陳連民 沈宜釗 王洪榮(揚州大學(xué)動物科學(xué)與技術(shù)學(xué)院,揚州225009)
?
牛鏈球菌在瘤胃中產(chǎn)酸的代謝機制及調(diào)控
陳連民沈宜釗王洪榮?
(揚州大學(xué)動物科學(xué)與技術(shù)學(xué)院,揚州225009)
摘要:牛鏈球菌(S. bovis)是瘤胃主要的乳酸產(chǎn)生菌,在飼喂高精料飼糧導(dǎo)致瘤胃乳酸中毒進程中扮演重要角色。已有研究證實S. bovis利用碳水化合物代謝產(chǎn)酸主要受葡萄糖轉(zhuǎn)運方式、酵解產(chǎn)酸途徑中酶和中間代謝物調(diào)控。另外,研究也發(fā)現(xiàn)環(huán)境pH、增殖生長階段及分解代謝控制蛋白(CcpA)等對其產(chǎn)酸速率和模式也有顯著影響。本文對近年來有關(guān)S. bovis利用飼料中碳水化合物發(fā)酵產(chǎn)酸代謝途徑及影響因素研究加以綜述,為從微生物代謝角度解析瘤胃乳酸中毒機制提供參考。
關(guān)鍵詞:牛鏈球菌;乳酸;瘤胃酸中毒;代謝途徑
現(xiàn)代集約化養(yǎng)殖條件下,以淀粉為主的高精料飼糧飼養(yǎng)方式會引起反芻動物瘤胃中牛鏈球菌(Streptococcus bovis,S. bovis)快速增殖生長,并利用易發(fā)酵碳水化合物發(fā)酵產(chǎn)生大量乳酸,造成乳酸積累,加速瘤胃酸中毒進程[1-3]。因此,可通過控制S. bovis增殖生長及代謝產(chǎn)酸,使其產(chǎn)生的乳酸維持在適當(dāng)水平,達到一定程度上防治瘤胃乳酸中毒發(fā)生[3-4]。大量研究表明,S. bovis主要通過糖酵解或己糖二磷酸(EMP)途徑代謝產(chǎn)酸[5]。調(diào)控飼糧中碳水化合物降解產(chǎn)生的葡萄糖在S. bovis細胞中的酵解流速,達到預(yù)防瘤胃乳酸中毒目的已引起相關(guān)學(xué)者的廣泛關(guān)注。研究表明,S. bovis的葡萄糖轉(zhuǎn)運方式、酵解產(chǎn)酸途徑、代謝途徑中的酶和中間代謝物、生長環(huán)境pH、不同生長階段以及分解代謝控制蛋白A(catabolite control protein A,CcpA)等都對S. bovis利用碳水化合物代謝產(chǎn)酸有顯著影響。本文對近年來相關(guān)研究進展進行綜述,為通過微生物代謝途徑解析瘤胃乳酸中毒機制提供參考。
飼糧中的淀粉進入瘤胃后在淀粉酶作用下水解為葡萄糖等,S. bovis通過對葡萄糖等糖類攝取和發(fā)酵獲得能量以供其增殖生長并發(fā)酵產(chǎn)酸。當(dāng)前研究認為S. bovis葡萄糖跨膜攝取轉(zhuǎn)運主要包括磷酸轉(zhuǎn)移酶系統(tǒng)(phosphotransferase system,PTS)以及易化擴散2條途徑[6]。易化擴散中,細胞膜外高濃度葡萄糖通過膜載體蛋白、通道等在不消耗能量的前提下順濃度梯度擴散至細胞內(nèi)。相比易化擴散,PTS則負責(zé)特異性地將葡萄糖從胞外跨膜主動運輸進入胞質(zhì)。該轉(zhuǎn)運系統(tǒng)對葡萄糖更具親和力,是糖逆濃度梯度轉(zhuǎn)運的主要方式[7],但PTS對葡萄糖跨膜轉(zhuǎn)運能力小于易化擴散[6]。
PTS由3類酶構(gòu)成,分別為:磷酸烯醇式丙酮酸(PEP)依賴型蛋白激酶Ⅰ(PEP-dependent protein kinase enzymeⅠ,EⅠ)、熱穩(wěn)定性組氨酸磷酸化蛋白(heat-stable,histidine-phosphoryl protein,HPr)以及磷酸烯醇式丙酮酸依賴型蛋白激酶Ⅱ(enzymeⅡ,EⅡ)。EⅠ和HPr是非特異性的可溶性胞質(zhì)蛋白,為不同糖類PTS轉(zhuǎn)運系統(tǒng)所共享。EⅡ則具有糖類特異性,且在結(jié)構(gòu)域水平非常保守,一般包含3個結(jié)構(gòu)域(EⅡA、EⅡB和EⅡC),3個結(jié)構(gòu)域或組織在1個蛋白質(zhì)上,由連接序列融合,或在進化過程中被分開位于2~4個蛋白質(zhì)組分中,但只有相互結(jié)合才具轉(zhuǎn)運活性。EⅡA和EⅡB為親水性磷酸轉(zhuǎn)移酶結(jié)構(gòu)域,朝向胞內(nèi),EⅡC一般為疏水性膜結(jié)合通道形成的結(jié)構(gòu)域[8]。當(dāng)胞外富含葡萄糖碳源時,胞內(nèi)PEP將作為磷酸基團(Pi)的供體,EⅠ接受PEP供給的Pi形成EⅠ-P,并將Pi傳遞到HPr的15號組氨酸殘基,形成組氨酰磷酸化HPr(HPr-[His-P]),進一步地再經(jīng)EⅡA-EⅡB途徑傳遞Pi,導(dǎo)致EⅡB磷酸化。磷酸化的EⅡB(EⅡB-P)可以激活EⅡC,EⅡC特異識別葡萄糖,并將其磷酸化為葡萄糖-6-磷酸(G-6-P)后轉(zhuǎn)運進入胞質(zhì)(圖1),進入糖酵解途徑[8]。
