方德平鐘明鏡
(華僑大學(xué)土木工程學(xué)院,廈門 361021)
用能量法分析體外預(yù)壓力對簡支梁動力性能的二階效應(yīng)*
方德平?鐘明鏡
(華僑大學(xué)土木工程學(xué)院,廈門 361021)
精細(xì)地考慮了體外筋變形中的二階項(xiàng),用能量法推導(dǎo)了體外預(yù)應(yīng)力梁的自振頻率,闡明了體外預(yù)壓力對梁自振頻率的效應(yīng).計算結(jié)果表明:體外預(yù)壓力壓縮軟化效應(yīng)的影響系數(shù),主要取決于轉(zhuǎn)向座的數(shù)量.無轉(zhuǎn)向座時,體外筋偏心距損失為最大,影響系數(shù)為1,體外預(yù)壓力的效應(yīng)與外軸力的效應(yīng)相同.隨著轉(zhuǎn)向座數(shù)量的增加,偏心距損失減小,體外筋接近于無粘結(jié)筋,影響系數(shù)降低至接近于0,即接近于無粘結(jié)筋預(yù)壓力的零效應(yīng).當(dāng)梁轉(zhuǎn)向座的數(shù)量≥2時,由于影響系數(shù)顯著地小于1,可以忽略體外預(yù)壓力的壓縮軟化效應(yīng).隨著體外筋面積和偏心距的增加,梁的第1自振頻率增大.不過,體外筋對其他階自振頻率的影響很小,可以忽略.
體外預(yù)應(yīng)力, 簡支梁, 自振頻率, 能量法, 動力分析, 二階效應(yīng)
眾所周知,體系外的物體對梁施加的外軸力N產(chǎn)生了壓縮軟化效應(yīng),降低了梁的自振頻率.普通簡支梁的自振頻率:
式中,EI為梁的抗彎剛度,m為梁單位長度質(zhì)量,l為梁的跨度.體外預(yù)應(yīng)力梁動力性能研究中一個有爭議的問題是:體外筋對梁的預(yù)壓力是否影響梁的自振頻率?壓力產(chǎn)生壓縮軟化效應(yīng),所以本文用預(yù)壓力這一術(shù)語.換一句話說,預(yù)壓力的壓縮軟化效應(yīng)與外軸力的效應(yīng)是否相同?
Saiidi[1]用式(1)計算預(yù)應(yīng)力混凝土橋梁的自振頻率,即認(rèn)為預(yù)壓力的效應(yīng)等同于外軸力的效應(yīng).隨即有3篇論文對Saiidi的論文進(jìn)行了討論.Dallasta[2]指出Saiidi的計算方法不正確,認(rèn)為預(yù)壓力的效應(yīng)可以忽略.Deak[3]指出預(yù)壓力不減少梁的自振頻率,不過沒有給出任何理論分析.Jain[4]認(rèn)為,預(yù)應(yīng)力筋,作為結(jié)構(gòu)系統(tǒng)的一個組成部分,產(chǎn)生的預(yù)壓力不能被處理為外軸力,預(yù)壓力不產(chǎn)生壓縮軟化效應(yīng),不影響梁的自振頻率.Jaiswal[5]用有限元法計算了預(yù)應(yīng)力梁的第1自振頻率,指出預(yù)壓力對梁的第1自振頻率的影響取決于預(yù)應(yīng)力筋與梁的粘結(jié)與否.對于有粘結(jié)筋,預(yù)壓力對梁第1自振頻率無明顯影響.對于無粘結(jié)筋,預(yù)壓力和偏心距對梁第1自振頻率有明顯影響.不過,Jaiswal[5]的結(jié)論只是基于有限元的計算結(jié)果,沒有進(jìn)行解析分析.Kanaka[6]把預(yù)壓力當(dāng)作外軸力,用Rayleigh-Ritz法分析,指出預(yù)壓力降低了梁的低階自振頻率.Chan[7]指出,由于壓縮軟化效應(yīng),隨著預(yù)壓力的增加,預(yù)應(yīng)力梁的自振頻率降低.Dallasta[8]應(yīng)用梁的小位移運(yùn)動學(xué)關(guān)系,分析了無粘結(jié)預(yù)應(yīng)力梁,給出梁的振動微分方程,并指出隨著預(yù)壓力的增加,梁的自振頻率降低.Kerr[9]對預(yù)應(yīng)力梁的動力響應(yīng)作了試驗(yàn)和理論分析,發(fā)現(xiàn):當(dāng)預(yù)應(yīng)力筋布置在梁軸線上,預(yù)應(yīng)力筋的預(yù)應(yīng)力大小不影響梁的動力響應(yīng).不過,Kerr只采用線性理論模型計算預(yù)應(yīng)力梁的動力響應(yīng),且預(yù)應(yīng)力筋與梁軸線重合.Wang[10]考慮了預(yù)壓力產(chǎn)生的附加勢能,得出結(jié)論:預(yù)壓力降低梁的低階自振頻率.Hamed[11]基于哈密爾頓原理,應(yīng)用虛功的變分方程,嚴(yán)格推導(dǎo)出預(yù)應(yīng)力梁的運(yùn)動方程,該運(yùn)動方程適用于各種形狀的預(yù)應(yīng)力筋.Hamed[11]嚴(yán)格證明了有粘結(jié)梁或無粘結(jié)梁中預(yù)壓力的大小不影響預(yù)應(yīng)力梁的自振頻率.
