于姝雯 王東華 劉志剛 李玩幽
(哈爾濱工程大學(xué),哈爾濱 150001)
考慮齒輪嚙合激勵(lì)的齒輪傳動(dòng)軸系扭振特性分析*
于姝雯 王東華 劉志剛 李玩幽?
(哈爾濱工程大學(xué),哈爾濱 150001)
在傳統(tǒng)齒輪傳動(dòng)軸系扭轉(zhuǎn)振動(dòng)計(jì)算中,將齒輪副簡(jiǎn)化為單一慣量而忽略齒輪嚙合動(dòng)態(tài)激勵(lì),會(huì)導(dǎo)致軸系扭轉(zhuǎn)振動(dòng)特性分析的結(jié)果不能正確描述軸系實(shí)際工作狀態(tài).本文以齒輪傳動(dòng)軸系為對(duì)象,考慮齒輪嚙合的動(dòng)態(tài)特性,建立軸系扭轉(zhuǎn)振動(dòng)當(dāng)量模型.對(duì)齒輪嚙合時(shí)變剛度和嚙合激勵(lì)力進(jìn)行Matlab數(shù)值模擬.將Newmark逐步積分法應(yīng)用于軸系扭轉(zhuǎn)振動(dòng)強(qiáng)迫振動(dòng)響應(yīng)的計(jì)算中,計(jì)算在齒輪嚙合動(dòng)態(tài)激勵(lì)扭矩和外加負(fù)載扭矩的分別作用和共同作用下的軸系扭轉(zhuǎn)振動(dòng)響應(yīng)情況,比較分析結(jié)果,說(shuō)明了齒輪嚙合動(dòng)態(tài)特性是軸系扭轉(zhuǎn)振動(dòng)的重要激勵(lì)源而不可忽視這一事實(shí).
軸系扭轉(zhuǎn)振動(dòng), 齒輪嚙合時(shí)變剛度, 齒輪嚙合動(dòng)態(tài)激勵(lì), 強(qiáng)迫振動(dòng)響應(yīng), 外部負(fù)載扭矩
在船舶軸系中,齒輪增減速傳動(dòng)系統(tǒng)的應(yīng)用十分廣泛.根據(jù)船級(jí)社《鋼制海船入級(jí)與建造規(guī)范》中的相關(guān)規(guī)定[1],為保證軸系強(qiáng)度滿足要求,需要計(jì)算軸系的扭轉(zhuǎn)振動(dòng)響應(yīng).在齒輪傳動(dòng)軸系的扭轉(zhuǎn)振動(dòng)計(jì)算時(shí),不要求考慮齒輪副的嚙合激勵(lì)作用.
在柴油機(jī)等往復(fù)機(jī)械中,作用在軸系上的各氣缸工作激勵(lì)扭矩遠(yuǎn)大于齒輪嚙合激勵(lì)扭矩,此時(shí),齒輪嚙合激勵(lì)扭矩對(duì)軸系扭轉(zhuǎn)振動(dòng)計(jì)算的影響可忽略.然而,在非往復(fù)設(shè)備的傳動(dòng)軸系扭轉(zhuǎn)振動(dòng)計(jì)算中,由于齒輪嚙合激勵(lì)扭矩是軸系扭轉(zhuǎn)振動(dòng)的重要激勵(lì)源之一,將齒輪副簡(jiǎn)化為單一慣量的傳統(tǒng)處理方式即忽略齒輪嚙合動(dòng)態(tài)激勵(lì),不能正確的反映軸系實(shí)際扭轉(zhuǎn)振動(dòng)狀態(tài).