圖1 S. bovis葡萄糖跨膜轉(zhuǎn)運方式Fig.1 Glucose trans membrane transport by S. bovis[8]
研究發(fā)現(xiàn),革蘭氏陽性菌可將Pi傳遞到HPr 的46號絲氨酸殘基,形成絲氨酰磷酸化HPr(HPr-[Ser-P])的ATP依賴型HPr激酶[9-10]。HPr-[Ser-P]除參與葡萄糖跨膜轉(zhuǎn)運外還參與諸如芽孢桿菌、鏈球菌和乳酸桿菌等革蘭氏陽性菌多個基因轉(zhuǎn)錄調(diào)控[11-12]?;蜣D(zhuǎn)錄調(diào)控中,HPr-[Ser-P]對CcpA具有極高親和力。在與其結(jié)合形成復(fù)合物后,進一步地又與位于操縱子5'端或其上游的代謝反應(yīng)原件(CRE)相靶定,最終使基因轉(zhuǎn)錄被激活或抑制[13];同時,HPr-[Ser-P]可通過誘導(dǎo)排斥機制抑制PTS及非PTS的糖跨膜轉(zhuǎn)運。HPr-[Ser-P]通過激活磷酸糖磷酸酶,使磷酸糖去磷酸化,引起已攝入胞質(zhì)的葡萄糖外流[14-15]。Cook等[16]提出果糖-1,6-二磷酸(FDP)活化蛋白激酶可能對HPr-[Ser-P]的誘導(dǎo)排斥起到激活作用。相關(guān)研究也進一步證實FDP能激活HPr激酶,進而抑制糖的跨膜轉(zhuǎn)運[7]。此外,Asanuma等[17]研究HPr磷酸化對S. bovis增殖產(chǎn)酸的影響發(fā)現(xiàn),HPr-[Ser-P]隨S. bovis增殖速率下降而下降,對應(yīng)的HPr-[His-P]和胞內(nèi)Pi濃度則升高。該研究認為Pi濃度可以通過調(diào)節(jié)HPr激酶決定HPr-[His-P]與HPr-[Ser-P]相對優(yōu)勢程度,進而調(diào)控S. bovis增殖產(chǎn)酸。
2.1S. bovis利用葡萄糖代謝產(chǎn)酸途徑
淀粉等碳水化合物在淀粉酶等作用下最終降解為葡萄糖。無氧條件下,1分子葡萄糖經(jīng)過10步反應(yīng)分解成2分子丙酮酸并提供能量的過程即為糖酵解過程[18]。糖酵解過程是真核細胞以及細菌對攝入體內(nèi)的葡萄糖最初經(jīng)歷的酶促分解過程,也是葡萄糖分解代謝所經(jīng)歷的共同途徑。被瘤胃中S. bovis細胞攝入的葡萄糖酵解為丙酮酸后的去路主要有4條:1)在乳酸脫氫酶(LDH)作用下生成乳酸。2)在甲酸裂解酶(PFL)作用下生成甲酸。3)在丙酮酸脫羧酶及乙醇脫氫酶(ADHE)作用下生成乙醇。4)轉(zhuǎn)化為乙酰輔酶A后,經(jīng)磷酸轉(zhuǎn)乙?;负鸵宜峒っ缸饔蒙梢宜幔?jīng)AHDE作用生成乙醇,與草酰乙酸形成檸檬酸進入生物合成;另外,葡萄糖酵解產(chǎn)生的PEP又可在磷酸烯醇式丙酮酸羧化酶(PCK)作用下生成草酰乙酸[19-20]。圖2為葡萄糖在S. bovis胞內(nèi)的酵解產(chǎn)酸路徑總結(jié)圖[19-23]。
圖2 瘤胃中S. bovis利用葡萄糖酵解產(chǎn)酸路徑Fig.2 Fermentation pathways of glucose by S. bovis in rumen[19-23]
2.2代謝途徑酶與中間代謝物對S. bovis產(chǎn)酸的影響
研究發(fā)現(xiàn),影響S. bovis產(chǎn)酸模式的中間代謝物主要包括FDP及丙糖磷酸等;而酶主要包括果糖-1,6-二磷酸醛縮酶(FBA)、LDH及PFL等。中間代謝物與酶通過相互影響進而達到對糖酵解產(chǎn)酸速率和模式的調(diào)控。
2.2.1中間代謝物對酶的調(diào)控作用
經(jīng)典生物化學(xué)認為,代謝途徑中催化不可逆反應(yīng)的酶所處位點是控制代謝反應(yīng)的關(guān)鍵。糖酵解途徑中己糖激酶、磷酸果糖激酶(PFK)和丙酮酸激酶(PYK)催化的反應(yīng)實際都是不可逆反應(yīng),3種酶活性受到酵解途徑各種產(chǎn)物的影響,具體地:1)己糖激酶活性受其產(chǎn)物葡萄糖-6-磷酸的抑制。當(dāng)PFK活性不高時,造成果糖-6-磷酸的積累,而葡萄糖-6-磷酸與果糖-6-磷酸維持在一種相對平衡,使得葡萄糖-6-磷酸的濃度增加。2)PFK活性能夠被高濃度的ATP和檸檬酸所抑制。因為高濃度ATP抑制PFK與底物果糖-6-磷酸的結(jié)合。另外,如果細胞內(nèi)檸檬酸含量高,則意味著豐富的生物合成前體物存在,葡萄糖無需為提供合成前體物而降解,檸檬酸可以通過加強ATP的抑制效應(yīng)來抑制PFK,減慢糖酵解途徑。3)PFK活性能夠被高濃度AMP、ADP、果糖-2,6-二磷酸、果糖-6-磷酸激活。果糖-2,6-二磷酸能夠提高果糖激酶與果糖-6-磷酸的親和力并降低ATP抑制效應(yīng)。而果糖-6-磷酸有加速果糖-2,6-二磷酸合成作用,還有抑制該化合物被水解的作用。4)PYK活性受FDP激活;當(dāng)能量儲存足夠時,高濃度ATP對PYK變構(gòu)抑制效應(yīng)使酵解過程減慢;當(dāng)血液葡萄糖濃度降低,會激起肝臟中PYK的磷酸化,酶活降低,酵解過程減慢,血液葡萄糖濃度得以維持;與此同時,丙氨酸由丙酮酸接受1個氨基形成,丙氨酸濃度增加意味著丙酮酸作為丙氨酸的前體過量。丙氨酸對PYK的變構(gòu)抑制效應(yīng),也使酵解過程減慢[24-27]。