除了體內(nèi)有粘結(jié)和無粘結(jié)兩種預(yù)應(yīng)力體系,還有體外預(yù)應(yīng)力體系.當(dāng)無粘結(jié)預(yù)應(yīng)力梁和體外預(yù)應(yīng)力梁具有相同的預(yù)應(yīng)力筋線形,與無粘結(jié)筋相比較,體外筋存在偏心距損失,體外筋的應(yīng)力增量小于無粘結(jié)筋的應(yīng)力增量,這導(dǎo)致了體外預(yù)應(yīng)力梁的剛度小于無粘結(jié)預(yù)應(yīng)力梁的剛度,自然地,體外預(yù)應(yīng)力梁的自振頻率應(yīng)低于無粘結(jié)預(yù)應(yīng)力梁的頻率.這樣看來,Hamed[11]的結(jié)論不適用于體外預(yù)應(yīng)力梁.不過,文獻(xiàn)[12-13]在體外預(yù)應(yīng)力梁的動力微分方程中,把體外筋預(yù)壓力對自振頻率的效應(yīng)等同于外軸力的效應(yīng).體外預(yù)應(yīng)力梁中的偏心距損失與轉(zhuǎn)向座的數(shù)量和位置相關(guān),隨著轉(zhuǎn)向座數(shù)量的增加,體外筋趨向于無粘結(jié)筋.根據(jù)Hamed[11]的結(jié)論,體外筋預(yù)壓力對自振頻率的效應(yīng)降低,并趨向于零,所以體外筋預(yù)壓力的效應(yīng)等同于外軸力的效應(yīng),這一觀點(diǎn)有待進(jìn)一步商榷.文獻(xiàn)[14]用能量法分析了體外預(yù)應(yīng)力梁動力特性,也指出:體外預(yù)壓力能減小梁的自振頻率,而體內(nèi)預(yù)壓力(有粘結(jié)或無粘結(jié))對梁的自振頻率沒有影響.不過從文獻(xiàn)[14]式(10)可以看出:對于簡單的直線型體外筋,ψ=(iπ)2/4l,與轉(zhuǎn)向座的數(shù)量和位置無關(guān),所以這一觀點(diǎn)并沒有得到解析解的支持.一些實(shí)驗(yàn)表明[15]:隨著體外筋預(yù)壓力的增加,梁中的微裂縫閉合,體外預(yù)應(yīng)力梁的剛度和自振頻率反而增加,于解析解式(1)的結(jié)論完全相反.同時,體外預(yù)壓力的效應(yīng)并不顯著,通過實(shí)驗(yàn)研究體外預(yù)壓力的效應(yīng)不易得出一致的結(jié)論.因此,體外預(yù)壓力效應(yīng)的理論分析就顯得尤為重要.據(jù)筆者所知,尚未有文獻(xiàn)對這一效應(yīng)進(jìn)行合適的理論分析.本文精細(xì)地考慮了體外筋變形中的二階項(xiàng),引入體外預(yù)壓力壓縮軟化效應(yīng)的影響系數(shù).這一影響系數(shù)表明:轉(zhuǎn)向座數(shù)量從零增加到較多的數(shù)目,體外筋接近于無粘結(jié)筋,體外預(yù)壓力的效應(yīng)從外軸力的效應(yīng)減少至接近于零,這符合Hamed[11]的結(jié)論,即無粘結(jié)筋的預(yù)壓力不產(chǎn)生壓縮軟化效應(yīng).
