国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

九種不同能量玉米副產(chǎn)物的膳食纖維組成與能量、粗纖維和豬氨基酸消化率的關(guān)系(續(xù))

2016-05-18 07:37GutierrezSeraoKerrZijlstraPatience愛荷華州立大學(xué)動物科技學(xué)院埃姆斯500美國農(nóng)業(yè)部農(nóng)業(yè)與環(huán)境國家實驗室埃姆斯愛荷華州500阿爾伯塔大學(xué)農(nóng)業(yè)食品與營養(yǎng)科學(xué)系加拿大埃德蒙頓ABT6GP5
中國飼料 2016年24期
關(guān)鍵詞:木糖副產(chǎn)物聚糖

N.A.Gutierrez,N.V.L.Serao,B.J.Kerr,R.T.Zijlstra,J.F.Patience(.愛荷華州立大學(xué),動物科技學(xué)院,埃姆斯,500;.美國農(nóng)業(yè)部農(nóng)業(yè)與環(huán)境國家實驗室,埃姆斯,愛荷華州,500;.阿爾伯塔大學(xué),農(nóng)業(yè)食品與營養(yǎng)科學(xué)系,加拿大,埃德蒙頓,AB T6G P5)

九種不同能量玉米副產(chǎn)物的膳食纖維組成與能量、粗纖維和豬氨基酸消化率的關(guān)系(續(xù))

N.A.Gutierrez1,N.V.L.Serao1,B.J.Kerr2,R.T.Zijlstra3,J.F.Patience1
(1.愛荷華州立大學(xué),動物科技學(xué)院,埃姆斯,50011;2.美國農(nóng)業(yè)部農(nóng)業(yè)與環(huán)境國家實驗室,埃姆斯,愛荷華州,50011;3.阿爾伯塔大學(xué),農(nóng)業(yè)食品與營養(yǎng)科學(xué)系,加拿大,埃德蒙頓,AB T6G 2P5)

中國豬營養(yǎng)國際論壇是由美國動物科學(xué)學(xué)會、上海亙泰實業(yè)集團(tuán)和上海優(yōu)久生物科技有限公司聯(lián)合主辦,以“凝聚全球科研力量,驅(qū)動豬業(yè)創(chuàng)新思維”為宗旨,力邀全球一流的機(jī)構(gòu)、專家和學(xué)者,傾力打造一個動物營養(yǎng)領(lǐng)域具有國際性、前沿性和權(quán)威性的論壇。該論壇每兩年舉辦一屆,聚焦行業(yè)發(fā)展中的熱點、難點,通過專家學(xué)者和企業(yè)領(lǐng)導(dǎo)者之間進(jìn)行開放建設(shè)性的學(xué)術(shù)探討、理論研究和實踐經(jīng)驗交流,整合全球動物營養(yǎng)領(lǐng)域前沿的技術(shù)和研究成果,推動行業(yè)發(fā)展,創(chuàng)造和提升產(chǎn)業(yè)價值。www.asaschina.org2013;Stein等,2006)。然而,HP-DDG中GE和DM的ATTD,比先前報道值?。↘im等,2009;Widmer等,2007),這可能是本試驗中使用的HPDDG中加入玉米皮導(dǎo)致DF的含量偏高。

另一方面,不同原料的NDF回腸表觀消化率無明顯差異(P=0.11),但全腸道表觀消化率有明顯差異(P<0.05)。3種DDGS原料中NDF的AID和ATTD有差異,表明大約18%的NDF在后腸發(fā)酵,這與Urriola等(2010)報道的數(shù)據(jù)一致。但在CB-S和CB中,NDF的ATTD值低于AID值。先前研究報道,麥麩(Jorgensen等,1996)和中低纖維日糧(Wilfart等,2007)的DF值不穩(wěn)定,這歸因于取樣或分析誤差,以及相對高的變異造成。部分DF組分和Cr2O3進(jìn)入消化道被分離,也可能對DF消化率估計值的可靠性產(chǎn)生不利影響(Graham等,1986)。此外,DDC中NDF的ATTD值是136.8%,遠(yuǎn)超過100%。被測原料中營養(yǎng)物質(zhì)含量較低時,很難準(zhǔn)確地確定其AID和ATTD,因為其營養(yǎng)值由差值計算,且分析方法可能不足以精確測定低含量養(yǎng)分的值。