此外,F(xiàn)DP和丙糖磷酸[二羥丙酮磷酸(DHAP)、甘油醛-3-磷酸(GAP)]也對S. bovis糖酵解產(chǎn)酸起重要調(diào)控作用。Russell等[28]研究發(fā)現(xiàn)S. bovis胞內(nèi)FDP濃度高時乳酸產(chǎn)量增多,LDH活性升高,認為乳酸產(chǎn)量增加可能與FDP對LDH激活作用有關(guān)。而FDP對LDH激活作用早在1964年被Wolin[29]證實。Asanuma等[30]研究S. bovis糖酵解過程中DHAP和GAP對PFL抑制效應(yīng)發(fā)現(xiàn),DHAP和GAP對PFL具有劑量抑制效應(yīng)。當(dāng)DHAP濃度為0.1 mmol/ L時,PFL活性相比最高時的活性降低40%,而當(dāng)GAP濃度為0.1 mmol/ L時,PFL活性相比最高時活性則降低超過80%。有關(guān)丙糖磷酸對PFL的抑制效應(yīng)也在乳酸鏈球菌、鏈球菌屬及變形鏈球菌中得到證實,認為葡糖酵解程度帶來DHAP和GAP濃度大幅度變化造成PFL的變構(gòu)效應(yīng),從而起到抑制作用[31-33]。
2.2.2代謝酶對中間代謝物的調(diào)控作用
己糖激酶、PFK和PYK作為糖酵解反應(yīng)中的關(guān)鍵酶,對S. bovis發(fā)酵產(chǎn)酸具有重要調(diào)控作用。有關(guān)PFK基因過表達S. bovis菌株研究中發(fā)現(xiàn)PFK過表達并不影響產(chǎn)甲酸和乳酸的比例及生長增殖速率,認為PFK不是S. bovis糖代謝產(chǎn)酸途徑主要調(diào)控因素[34-35];有關(guān)PYK對S. bovis糖酵解及產(chǎn)酸調(diào)控的研究發(fā)現(xiàn)PYK過表達S. bovis菌株P(guān)YK活性遠高于正常菌株,但兩者乳酸和甲酸產(chǎn)量及比例則無顯著差異,認為PYK過表達并不會影響S. bovis糖酵解產(chǎn)酸速率和模式[35],類似研究結(jié)果在產(chǎn)乳酸鏈球菌中也得到證實[34]。但當(dāng)前有關(guān)己糖激酶調(diào)控S. bovis利用葡萄糖酵解產(chǎn)酸的研究尚鮮見報道。更多的研究表明FBA、LDH 及PFL等對S. bovis酵解產(chǎn)酸起中心調(diào)控作用。
Asanuma等[36]認為大量易發(fā)酵碳水化合物作為底物時S. bovis FBA過表達可以減少乳酸產(chǎn)生,少量易發(fā)酵碳水化合物或不易發(fā)酵碳水化合物作為底物時FBA低表達可以提高乳酸產(chǎn)生。進一步地,其通過FBA過表達S. bovis菌株研究發(fā)現(xiàn)該菌株胞內(nèi)FDP較低,對應(yīng)的LDH轉(zhuǎn)錄水平低于PFL,乳酸產(chǎn)量減少。但DHAP和GAP濃度均顯著高于常規(guī)菌株,分別達到2. 60和0.49 mmol/ L[37]。FBA將FDP裂解成1分子DHAP和GAP。當(dāng)FBA過表達時,理論上酵解產(chǎn)生DHAP和GAP濃度升高,會抑制PFL活性,從而使得乳酸產(chǎn)量增加[31-33]。但實際研究中FBA過表達時DHAP和GAP濃度升高反而引起乳酸減少甲酸增多,可能因為LDH活性對FDP的強依賴性,即FBA過表達導(dǎo)致FDP濃度降低使LDH活性減弱程度遠大于DHAP和GAP濃度升高對PFL的抑制作用[28,37]。
另外,Asanuma等[38-39]研究S. bovis菌株ADHE過表達對產(chǎn)酸模式的影響,發(fā)現(xiàn)同樣培養(yǎng)環(huán)境下構(gòu)建的ADHE過表達菌株ADHE表達量是普通菌株的3倍,但乙醇的產(chǎn)量卻沒有顯著差異。對應(yīng)的PFL及LDH的表達量及乳酸、甲酸的產(chǎn)量也無顯著差異。說明S. bovis糖酵解產(chǎn)酸主要傾向乳酸和甲酸,即使ADHE的過表達,對丙酮酸或乙酰輔酶A流向乙醇的去路影響甚微。Asanuma等[40-41]認為丙酮酸向乳酸的轉(zhuǎn)化需要NADH向NAD+轉(zhuǎn)化,而GAP在甘油醛- 3 -磷酸脫氫酶(GAPDH)作用下形成1,3-二磷酸甘油是S. bovis葡萄糖酵解過程中唯一提供NADH的路徑,因此認為GAPDH過表達會為下游乳酸合成提供更多NADH,從而使S. bovis糖酵解產(chǎn)生更多乳酸[42]。