本文采用能量法[16].假設(shè)1:圖1體外預(yù)應(yīng)力簡支梁第i振型的振動方程yi=Aisin(iπx/l)sin(ωit+φi),i=1,2,3…,與普通簡支梁的解析解相同.假設(shè)2:施加體外預(yù)應(yīng)力后,梁為直線.假設(shè)3:略去梁的軸向變形,略去體外筋的質(zhì)量.
mt為體外筋單位力的彎矩圖,如圖2所示,為體外筋初始預(yù)拉力的彎矩,mij=cosθiej,體外筋的角度θi和偏心距ej,如圖1所示.體外筋的應(yīng)變能:
EtAt,lt分別為體外筋的抗拉剛度、長度.
圖1 體外預(yù)應(yīng)力簡支梁Fig.1 Externally prestressed simply supported beam
圖2 體外筋單位力的彎矩圖Fig.2 Bendingmoment diagram of the beam subjected to the unit force of external tendon
當(dāng)yi為最大時,或時,梁的彎矩:Mb1=梁的應(yīng)變能:
在計算體外筋的變形前,先分析圖3中線段OA的變形.線段OA在x和y軸方向上的變形為δx和δy.考慮二階微分,線段OA的變形為:
θ和lA為線段OA的夾角和長度.在分析體外筋預(yù)壓力的壓縮軟化效應(yīng)中,二階項(xiàng)是必不可少的.文獻(xiàn)[14]不考慮這個二階項(xiàng),所以本文的分析方法比文獻(xiàn)[14]更深入、更精確.在體外筋和梁之間有n個接觸點(diǎn),第1和最后接觸點(diǎn)在梁的兩端,其他接觸點(diǎn)位于轉(zhuǎn)向座.體外筋的第j線段,振動前,第j和(j+1)接觸點(diǎn)的坐標(biāo)為(xj,ej)和(xj+1,ej+1).考慮梁軸線彎曲產(chǎn)生的x軸的投影縮短,當(dāng)i=0時,第j和(j+1)接觸點(diǎn)的坐標(biāo)
圖3 線段OA的變形Fig.3 Deformation of Line OA
圖4 體外筋線段的變形Fig.4 Deformation of external tendon segment
第j線段x和y軸方向上的變形δxj和δyj:
把δxj和δyj代入式(6),略去含項(xiàng)的高階無窮小(振幅Ai可以是無窮小量),得出體外筋第j線段的變形:
體外預(yù)壓力的影響系數(shù)Cpi=-4lζi/(iπ)2.可以看出:體外預(yù)壓力影響梁的自振頻率,其影響系數(shù)Cpi取決于轉(zhuǎn)向座的數(shù)量和位置.表1為Cpi與接觸點(diǎn)數(shù)量n的關(guān)系.表1中,轉(zhuǎn)向座沿梁長度等距離分布,對稱的體外筋線形,梁長l=16m,兩端處的偏心距e1=en=0.2m.對于拋物線體外筋,轉(zhuǎn)向座處的接觸點(diǎn)均位于拋物線上(圖1),拋物線在跨中的最大偏心距為1m.從表1可以看出:當(dāng)只有2個接觸點(diǎn),即無轉(zhuǎn)向座時,體外筋偏心距損失為最大,此時不分直線形或拋物線形,影響系數(shù)均為1.比較式(1)和(12)可知,體外預(yù)壓力的壓縮軟化效應(yīng)與外軸力的效應(yīng)相同.隨著接觸點(diǎn)數(shù)量的增加,偏心距損失減小,影響系數(shù)降低.總體而言,隨著振型階數(shù)的增加,振型中每半波正弦曲線內(nèi)的接觸點(diǎn)數(shù)量減少,導(dǎo)致影響系數(shù)增大.如同在第1振型中,接觸點(diǎn)數(shù)量減少,影響系數(shù)增大.拋物線形和直線形的影響系數(shù)相近,影響系數(shù)主要取決于接觸點(diǎn)數(shù)量n.當(dāng)n從2增加到比較大的數(shù)值時,體外筋接近于無粘結(jié)筋,影響系數(shù)從1降低至接近于0.這符合Hamed[11]的結(jié)論,即無粘結(jié)筋的預(yù)壓力不產(chǎn)生壓縮軟化效應(yīng),不影響梁的自振頻率.