所有原料的必需氨基酸AID差異顯著(P<0.05)。本試驗中,DDGS中必需氨基酸的AID值與此前公布的數(shù)據(jù)(NRC,2012;Urriola等,2009;Stein等,2006)相近。CGMM和CGnM中必需氨基酸的AID與先前公布的值相同(NRC,2012;Almeida等,2011),但比歐洲國家研究的值稍?。⊿auvant等,2004)。此外,HP-DDG中必需氨基酸的AID都小于Kim等(2009)和Widmer等(2007)的研究結(jié)果,這可能是由于不同來源的HP-DDG的營養(yǎng)物質(zhì)組成不同,導(dǎo)致與此前報道的結(jié)果有差異。

不同原料的DE和ME值有明顯差異(P<0.05)(表5)。DDC和CGnM的DE和ME值最大,因為其DF含量較低,淀粉和蛋白質(zhì)含量較高。與此相反,CB的DF含量較高,淀粉和粗脂肪含量較低,導(dǎo)致其DE和ME要比其他玉米副產(chǎn)品小(P<0.05)。另一方面,CB-S中高含量的粗脂肪,導(dǎo)致其DE和ME含量高于CB(P<0.05),并與CGmM接近。HP-DDG的DE和ME與DDGS-CV和DDGS BPX的值接近。DDGS-RO的粗脂肪含量較DDGSCV低,因此DE和ME也比DDGS少(P<0.05)。Anderson等(2012)測定相同來源不同批次的玉米副產(chǎn)物的DE和ME含量,CB-S,CB,DDGS-RO,HP-DDG和CGmM的值都比本試驗中的值大。可能是由于Anderson等(2012)是通過收集育肥豬的全尿液和糞便獲得的數(shù)據(jù),而本研究是通過Cr2O3內(nèi)標(biāo)法定點采生長豬的糞便樣品。盡管如此,本試驗所用原料的DE和ME值與。Sauvant等(2004),Pedersen等(2007)研究結(jié)果一致。

3.4 不同性狀類別最佳纖維組分最佳纖維組分可以解釋每種原料的DF含量差異。對11種選定的纖維成分的各種性狀的擬合優(yōu)度進(jìn)行評估和排名,發(fā)現(xiàn)玉米副產(chǎn)物中DE和ME的AID和ATTD的變化可以通過NSP單糖殘基的含量來解釋(表6),主要是木糖和阿拉伯糖以及它們的聚合物阿拉伯木聚糖。這一發(fā)現(xiàn)表明與分析原料的粗纖維組成(ADF、NDF和TDF)相比,玉米副產(chǎn)物中組成粗纖維的單糖是預(yù)測營養(yǎng)物質(zhì)組成的良好指標(biāo)。

表5 分析各玉米副產(chǎn)物的消化能和代謝能值(以日糧為基礎(chǔ))

玉米及其副產(chǎn)物中,葡萄糖和木糖的聚合物含有豐富的NSP,并且分別以纖維素和阿拉伯木聚糖的形式存在(Knudsen,2001、1997)。纖維素是葡萄糖聚合物,是玉米細(xì)胞壁中最豐富的多糖。盡管NSP中葡萄糖含量很高,但它僅僅是NDF的ATTD的最佳擬合模型。葡萄糖含量對NDF中ATTD的影響可能與纖維素聚合物的高級結(jié)構(gòu)有關(guān),這些結(jié)構(gòu)是不溶于水的。因此,在谷物中纖維素一般比阿拉伯木聚糖難降解,但在玉米顆粒的不同結(jié)構(gòu)組成之間,纖維素的降解率有很大的差異(比如:麩皮纖維素與胚乳纖維素)。木糖是阿拉伯木聚糖的骨架,并不同程度取代了阿拉伯糖。對于大部分營養(yǎng)特性,木糖比葡萄糖或半纖維素更適合作為擬合指標(biāo)。這意味著相對于纖維素或半纖維素,木糖在DF中的含量與玉米副產(chǎn)物的營養(yǎng)價值更具相關(guān)性。纖維素和半纖維素已經(jīng)用來預(yù)測豬(Anderson等,2012)和雞(Rochell等,2011)日糧中的代謝能。玉米籽粒中不同部位的阿拉伯木聚糖的微生物降解率差異很大,在果皮和種皮中幾乎不降解,在胚乳中達(dá)到85%~90%(Bach Knudsen,1997)。阿拉伯木聚糖在玉米的糊粉層可包裹脂質(zhì)和蛋白質(zhì)(Benamrouche等,2002),這可以解釋為何NSP木糖和阿拉伯木聚糖是飼料原料消化率和能量值性狀最合適的擬合指標(biāo)。對于賴氨酸和平均水平的非必需氨基酸的AID,半乳糖是最適合的NSP單糖,但對于其余的氨基酸半乳糖排名不如NSP木糖。另一方面,甘露糖是甘露聚糖的骨架,但在谷物中含量很少(Choct,1997),因此玉米副產(chǎn)品中的含量很低。相較于其他的單糖,NSP半乳糖和NSP甘露糖的排名較低,可能與它們形成的多糖的低含量和功能相關(guān)。