但在利用GAPDH過表達S. bovis菌株的實際研究中卻發(fā)現(xiàn)GAPDH過表達并不能改變S. bovis葡萄糖酵解過程中NADH/ NAD+及甲酸/乳酸,產(chǎn)酸模式仍主要取決于LDH和PFL相對優(yōu)勢程度[40]。但由于此類研究只是針對S.bovis JB1菌株的體外純培養(yǎng)試驗,并不代表對瘤胃中其他S. bovis菌株的共性,且瘤胃內(nèi)環(huán)境比純培養(yǎng)環(huán)境條件要復(fù)雜得多,因此不能否定此類酶對S. bovis瘤胃環(huán)境下產(chǎn)酸的調(diào)控作用。
高精料飼喂首先引起淀粉分解菌大量增殖,成為優(yōu)勢菌群,產(chǎn)生大量揮發(fā)性脂肪酸,引起pH降低。當(dāng)pH下降到5.5左右時,多數(shù)微生物增殖生長一定程度上受到抑制,而對低pH具有耐受性的S. bovis能夠大量增殖生長,并以主要產(chǎn)生乳酸。pH能夠?qū). bovis糖酵解產(chǎn)酸起到調(diào)控作用主要是因為酵解產(chǎn)酸過程中相關(guān)酶的活性隨pH的變化被不同程度地抑制或激活。pH為6.7的體外連續(xù)培養(yǎng)條件下S. bovis產(chǎn)酸主要以甲酸、乙酸等為主,而乳酸產(chǎn)量較少;當(dāng)培養(yǎng)液pH下降到4.7 時S. bovis轉(zhuǎn)向乳酸發(fā)酵為主。說明pH高條件下PFL活性被激活,LDH活性被抑制,而當(dāng)pH降低時PFL活性被抑制,LDH活性被激活[28]。并且當(dāng)pH分別為5.5和7.5時,LDH和PFL活性達到最高[28,43]。Asanuma等[36]研究表明S. bovis的FBA活性在pH為4.5時遠低于pH為7.0時,并且FBA活性在pH為5.5時僅為pH 7.0時的1/2;而FBA的高活性可以減少大量易發(fā)酵碳水化合物為培養(yǎng)底物時S. bovis乳酸的產(chǎn)量。因此,當(dāng)FBA活性受低pH抑制時,會引起FDP濃度升高,進一步激活LDH,造成乳酸產(chǎn)量的增加。除對酶的活性影響外,pH還可從轉(zhuǎn)錄水平調(diào)控LDH合成。Asanuma等[43]研究發(fā)現(xiàn)培養(yǎng)基pH為4.5時LDH的轉(zhuǎn)錄水平遠高于pH為6.9時。但pH引起的S. bovis LDH基因轉(zhuǎn)錄水平變化到底是由什么樣的信號通路或者感應(yīng)機制介導(dǎo)的目前還不得而知,仍有待進一步研究。
Russell等[44]研究體外S. bovis和埃氏巨球形菌(Megasphaera elsdenii,M. elsdenii)連續(xù)共培養(yǎng)條件下,稀釋率及pH對兩者的影響發(fā)現(xiàn),pH較高(6.0~6.6)時,S. bovis相對于M. elsdenii數(shù)量優(yōu)勢最大,但乳酸產(chǎn)量較少。進一步隨pH下降(5.4~6.0),S. bovis相對于M. elsdenii數(shù)量優(yōu)勢減弱,乳酸產(chǎn)量增加。當(dāng)pH降低到5.4以下時,M. elsdenii幾乎消失,乳酸大量累積。說明環(huán)境pH對S. bovis產(chǎn)酸及其與M. elsdenii相對優(yōu)勢程度有一定影響。也有研究發(fā)現(xiàn),一旦動物機體適應(yīng)高精料飼糧后,S. bovis數(shù)量會降低為萬分之一,與飼喂青干草時數(shù)量相當(dāng),說明S. bovis的數(shù)量變化又不僅僅與pH降低有關(guān),瘤胃微生物菌群間的互作也可能對其起到重要影響[45]。乳酸大量的產(chǎn)生積累會進一步引起pH下降并抑制乳酸分解菌的活力,造成革蘭氏陰性菌死亡裂解釋放內(nèi)毒素等,導(dǎo)致瘤胃菌群紊亂,加劇瘤胃代謝酸中毒[3,46-48]。當(dāng)pH下降到5.0時,S. bovis生長受到抑制,對低pH具有耐受性的乳酸桿菌等數(shù)量逐漸增加,形成優(yōu)勢菌群,進一步產(chǎn)生大量乳酸,并釋放細菌素等毒性物質(zhì),抑制S. bovis等其他菌群的生長[45]。