眾多研究者深入地研究了齒輪副的動(dòng)力學(xué)特性,對(duì)本文齒輪副動(dòng)力學(xué)數(shù)值模擬有著指導(dǎo)意義.Y.Cai[2]給出了齒輪嚙合剛度的模擬公式,并已在實(shí)驗(yàn)基礎(chǔ)上得到修正.對(duì)齒輪系統(tǒng)的非線性動(dòng)力學(xué)微分方程線性化,并能對(duì)齒輪嚙合激勵(lì)進(jìn)行數(shù)值模擬及基于有限元法的嚙合剛度的模擬,實(shí)現(xiàn)對(duì)齒輪嚙合接觸的有限元分析[3-8].響應(yīng)分析多集中于齒輪箱體振動(dòng)的有限元法分析[9-11].齒輪嚙合對(duì)稱軸系會(huì)產(chǎn)生軸系扭轉(zhuǎn)振動(dòng)異向振動(dòng)現(xiàn)象[12].
為說(shuō)明齒輪嚙合對(duì)軸系扭轉(zhuǎn)振動(dòng)響應(yīng)的影響情況,本文以齒輪傳動(dòng)軸系為研究對(duì)象,首先對(duì)齒輪嚙合時(shí)變剛度、齒輪嚙合動(dòng)態(tài)激勵(lì)進(jìn)行Matlab數(shù)值模擬.對(duì)軸系進(jìn)行集總參數(shù)簡(jiǎn)化,建立軸系扭轉(zhuǎn)振動(dòng)當(dāng)量參數(shù)模型.依據(jù)Newmark逐步積分原理,進(jìn)行系統(tǒng)扭轉(zhuǎn)強(qiáng)迫振動(dòng)響應(yīng)計(jì)算.對(duì)在齒輪內(nèi)部激勵(lì)扭矩和外加負(fù)載波動(dòng)扭矩,分別作用和共同作用下,軸系扭轉(zhuǎn)振動(dòng)響應(yīng)進(jìn)行計(jì)算與分析.
1.1 齒輪副扭振模型
對(duì)齒輪副處進(jìn)行細(xì)化建模,即齒輪副主從動(dòng)輪簡(jiǎn)化成兩個(gè)慣量,考慮齒輪嚙合時(shí)變動(dòng)態(tài)特性對(duì)軸系扭轉(zhuǎn)振動(dòng)的影響.齒輪副處扭轉(zhuǎn)振動(dòng)動(dòng)力學(xué)模型[5]如圖1所示.
齒輪傳動(dòng)系統(tǒng)振動(dòng)微分方程為:
式中,M,C,K分別是質(zhì)量、阻尼、剛度矩陣,其中剛度矩陣包含了齒輪結(jié)構(gòu)剛度以及齒輪嚙合的時(shí)變剛度.剛度的時(shí)變性使得振動(dòng)微分方程的非線性.為了便于分析,將剛度的時(shí)變部分進(jìn)行分離,并以激勵(lì)的形式移到方程的右邊,這樣就使得非線性的振動(dòng)微分方程線性化.改寫(xiě)過(guò)程為[5]:
方程(4)的右邊載荷部分即齒輪嚙合動(dòng)態(tài)激勵(lì)的表達(dá)形式.
圖1 齒輪副扭轉(zhuǎn)振動(dòng)分析模型Fig.1 The torsional vibration model of gear pair
采用的單級(jí)直齒圓柱齒輪相關(guān)參數(shù)見(jiàn)表1.
表1 齒輪副詳細(xì)參數(shù)Table 1 Details of gear pair
1.2 齒輪嚙合剛度數(shù)值模擬
依據(jù)Y.Cai公式[2],用Matlab軟件對(duì)齒輪嚙合剛度進(jìn)行數(shù)值模擬.數(shù)值模擬得到齒輪副單齒嚙合時(shí)變剛度曲線如圖2所示.
圖2 單齒嚙合剛度曲線Fig.2 The stiffness curve of single gear
直齒圓柱齒輪傳動(dòng)的重合度εα為:
經(jīng)計(jì)算得齒輪嚙合重合度為2.0231,齒輪副嚙合周期為T(mén)z=εα×60/n=0.002023s.據(jù)此對(duì)齒輪嚙合剛度進(jìn)行綜合疊加,得到齒輪副綜合嚙合剛度(如圖3所示)以及主動(dòng)輪、從動(dòng)輪扭轉(zhuǎn)嚙合剛度曲線如圖4所示.主動(dòng)齒輪扭轉(zhuǎn)嚙合剛度的平均值為1.86E6Nm/rad.