為了簡化評估DF含量的影響以及通過DF含量充分預(yù)測飼料成分的營養(yǎng)價值,每個類別都選擇一個最佳擬合的DF組分(表7)。阿拉伯木聚糖含量是GE,DM,NDF和DF的AID最佳擬合的DF組分。對于剩下的3個類別,NSP木糖殘基是最適合的DF組分,包括GE,DM,NDF的ATTD,AA,DE和ME的AID。Zijlstra等(1999)報道,木聚糖比NDF能更好地預(yù)測小麥樣品之間的差異。通過比較DF含量和Ingred模型的擬合優(yōu)度,發(fā)現(xiàn)Ingred比DF含量能更好地解釋大部分特性的變異性。但是,DF含量用于預(yù)測GE(550.3)和DM(562.2)的AID模型時,比Ingred(GE 555.4和DM 570.1,)更合適。Ingred在模型中的影響包括其他分析組分如粗蛋白質(zhì),粗脂肪,淀粉,礦物質(zhì),和DF含量的綜合作用,這些組分一起描述原料特性的多樣性,比單獨用DF含量描述更好。在預(yù)測豬飼料原料中DE和ME值的公式中,Noblet和Perez(1993)報道ME值隨著蛋白和粗脂肪含量升高而升高,隨著礦物質(zhì)、粗纖維、NDF或半纖維素的含量降低而降低。隨著模型中加入的化學(xué)組分越多,預(yù)測的可靠性越高。其他飼料原料化學(xué)組分的營養(yǎng)消化值和能量值預(yù)測模型也已被開發(fā)出來(Urriola等,2013;Anderson等,2012)。

表6 膳食纖維不同性狀的最佳擬合排名

雖然DF含量解釋原料特性多變性的效果不如Ingred,但是DF含量對大部分特性的預(yù)測效果顯著(表8)。例如,阿拉伯木聚糖的含量對GE(P= 0.02)和DM(P=0.04)的AID,NSP木糖含量對GE和DM的ATTD呈三次方相關(guān)(P<0.01);蛋氨酸、蛋氨酸+胱氨酸、色氨酸和平均必需氨基酸的AID(P<0.05),以及ME值(P<0.01)均呈三次方相關(guān)。此外,NSP木糖含量與DE呈線性相關(guān)(P=0.02)。這一發(fā)現(xiàn)與以前的數(shù)據(jù)相同,能量、DM的ATTD和全日糧中CP含量呈線性下降,同日糧中不溶性DF呈線性增加(Le Goff和Noblet,2001)。在本試驗中,賴氨酸和蘇氨酸的AID不會受到NSP木聚糖含量的影響(P>0.05)。NSP木糖含量對NDF的AID和ATTD影響效果不同。研究發(fā)現(xiàn),NDF的AIID不受NSP含量影響(P>0.05),但NDF的ATTD受到NSP木糖含量的影響呈三次方(P<0.01)。