表1 影響系數(shù)Cpi與接觸點(diǎn)數(shù)量n之間的關(guān)系Table 1 Relationship between the influence coefficientCpiand the number of contact pointsn
圖1體外預(yù)應(yīng)力簡支梁的單位長度質(zhì)量m=6t/m,梁長l=16m,橫截面為矩形,高0.8m,寬0.4m,彈性模量E=32.5GPa,轉(zhuǎn)向座沿梁長度等距離分布;體外筋彈性模量Et=200GPa,有效預(yù)應(yīng)力對稱體外筋線形,e1=0.2m.表2列出體外預(yù)應(yīng)力梁的第1、2、3階自振頻率,梁1~8中有兩種體外筋面積At=1668,2502mm2,兩種偏心距e2=0.8,1.1m和兩種線形,梁1,3,5,7的梯形線形(2個轉(zhuǎn)向座,偏心距為e2),梁2,4,6,8的拋物線形(e2<e3,3個轉(zhuǎn)向座,見圖1).ω①為本文式(12)的計算結(jié)果,ω②為文獻(xiàn)[14]式(10)的計算結(jié)果.表3為無預(yù)壓力梁的第1、2、3階自振頻率,其中0號梁無體外筋.比較表2和表3,可以看出:
表2 體外預(yù)應(yīng)力梁的第1、2、3階自振頻率Table 2 The 1st,2ndand 3rdnatural frequencies of externally prestressed beams
表3 無預(yù)壓力梁的第1、2、3階自振頻率Table 3 The 1st,2ndand 3rdnatural frequenciesof beams without prestress force
外軸力產(chǎn)生壓縮軟化效應(yīng),降低梁的自振頻率.體內(nèi)有粘結(jié)或無粘結(jié)筋的預(yù)壓力不產(chǎn)生壓縮軟化效應(yīng)[11],不影響自振頻率.本文推導(dǎo)了考慮二階效應(yīng)的體外預(yù)應(yīng)力梁的自振頻率公式,首次闡明了體外預(yù)壓力對梁自振頻率的效應(yīng)既不同于外軸力的效應(yīng),也不同于體內(nèi)有粘結(jié)或無粘結(jié)筋預(yù)壓力的零效應(yīng),而是介于兩者之間.研究結(jié)果表明:
1)體外預(yù)壓力的壓縮軟化效應(yīng),即自振頻率的影響系數(shù),主要取決于轉(zhuǎn)向座的數(shù)量.無轉(zhuǎn)向座時,體外筋偏心距損失為最大,影響系數(shù)為1,體外預(yù)壓力的效應(yīng)與外軸力的效應(yīng)相同.隨著轉(zhuǎn)向座數(shù)量的增加,偏心距損失減小,體外筋接近于無粘結(jié)筋,影響系數(shù)降低至接近于0,體外預(yù)壓力幾乎不產(chǎn)生壓縮軟化效應(yīng),幾乎不影響梁的自振頻率.這與Hamed[11]的結(jié)論相符,即有粘結(jié)或無粘結(jié)筋的預(yù)壓力不影響自振頻率.
2)對于實(shí)際工程中的梁,當(dāng)轉(zhuǎn)向座的數(shù)量≥2時,由于影響系數(shù)顯著地小于1.同時預(yù)壓力也不大,體外預(yù)壓力對自振頻率的影響很小,可以忽略.
3)體外筋顯著地影響梁的ω1,體外筋的面積和偏心距的增加,體外筋對梁的剛度貢獻(xiàn)隨之增加,ω1自然也增加了.不過,體外筋對其他階自振頻率的影響很小,可以忽略.
1 Saiidi M,Douglas B,F(xiàn)eng S.Prestress force effect on vibration frequency of concrete bridge.ASCE Journal of Structural Engineering,1994,120(7):2233~2241
2 Dallasta A,Dezi L.Prestress force effect on vibration frequency of concrete bridge-discussion.ASCE Journal of Structural Engineering,1996,122(4):458~458
3 Deak G.Prestress force effect on vibration frequency of concrete bridge-discussion.ASCE Journal of Structural Engineering1996,122(4):458~459
4 Jain SK,Goel SC.Prestress force effect on vibration frequency of concrete bridge-discussion.ASCE Journal of Structural Engineering,1996,122(4):459~460.