圖3 齒輪綜合嚙合剛度曲線Fig.3 The stiffness curves of themesh gears
圖4 齒輪扭振嚙合剛度曲線Fig.4 The torisional stiffness curves of themesh gears
1.3 齒輪嚙合誤差激勵(lì)的數(shù)值模擬
根據(jù)齒輪設(shè)計(jì)的精度等級(jí)確定齒輪的偏差,采用簡(jiǎn)諧函數(shù)表示法進(jìn)行誤差模擬[5],則輪齒的齒形誤差和基節(jié)誤差可用正弦函數(shù).具體表示為:
式中,Tz是齒輪的嚙合周期,εα是重合度,n為輸入轉(zhuǎn)速,e0,er是齒輪誤差幅值.對(duì)誤差激勵(lì)數(shù)值模擬結(jié)果如圖5所示.
圖5 齒輪傳動(dòng)誤差曲線Fig.5 The error curve of themesh gears
1.4 齒輪嚙合動(dòng)態(tài)激勵(lì)的合成
根據(jù)公式(4),將單齒嚙合剛度曲線(圖2)與誤差曲線(圖5)對(duì)應(yīng)點(diǎn)相乘,合成為齒輪嚙合內(nèi)部激勵(lì)[13],如圖6所示.將單齒激勵(lì)進(jìn)行綜合,得到的齒輪綜合激勵(lì)曲線如圖7所示.
圖6 單齒激勵(lì)合成曲線Fig.6 The excitation curve of the single gear
圖7 齒輪綜合激勵(lì)曲線Fig.7 The excitation curve of themesh gears
將齒輪綜合激勵(lì)曲線中各時(shí)間點(diǎn)對(duì)應(yīng)的激勵(lì)值減去其中最小值,再將其轉(zhuǎn)化到主動(dòng)齒輪、被動(dòng)齒輪徑向方向的扭矩曲線,如圖8、9所示.
圖8 主動(dòng)齒輪嚙合動(dòng)態(tài)激勵(lì)扭矩曲線Fig.8 The torque curve of the drive gear
圖9 從動(dòng)齒輪嚙合動(dòng)態(tài)激勵(lì)扭矩曲線Fig.9 The torque curve of the driven gear
采用集總參數(shù)法對(duì)軸系進(jìn)行當(dāng)量簡(jiǎn)化,系統(tǒng)結(jié)構(gòu)示意圖如圖10所示.建立軸系扭振振動(dòng)分析模型,按照振動(dòng)的特性不變的原則,將實(shí)際的軸系進(jìn)行合理的簡(jiǎn)化.簡(jiǎn)化后的系統(tǒng)是由10個(gè)只有轉(zhuǎn)動(dòng)慣量而無(wú)彈性變形的集中質(zhì)量和9個(gè)只有彈性變形而無(wú)轉(zhuǎn)動(dòng)慣量的一些彈性軸段組成[14].
圖10 系統(tǒng)結(jié)構(gòu)簡(jiǎn)圖Fig.10 The structure of the shaft system
按照簡(jiǎn)化原則對(duì)軸系簡(jiǎn)化的當(dāng)量參數(shù)見(jiàn)表2.軸系當(dāng)量模型見(jiàn)圖如圖11所示.
表2 軸系扭振當(dāng)量參數(shù)Table 2 Torsional vibration parameters of shaft equivalentmodel
圖11 軸系扭振當(dāng)量模型Fig.11 The torsional equivalentmodel of the shaft system
系統(tǒng)自由振動(dòng)微分方程[15]為:
設(shè)方程的解的形式為:
則可以得到矩陣方程:
式中,K為扭轉(zhuǎn)剛度矩陣,J為轉(zhuǎn)動(dòng)慣量矩陣,λ為系統(tǒng)矩陣特征值.并可得到系統(tǒng)固有頻率為:
按照以上原理編制MATLAB計(jì)算程序,扭轉(zhuǎn)自由振動(dòng)前四階固有頻率見(jiàn)表3.
