāo)學(xué)科代碼:1302534 文獻(xiàn)標(biāo)志碼:A國(guó)標(biāo)學(xué)科代碼:1302534 A5 結(jié) 論