總之,不同的玉米副產(chǎn)品中能量、日糧纖維、必需氨基酸消化率、消化能和代謝能之間存在很大變化,部分變化是由于原料中的DF含量差異。阿拉伯木聚糖和NSP木糖殘基是DF的組分,可以很好解釋由DF含量導(dǎo)致的變異和玉米副產(chǎn)品中能量、DM、NDF的消化率和DE、ME值,而沒有嚴(yán)重的預(yù)見丟失。玉米副產(chǎn)品中賴氨酸和多數(shù)氨基酸的AID不適合用DF含量模型預(yù)測。

表8 不同營養(yǎng)指標(biāo)中適合最佳擬合的膳食纖維(DF)的回歸系數(shù)和模型

[1]Adeola,O.Digestion and balance techniques in pigs.In:A.J.Lewis and L.L. Southern,editors,Swine nutrition.2nd ed[M].CRC Press,Boca Raton,2001:903~916.

[2]Almeida FN,Petersen GI,Stein HH.Digestibility of amino acids in corn,corn coproducts,and bakery meal fed to growing pigs[J].Journal of Animal Science,2011,89(12):4109~4115.

[3]Anderson P V,Kerr B J,Weber T E,et al.Determination and prediction of digestible and metabolizable energy from chemical analysis of corn coproducts fed to finishing pigs[J].Journal of Animal Science,2011,90(4):1242~1254.

[4]AOAC.Offcial methods of analysis of AOAC Int.18th ed[M].AOAC Int.,Gaithersburg,MD.2007.

[5]Association of Offcial Analytical Chemists(AOAC).Offcial methods of analysis.15th ed[M].AOAC,Arlington,VA.1990.

[6]Almeida FN,Petersen GI,Stein HH.Digestibility of amino acids in corn,corn coproducts,and bakery meal fed to growing pigs[J].Journal of Animal Science,2011,89(12):4109~4115.

[7]Anderson PV,Kerr BJ,Weber TE,et al.Determination and prediction of digestible and metabolizable energy from chemical analysis of corn coproducts fed to finishing pigs[J].Journal of Animal Science,2011,90(4):1242~1254.

[8]Aman HGP.Circadian variation in composition of duodenal and ileal digesta from pigs fitted with T-cannulas[J].Animal Production,1986,43(1):133~140. [9]Bagamboula C F,Uyttendaele M,Debevere J.Acid tolerance of Shigella sonnei and Shigella flexneri[J].Journal of Applied Microbiology,2002,93(3):479~486.

[10]Benamrouche S,Cr?nier D,Debeire P,et al.A Chemical and Histological Study on the Effect of(1→4)-β-endo-xylanase Treatment on Wheat Bran [J].Journal of Cereal Science,2002,36(2):253~260.

[11]Bolker BM,Brooks ME,Clark CJ,et al.Generalized linear mixed models:a practical guide for ecology and evolution[J].Trends in Ecology&Evolution,2009,24(3):127~135.

[12]Campbell J M,F(xiàn)lickinger E A,F(xiàn)ahey G C.A comparative study of dietary fber methodologies using pulsed electrochemical detection of monosaccharide constituents[J].Semin Food Anal,1997,2:43~53.

[13]Choct M.Feed non-starch polysaccharides:Chemical structures and nutritional signifcance[J].Feed Milling,1997,6:13~26.

[14]Choct M,Mcnab JM,Boorman K N.Non-starch polysaccharides:effect on nutritive value[J].Poultry Feedstuffs Supply Composition&Nutritive Value,2002.

[15]Englyst HN,Hudson GJ.Colorimetric method for routine measurement of dietary fibre as non-starch polysaccharides.A comparison with gas-liquid chromatography[J].Food Chemistry,1987,24(1):63~76.

[16]Fairbairn S L,Patience J F,Classen H L,et al.The energy content of barley fed to growing pigs:characterizing the nature of its variability and developing prediction equations for its estimation[J].Journal of Animal Science,1999,77(6):1502~1512.

[17]Farrell D J.Digestibility by pigs of the major chemical components of diets high in plant cell-wall constituents[J].Animal Production,1973,16(1):43~47.

[18]Fenton T W,F(xiàn)enton M.An improved procedure for the determination of chromic oxide in feed and feces[J].Canadian Journal of Animal Science,1979,59(3):631~634.