分批培養(yǎng)條件下,S. bovis由對數(shù)期轉(zhuǎn)向平穩(wěn)期時,伴隨增殖速率放緩,LDH轉(zhuǎn)錄水平會進一步降低,產(chǎn)酸傾向甲酸,Asanuma等[43]認為S. bovis不同生長階段會從轉(zhuǎn)錄層次調(diào)控產(chǎn)酸模式。并且S. bovis連續(xù)培養(yǎng)時,PFL轉(zhuǎn)錄水平降低,LDH轉(zhuǎn)錄水平升高,產(chǎn)酸以乳酸為主,并且細菌一直處于高增殖速率[49]。這進一步說明,S. bovis生長增殖階段對產(chǎn)酸具有調(diào)控作用;有關(guān)基因?qū). bovis純培養(yǎng)條件下生長調(diào)控研究發(fā)現(xiàn)LuxS基因編碼的LuxS誘導(dǎo)合成酶2是通用的細菌群體感應(yīng)調(diào)控因子,LuxS表達情況與S. bovis增殖速率相關(guān),表現(xiàn)為對數(shù)生長期時表達最高,進入生長平穩(wěn)期時表達會迅速降低,并且LuxS基因表達并不受S. bovis密度影響,但在組成復(fù)雜且不斷變化的瘤胃環(huán)境中,LuxS則具有調(diào)節(jié)細胞生理功能和代謝的作用[50]。另外,S. bovis增殖速率不同表現(xiàn)出LuxS基因表達差異與S. bovis不同生長階段LDH表達變化有著一致性,可能對S. bovis生長代謝起到調(diào)控作用,但仍有待進一步的研究證實。
CcpA是基因轉(zhuǎn)錄的抑制或激活劑,對細胞代謝起重要調(diào)控作用[51]。在利用CcpA基因缺失的S.bovis菌株研究其對代謝產(chǎn)酸影響發(fā)現(xiàn),相比正常菌株,CcpA基因缺失菌株LDH轉(zhuǎn)錄水平較低,PFL轉(zhuǎn)錄水平較高,產(chǎn)酸趨向甲酸[52]。進一步研究發(fā)現(xiàn)CcpA啟動子區(qū)存在一個CRE序列,CcpA需要與HPr-[Ser-P]結(jié)合形成復(fù)合物才能進一步與CRE結(jié)合從而發(fā)揮作用[10,12],而LDH和PFL基因的上游區(qū)域都存在CRE序列,是CcpA與HPr-[Ser-P]所形成復(fù)合物的潛在結(jié)合位點,說明CcpA可能參與S. bovis的糖代謝及產(chǎn)酸調(diào)控[54]。除對LDH和PFL的調(diào)控外,相關(guān)研究也發(fā)現(xiàn)CcpA可能通過調(diào)控S. bovis酵解途徑中編碼代謝酶的其他基因影響發(fā)酵產(chǎn)酸。Asanuma等[35,53-54]先后發(fā)現(xiàn)GAPDH、PYK和PCK基因上游都存在1個CcpA潛在結(jié)合位點,并且利用CcpA基因缺失S. bovis菌株研究葡萄糖為底物培養(yǎng)條件下相比正常菌株以上3個基因都出現(xiàn)低表達,產(chǎn)酸模式傾向甲酸,由此可見CcpA對S. bovis代謝產(chǎn)酸具有重要調(diào)控作用。
S. bovis與瘤胃乳酸中毒關(guān)系密切,對該菌的代謝產(chǎn)酸路徑及影響因素的研究一定程度上可揭示瘤胃中S. bovis的代謝產(chǎn)酸規(guī)律,為瘤胃乳酸中毒的微生物代謝層次解析提供資料參考。當(dāng)前研究揭示了丙糖磷酸、FDP等中間代謝物,F(xiàn)BA、LDH、PFL等關(guān)鍵酶以及環(huán)境pH對S. bovis代謝產(chǎn)酸的中心調(diào)控作用。相對地,轉(zhuǎn)錄層次諸如CcpA、LuxS基因等對S. bovis代謝產(chǎn)酸調(diào)控也起重要作用,但轉(zhuǎn)錄層次對S. bovis代謝產(chǎn)酸調(diào)控研究仍處于初級階段,且多數(shù)研究只是針對1~2種編碼酶或調(diào)控因子的基因轉(zhuǎn)錄變化推測其在S. bovis代謝產(chǎn)酸中的調(diào)控作用,缺乏對代謝通路的系統(tǒng)性研究、驗證。同時,當(dāng)前研究過于集中在不同環(huán)境條件下S. bovis純培養(yǎng)代謝產(chǎn)酸的變化,忽視了瘤胃乳酸中毒發(fā)展進程中其他微生物菌群演替、互作以及有害代謝物等對S. bovis可能具有的代謝產(chǎn)酸調(diào)控作用。另外,在酶、基因等定量技術(shù)手段上仍停留在Western blot和Northern blot,檢測通量較小、成本高、耗時費力。因此,未來研究中一方面可以借助代謝組學(xué)、蛋白質(zhì)組學(xué)、轉(zhuǎn)錄組學(xué)等先進的高通量檢測技術(shù)手段,系統(tǒng)地對S. bovis代謝產(chǎn)酸規(guī)律進行探索揭示;另一方面,需要在瘤胃內(nèi)不同內(nèi)環(huán)境條件下,研究混合瘤胃微生物對對S. bovis代謝產(chǎn)酸的影響。為進一步揭示瘤胃乳酸中毒機制提供依據(jù)。
參考文獻:
[1] MAROUNE M,BARTOS S.Interactions between rumen amylolytic and lactate-utilizing bacteria in growth on starch[J].Journal of Applied Bacteriology,1987,63(3):233-238.