5 Jaiswal O R.Effect of Prestressing on the first flexural natural frequency of beams.Structural Engineering and Mechanics,2008,28(5):515~524
6 Kanaka K,Venkateswara G.Free vibration behavior of Prestressed beams.ASCE Journal of Structural Engineering,1986,121(7):433~437
7 Chan TH T,Yung TH.A theoretical study of force identification using prestressed concrete bridges.Engineering Structures,2000,22(11):1529~1537
8 Dallasta A,LeoniG.Vibration of beams prestressed by internal frictionless cables.Journal of Sound and Vibration,1999,222(1):1~18
9 Kerr A D.On the dynamic response of a prestressed beam.Journal of Sound and Vibration,1976,49(4):569~573
10 Wang Z C,Ren W X.Dynamic analysis of prestressed concrete box-girder bridges by using the beam segment finite element method.International Journal of Structural Stability and Dynamics,2011,11(2):379~399
11 Hamed O,F(xiàn)rostig Y.Natural frequencies of bonded and unbonded prestressed beams-prestress force effects.Journal of Sound and Vibration,2006,295(1-2):28~39
12 Miyamoto A,Tei K,Nakamura H,Bull JW.Behavior of prestressed beam strengthened with external tendons.ASCE Journal of Structural Engineering,2000,126(9):1033~1044
13 熊學(xué)玉,王壽生.體外預(yù)應(yīng)力梁振動特性的分析與研究.地震工程與工程振動,2005,25(2):55~61(Xiong X Y,Wang SS.Analysis and research of externally prestressed beam vibration behavior.Earthquake Engineering and Engineering Vibration,2005,25(2):55~61(in Chinese))
14 方德平,王全鳳.體外預(yù)應(yīng)力梁動力特性的能量法分析.振動與沖擊,2012,31(1):177~181(Fang D P,Wang Q F.Analysis of dynamic behavior of externally prestressed beam by energymethod.Journal of Vibration and Shock,2012,31(1):177~181(in Chinese))
15 張耀庭,汪霞利,李瑞鴿.全預(yù)應(yīng)力梁振動頻率的理論分析與試驗(yàn)研究.工程力學(xué),2007,24(8):116~120(Zhang Y T,Wang X L,Li R G.Experimental and theoretical research on vibration Frequency of full-prestressed concrete beam.Engineering Mechanics,2007,24(8):116~120(in Chinese))
16甘亞南,石飛停.寬翼T形梁橋動力學(xué)理論與特性分析.動力學(xué)與控制學(xué)報,2013,11(4):350~356(Gan Y N,Shi F T.Analysis on dynamic theory and characteristic of thin-wall T-beamswith wide flanges.Journal of Dynamics and Control,2013,11(4):350~356(in Chinese) )
SECOND ORDER EFFECT OF EXTERNAL TENDON COMPRESSION ON DYNAM IC BEHAVIOR OF SIMPLY SUPPORTED BEAM BY ENERGY METHOD*
Fang Deping?Zhong Mingjing
(College of Civil Engineering,Huaqiao University,Xiamen361021,China)
Precisely considering the second order term in external tendon deformation,the natural frequency of externally prestressed beam is derived by energy method.It illustrates the effect of external tendon compression on beam natural frequency.The calculation results also show that the influence coefficient stating the softening effect of the external tendon compression mainly depends on the number of deviators.Without deviator,the eccentricity loss ismaximum,the influence coefficient is 1,and the effect of external tendon compression is the same as thatof the external axial force.As the number of deviators increases,the eccentricity loss decreases,the external tendon is close to the unbonded tendon,and the influence coefficient decreases to near zero,which is close to nought effectof unbonded tendon compression.For the beam with two ormore deviators,due to the influence coefficient significantly less than 1,the external tendon compression softening effect is negligible.With the increase of the eccentricity and tendon area,the first natural frequency grows up,but the effect of the external tendon on other frequencies is negligible.
external prestress, simply supported beam, natural frequency, energy method, dynamic analysis, second order effect
10.6052/1672-6553-2015-73
2015-7-2收到第1稿,2015-9-1收到修改稿.
*國家自然科學(xué)基金資助項(xiàng)目(51578253,51578255)
?通訊作者E-mail:fdp@hqu.edu.cn
Received 2 July 2015,revised 1 September 2015.
*The project Supported by the National Natural Science Foundation of China(51578253,51578255)
?Corresponding author E-mail:fdp@hqu.edu.cn