[19]Goering H K,Soest P J V.Forage fiber analyses(apparatus,reagents,procedures,and some applications)[J].Usda Agr Handb,1970.

[20]Graham H,Hesselman K,Aman P.The influence of wheat bran and sugar-beet pulp on the digestibility of dietary components in a cereal-based pig diet[J].Journal of Nutrition,1986,116(2):242~251.

[21]Huisman J,Hartog L A,H Boer,et al.The effect of various carbohydrate sources on the ileal and faecal digestibility of protein and amino acids in pigs [J].Beretning Fra Statens Husdyrbrugsforsoeg,1985:

[22]Jacobs B M,Patience J F,Stalder K J,et al.Effects of drying methods on nitrogen and energy concentrations in pig feces and urine,and poultry excreta [J].Journal of Animal Science,2011,89(8):2624~2630

[23]Jaworski N.Carbohydrate composition,in vitro digestion,and effects of xylanase and phytase on nutrient and energy digestibility by pigs in grains and grain coproducts[J].International Journal of Antimicrobial Agents,2013,35(4):415~416

[24]Jφrgensen H,Zhao X Q,Eggum B O.The influence of dietary fibre and environmental temperature on the development of the gastrointestinal tract,digestibility,degree of fermentation in the hind-gut and energy metabolism in pigs[J].British Journal of Nutrition,1996,75(3):365~378.

[25]Knudsen K E B.Knudsen K E B.Carbohydrate and lignin contents of plant materials used in animal feeding.Animal Feed Sci Technol 67,319-338 [J].Animal Feed Science&Technology,1997,67(4):319~338.

[[26]Knudsen KEB.The nutritional significance of“dietary fibre”analysis[J]. Animal Feed Science&Technology,2001,90(1-2):3~20.

[27]Kim B G,Petersen G I,Hinson R B,et al.Amino acid digestibility and energy concentration in a novel source of high-protein distillers dried grains and their effects on growth performance of pigs[J].Journal of Animal Science,2009,87(12):4013~4021.

[28]Le G G,Noblet J.Comparative total tract digestibility of dietary energy and nutrients in growing pigs and adult sows[J].Journal of Animal Science,2001,79(9):2418~2427.

[29]Liu P,Huang Y.Prediction of the concentration of standardized ileal digestible amino acids in distillers dried grains with solubles[J].Journal of Animal Science,2013,91(9):4389~4396.

[30]Miller E R,Ullrey D E.Selenium and vitamin E in swine nutrition.ed.1971.

[31]Nakagawa S,Schielzeth H.A general and simple method for obtaining R 2 from generalized linear mixed-effects models[J].Methods in Ecology&Evolution,2013,4(2):133~142.

[32]NRC.Nutrient Requirements of Swine:10th Revised Edition[M].1998.

[33]NRC.Nutrient Requirements of Swine:11th Revised Edition[M].2012.

[34]Oresanya T F,Beaulieu A D,Patience J F.Investigations of energy metabolism in weanling barrows:the interaction of dietary energy concentration and daily feed(energy)intake[J].Journal of Animal Science,2008,86(2):348~363.

[35]Pedersen C,Boersma M G,Stein H H.Digestibility of energy and phosphorus in ten samples of distillers dried grains with solubles fed to growing pigs[J].Journal of Animal Science,2007,85(5):1168~1176.

[36]Prosky L,Asp N G,F(xiàn)urda I,,et al..Determination of total dietary fiber in foods and food products:collaborative study[J].Journal-Association of Official Analytical Chemists,1983,68(4):677~679.

[37]Robinson P H,Karges K,Gibson M L.Nutritional evaluation of four coproduct feedstuffs from the motor fuel ethanol distillation industry in the Midwestern USA[J].Animal Feed Science&Technology,2008,146(3-4):345~352.

[38]Rochell S J.Energy determination of corn co-products fed to broiler chicks from 15 to 24 days of age,and use of composition analysis to predict nitrogen-corrected apparent metabolizable energy[J].Poultry Science,2011,90(9):1999~2007.