[2] WANG H R,PAN X H,WANG C,et al. Effects of different dietary concentrate to forage ratio and thiamine supplementation on the rumen fermentation and ruminal bacterial community in dairy cows[J].Animal Production Science,2014,55(2):189-193.
[3] 王洪榮.反芻動物瘤胃酸中毒機制解析及其營養(yǎng)調(diào)控措施[J].動物營養(yǎng)學(xué)報,2014,26(10):3140-3148.
[4] LETTAT A,NOZIèRE P,SILBERBERG M,et al.Rumen microbial and fermentation characteristics are affected differently by bacterial probiotic supplementation during induced lactic and subacute acidosis in sheep[J].BMC Microbiology,2012,12:142.
[5] ASANUMA N,HINO T.Understanding metabolic regulation in the ruminal bacteria,Streptococcus bovis,Selenomonas ruminantium,and Megasphaera elsdenii [M]/ / MARTIN S A.Gastrointestinal microbiology in animals.Kerala,India:Research Signpost,2002:61 -87.
[6] RUSSELL J B. Low-affinity,high-capacity system of glucose transport in the ruminal bacterium Streptococcus bovis:evidence for a mechanism of facilitated diffusion[J].Applied and Environmental Microbiology,1990,56(11):3304-3307.
[7] VADEBONCOEUR C,PELLETIER M. The phosphoenolpyruvate:sugar phosphotransferase system of oral Streptococci and its role in the control of sugar metabolism[J].FEMS Microbiology Reviews,1997,19(3):187-207.
[8] POSTMA P W,LENGELER J W,JACOBSON G R. Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria[J]. Microbiological Reviews,1993,57(3):543-594.
[9] DEUTSCHER J,SAIER M H,Jr.ATP-dependent protein kinase-catalyzed phosphorylation of a seryl residue in HPr,a phosphate carrier protein of the phosphotransferase system in Streptococcus pyogenes[J].Proceedings of the National Academy of Sciences of the United States of America,1983,80(22):6790-6794.
[10] FUJITA Y,MIWA Y,GALINIER A,et al. Specific recognition of the Bacillus subtilis gnt cis-acting catabolite-responsive element by a protein complex formed between CcpA and seryl-phosphorylated HPr[J].Molecular Microbiology,1995,17(5):953-960.
[11] MARTIN-VERSTRAETE I,STüLKE J,KLIER A,et al. Two different mechanisms mediate catabolite repression of the Bacillus subtilis levanase operon[J].Journal of Bacteriology,1995,177(23):6919-6927.
[12] DEUTSCHER J,KüSTER E,BERGSTEDT U,et al. Protein kinase-dependent HPr/ CcpA interaction links glycolytic activity to carbon catabolite repression in gram-positive bacteria[J]. Molecular Microbiology,1995,15(6):1049-1053.
[13] HUECK C J,HILLEN W,SAIER M H,Jr.Analysis of a cis-active sequence mediating catabolite repression in gram-positive bacteria[J].Research in Microbiology,1994,145(7):503-518.
[14] YE J J,REIZER J,CUI X,et al.Inhibition of the phosphoenolpyruvate:lactose phosphotransferase system and activation of a cytoplasmic sugar-phosphate phosphatase in Lactococcus lactis by ATP-dependent metabolite-activated phosphorylation of serine 46 in the phosphocarrier protein HPr[J]. Journal of Biological Chemistry,1994,269(16):11837-11844.
[15] YE J J,SAIER M H,Jr.Purification and characterization of a small membrane-associated sugar phosphate phosphatase that is allosterically activated by HPr(Ser (P))of the phosphotransferase system in Lactococcus lactis[J].Journal of Biological Chemistry,1995,270(28):16740-16744.
[16] COOK G M,KEARNS D B,RUSSELL J B,et al. Regulation of the lactose phosphotransferase system of Streptococcus bovis by glucose:independence of inducer exclusion and expulsion mechanisms[J].Microbiology,1995,141(9):2261-2269.
[17] ASANUMA N,HINO T.Molecular characterization of HPr and related enzymes,and regulation of HPr phosphorylation in the ruminal bacterium Streptococcus bovis[J]. Archives of Microbiology,2003,179(3):205-213.
[18] 王鏡巖,朱圣庚,徐長法.生物化學(xué):下冊[M].3版.北京:高等教育出版社,2002.
[19] ZHOU S D,CAUSEY T B,HASONA A,et al.Production of optically pure D-lactic acid in mineral salts medium by metabolically engineered Escherichia coli W3110[J].Applied and Environmental Microbiology,2003,69(1):399-407.
[20] ZHOU S D,SHANMUGAM K T,INGRAM L O. Functional replacement of the Escherichia coliD-(-)-lactate dehydrogenase gene(ldhA)with the L-(+)-lactate dehydrogenase gene(ldhL)from Pediococcus acidilactici[J].Applied and Environmental Microbiology,2003,69(4):2237-2244.
[21] OKANO K,TANAKA T,OGINO C,et al.Biotechnological production of enantiomeric pure lactic acid from renewable resources:recent achievements,perspectives,and limits[J]. Applied Microbiology and Biotechnology,2010,85(3):413-423.
[22] AXELSSON L.Lactic acid bacteria:classification and physiology[M].New York:Marcel Dekker,2004:1-66.
[23] LEVERING J,MUSTERS M W J M,BEKKER M,et al.Role of phosphate in the central metabolism of two lactic acid bacteria-a comparative systems biology approach[J].FEBS Journal,2012,279(7):1274-1290.
[24] 包爾德文.動態(tài)生物化學(xué)[M].石聲漢,譯.北京:人民衛(wèi)生出版社,1956.
[25] 李建武.生物化學(xué)[M].北京:北京大學(xué)出版社,1990.
[26] HORTON R H,MORAN L A,OCHS R S,et al.Principles of biochemistry[M].3rd ed.Upper Saddle River:Prentice Hall,1996.
[27] NELSON D L,LEHNINGER A L,COX M M.Lehninger principles of biochemistry[M].New York:W. H.Freeman and Company,2008.
[28] RUSSELL J B,HINO T.Regulation of lactate production in Streptococcus bovis:a spiraling effect that contributes to rumen acidosis[J]. Journal of Dairy Science,1985,68(7):1712-1721.
[29] WOLIN M J.Fructose-1,6-diphosphate requirement of streptococcal lactic dehydrogenases[J]. Science,1964,146(3645):775-777.
[30] ASANUMA N,HINO T. Effects of pH and energy supply on activity and amount of pyruvate formatelyase in Streptococcus bovis[J].Applied and Environmental Microbiology,2000,66(9):3773-3777.
[31] FORDYCE A M,CROW V L,THOMAS T D.Regulation of product formation during glucose or lactose limitation in nongrowing cells of Streptococcus lactis [J].Applied and Environmental Microbiology,1984,48(2):332-337.
[32] TAKAHASHI S,ABBE K,YAMADA T.Purification of pyruvate formate-lyase from Streptococcus mutans and its regulatory properties[J].Journal of Bacteriology,1982,149(3):1034-1040.
[33] THOMAS T D,TURNER K W,CROW V L.Galactose fermentation by Streptococcus lactis and Streptococcus cremoris:pathways,products,and regulation [J].Journal of Bacteriology,1980,144(2):672-682.
[34] RAMOS A,NEVES A R,VENTURA R,et al.Effect of pyruvate kinase overproduction on glucose metabo-lism of Lactococcus lactis[J]. Microbiology,2004,150(4):1103-1111.
[35] ASANUMA N,KANADA K,HINO T. Molecular properties and transcriptional control of the phosphofructokinase and pyruvate kinase genes in a ruminal bacterium,Streptococcus bovis[J]. Anaerobe,2008,14(4):237-241.
[36] ASANUMA N,HINO T.Fructose bisphosphate aldolase activity and glycolytic intermediate concentrations in relation to lactate production in Streptococcus bovis [J].Anaerobe,2002,8(1):1-8.
[37] ASANUMA N,YOSHII T,KIKUCHI M,et al.Effects of the overexpression of fructose-1,6-bisphosphate aldolase on fermentation pattern and transcription of the genes encoding lactate dehydrogenase and pyruvate formate-lyase in a ruminal bacterium,Streptococcus bovis[J].The Journal of General and Applied Microbiology,2004,50(2):71-78.
[38] ASANUMA N,YOSHII T,HINO T.Molecular characteristics and transcription of the gene encoding a multifunctional alcohol dehydrogenase in relation to the deactivation of pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis[J].Archives of Microbiology,2004,181(2):122-128.
[39] ASANUMA N,HINO T. Molecular characterization and expression of pyruvate formate-lyase-activating enzyme in a ruminal bacterium,Streptococcus bovis [J].Applied and Environmental Microbiology,2002,68(7):3352-3357.
[40] ASANUMA N,YOSHIZAWA K,HINO T.Properties and role of glyceraldehyde-3-phosphate dehydrogenase in the control of fermentation pattern and growth in a ruminal bacterium,Streptococcus bovis[J]. Current Microbiology,2009,58(4):283-287.
[41] GARRIGUES C,LOUBIERE P,LINDLEY N D,et al.Control of the shift from homolactic acid to mixedacid fermentation in Lactococcus lactis:predominant role of the NADH/ NAD+ ratio[J].Journal of Bacteriology,1997,179(17):5282-5287.