[39]Rojas O J,Liu Y,Stein H H.Phosphorus digestibility and concentration of digestible and metabolizable energy in corn,corn coproducts,and bakery meal fed to growing pigs[J].Journal of Animal Science,2013,91(11):5326~5335.

[40]Sauvant D,Perez JM,Tran G.Tables of Composition and Nutritional Value of Feed Materials:Pig,Poultry,Sheep,Goats,Rabbits,Horses,F(xiàn)ish[J].2004.

[41]Stawski R S.Multilevel Analysis:An Introduction to Basic and Advanced Multilevel Modeling(2nd Edition)[J].Structural Equation Modeling A Multidisciplinary Journal,2013,20(3):541~550.

[42]Souffrant W B.Effect of dietary fibre on ileal digestibility and endogenous nitrogen losses in the pig[J].Animal Feed Science&Technology,2001,90(1):93~102.

[43]Spiehs M,Whitney M H,Shurson G C.Nutrient database for distiller's dried grains with solubles produced from new ethanol plants in Minnesota and South Dakota[J].Journal of Animal Science,2002,80(80):2639~2645.

[44]Stein H H,Gibson M L,Pedersen C,et al.Amino acid and energy digestibility in ten samples of distillers dried grain with solubles fed to growing pigs[J].Journal of Animal Science,2006,84(4):853~860.

[45]Stein H H,Shipley C F,Easter R A.Technical note:a technique for inserting a T-cannula into the distal ileum of pregnant sows[J].Journal of Animal Science,1998,76(5):1433~1436.

[46]Soest P J V,Robertson J B.Systems of analysis for evaluating fibrous feeds [J].Proc,1980.

[47]Theander O,Aman P,Westerlund E,et al.Total dietary fiber determined as neutral sugar residues,uronic acid residues,and Klason lignin(the Uppsala method):collaborative study[J].Journal of Aoac International,1995,78(4):1030~1044.

[48]Urriola P E,Hoehler D,Pedersen C,et al.Amino acid digestibility of distillers dried grains with solubles,produced from sorghum,a sorghum-corn blend,and corn fed to growing pigs[J].Journal of Animal Science,2009,87(8):2574~2580.

[49]Urriola P E,Shurson G C,Stein H H.Digestibility of dietary fiber in distillers coproducts fed to growing pigs[J].Journal of Animal Science,2010,88(7):2373~2381.

[50]Vol.N.Official Methods of Analysis of AOAC International(16th edn)(Patricia A.Cunniff,ed.)[J].Trends in food science and technology:an official journal of the European Federation of Food Science and Technology(EFFoST)and the International Union of Food Science and Technology(IUFoST),1995,6.

[51]Widmer M R,Mcginnis L M,Stein H H.Energy,phosphorus,and amino acid digestibility of high-protein distillers dried grains and corn germ fed to growing pigs[J].Journal of Animal Science,2007,85(11):2994~3003.

[52]Widyaratne G P,Zijlstra R T.Nutritional value of wheat and corn distiller’s dried grains with solubles:Digestibility and digestible contents of energy,amino acids and phosphorus,nutrient excretion and growth performance of grower-fnisher pigs[J].Journal of Animal Science,2007,87:103~114.

[53]Wilfart A,Montagne L,Simmins PH,et al.Sites of nutrient digestion in growing pigs:effect of dietary fiber[J].Journal of Animal Science,2007,85(4):976~983..

[54]Zijlstra R T,Cfm D L,Patience J F.Nutritional value of wheat for growing pigs:chemical composition and digestible energy content[J].Canadian Veterinary Journal La Revue Veterinaire Canadienne,1999,79(2):187~194.■

(全文完)

猜你喜歡
木糖副產(chǎn)物聚糖
一個空瓶
相對分子質(zhì)量對木聚糖結(jié)晶能力的影響
乙酰水楊酸制備實驗副產(chǎn)物分析
布吉的口琴
有心的小蘑菇
布谷鳥讀信
苧麻副產(chǎn)物復(fù)配育苗基質(zhì)對番茄育苗的影響
木聚糖酶在烘焙中的應(yīng)用
桃果深加工及其副產(chǎn)物綜合利用研究進(jìn)展
三氯氫硅副產(chǎn)物氯硅烷廢液的處理方法研究