[42] KANDLER O.Carbohydrate metabolism in lactic acid bacteria[J].Antonie van Leeuwenhoek,1983,49(3):209-224.
[43] ASANUMA N,IWAMOTO M,HINO T. Regulation of lactate dehydrogenase synthesis in a ruminal bacterium,Streptococcus bovis[J].The Journal of General and Applied Microbiology,1997,43(6):325-331.
[44] RUSSELL J B,COTTA M A,DOMBROWSKI D B. Rumen bacterial competition in continuous culture:Streptococcus bovis versus Megasphaera elsdenii[J]. Applied and Environmental Microbiology,1981,41 (6):1394-1399.
[45] WELLS J E,KRAUSE D O,CALLAWAY T R,et al. A bacteriocin-mediated antagonism by ruminal lactobacilli against Streptococcus bovis[J].FEMS Microbiology Ecology,1997,22(3):237-243.
[46] MAO S Y,ZHANG R Y,WANG D S,et al.Impact of subacute ruminal acidosis(SARA)adaptation on rumen microbiota in dairy cattle using pyrosequencing [J].Anaerobe,2013,24:12-19.
[47] SUN Y Z,MAO S Y,ZHU W Y. Rumen chemical and bacterial changes during stepwise adaptation to a high-concentrate diet in goats[J]. Animal,2010,4 (2):210-217.
[48] LIU J H,XU T T,ZHU W Y,et al.A high-grain diet alters the omasal epithelial structure and expression of tight junction proteins in a goat model[J].The Veterinary Journal,2014,201(1):95-100.
[49] ASANUMA N,IWAMOTO M,HINO T. Structure and transcriptional regulation of the gene encoding pyruvate formate-lyase of a ruminal bacterium,Streptococcus bovis[J].Microbiology,1999,145(1):151-157.
[50] ASANUMA N,YOSHII T,HINO T.Molecular characterization and transcription of the luxS gene that encodes LuxS autoinducer 2 synthase in Streptococcus bovis[J]. Current Microbiology,2004,49(5):366-371.
[51] HENKIN T M,GRUNDY F J,NICHOLSON W L,et al.Catabolite repression of α amylase gene expression in Bacillus subtilis involves a trans-acting gene product homologous to the Escherichia coli lacl and galR repressors[J]. Molecular Microbiology,1991,5(3):575-584.
(責(zé)任編輯王智航)
[52] ASANUMA N,YOSHII T,HINO T.Molecular characterization of CcpA and involvement of this protein in transcriptional regulation of lactate dehydrogenase and pyruvate formate-lyase in the ruminal bacterium Streptococcus bovis[J].Applied and Environmental Microbiology,2004,70(9):5244-5251.
[53] ASANUMA N,HINO T.Presence of NADP+-specific glyceraldehyde-3-phosphate dehydrogenase and CcpA-dependent transcription of its gene in the ruminal bacterium Streptococcus bovis[J]. FEMS Microbiology Letters,2006,257(1):17-23.
[54] ASANUMA N,KANADA K,ARAI Y,et al.Molecular characterization and significance of phosphoenolpyruvate carboxykinase in a ruminal bacterium,Streptococcus bovis[J]. The Journal of General and Applied Microbiology,2010,56(2):121-127.
Metabolic Mechanism of Acid Production by Streptococcus bovis in Rumen and Its Regulation
CHEN Lianmin SHEN Yizhao WANG Hongrong?
(College of Animal Science and Technology,Yangzhou University,Yangzhou 225009,China)
Abstract:Streptococcus bovis(S. bovis)is usually a major lactate producing bacterium in the rumen,and is recognized its’contribution to development of rumen acidosis when ruminants are fed high concentrate diets. Previous work indicates that carbohydrate metabolism in S. bovis is mainly affected by the way of glucose trans membrane transport,and enzymes and intermediate metabolites in glycolytic pathway. In addition,the factors,environmental pH,growth stage,and control protein catabolism(CcpA),etc.,also have significant impacts. In this paper,metabolic mechanism and influence factors of carbohydrate fermentation and acid production by S. bovis were reviewed in purpose to provide references for further insight into the mechanism of rumen acidosis caused by lactic acids.[Chinese Journal of Animal Nutrition,2016,28(3):665-673]
Key words:Streptococcus bovis;lactic acids;rumen acidosis;metabolic pathway
Corresponding author?,professor,E-mail:hrwang@yzu.edu.cn
通信作者:?王洪榮,教授,博士生導(dǎo)師,E-mail:hrwang@yzu.edu.cn
作者簡介:陳連民(1991—),男,江蘇阜寧人,碩士研究生,研究方向為反芻動物瘤胃微生物代謝調(diào)控。E-mail:LianminChen@yeah.net
基金項目:江蘇省研究生實踐創(chuàng)新計劃(SJLX15_0674);國家自然科學(xué)基金(31572429);公益性行業(yè)(農(nóng)業(yè))科研專項(201303144);江蘇省優(yōu)勢學(xué)科建設(shè)項目(PADA)
收稿日期:2015-09-29
doi:10.3969/ j.issn.1006-267x.2016.03.005
中圖分類號:S852.2;S823
文獻標(biāo)識碼:A
文章編號:1006-267X(2016)03-0665-09