自由振動(dòng)計(jì)算中的齒輪嚙合剛度采用的是由Y.Cai公式近似計(jì)算的嚙合剛度的平均值(1.86 E6Nm/rad).考慮到嚙合剛度的時(shí)變性,將齒輪嚙合剛度依次取10~1E10Nm/rad,得到前三階固有頻率與齒輪嚙合剛度的關(guān)系曲線.
表3 扭轉(zhuǎn)振動(dòng)固有頻率Table 3 Natural frequency of torsional vibration
如圖12所示,齒輪扭轉(zhuǎn)振動(dòng)嚙合剛度低于1E4Nm/rad時(shí),前三階臨界轉(zhuǎn)速均有較大波動(dòng),嚙合剛度大于1E5Nm/rad時(shí),前四階固有頻率變化平穩(wěn).由圖4可知,主動(dòng)輪、從動(dòng)輪扭轉(zhuǎn)剛度范圍大于1E5Nm/rad,因此,針對(duì)此系統(tǒng),剛度時(shí)變性不會(huì)引起前四階固有頻率大范圍的變化.
圖12 扭轉(zhuǎn)振動(dòng)固有頻率隨齒輪嚙合剛度變化曲線Fig.12 The torsional equivalentmodel of the shaft system
4.1 齒輪內(nèi)部激勵(lì)作用下的軸系扭振響應(yīng)分析
將Newmark逐步積分法[16]應(yīng)用于軸系扭轉(zhuǎn)振動(dòng)響應(yīng)的分析中,計(jì)算流程如圖13所示.
軸系強(qiáng)迫振動(dòng)微分方程為:
將齒輪嚙合動(dòng)態(tài)激勵(lì)作為軸系唯一激振力,計(jì)算強(qiáng)迫振動(dòng)響應(yīng).圖14為慣量7的軸系扭轉(zhuǎn)振動(dòng)的角加速度響應(yīng)時(shí)域曲線.將其進(jìn)行傅里葉變換得到頻域曲線如圖15所示,圖中明顯的峰值頻率為嚙合頻率(492.7Hz)及嚙合頻率的二倍頻(985.4Hz)、四倍頻(1970.8Hz)等.說(shuō)明齒輪嚙合動(dòng)態(tài)激勵(lì)引起了軸系較明顯的扭轉(zhuǎn)振動(dòng)響應(yīng),對(duì)軸系扭轉(zhuǎn)振動(dòng)有一定的激振能力.
圖13 Newmark法扭振計(jì)算流程圖Fig.13 The flow chart of Newmark Method for torsional vibration calculation
圖14 齒輪動(dòng)態(tài)激勵(lì)作用下慣量7角加速度響應(yīng)時(shí)域曲線Fig.14 The time domain curve of the7th-inertia angular acceleration under the gearmesh torque
在齒輪嚙合動(dòng)態(tài)激勵(lì)作用下各軸段的應(yīng)力如圖16所示,在軸段2(主動(dòng)輪慣量與軸系的連接軸段)和軸段6(從動(dòng)輪慣量與軸系的連接軸段)處應(yīng)力最大.
圖15 齒輪動(dòng)態(tài)激勵(lì)作用下慣量7角加速度響應(yīng)頻域曲線Fig.15 The frequency domain curve of the 7th-inertia angular acceleration under the gearmesh torque
圖16 齒輪動(dòng)態(tài)激勵(lì)作用下軸段應(yīng)力值Fig.16 The stress curve of each shaft section under the gearmesh torque
4.2 外加負(fù)載作用下軸系扭振響應(yīng)計(jì)算與分析
本文研究對(duì)象的外加負(fù)載扭矩是通過(guò)發(fā)電機(jī)提供且施加在發(fā)電機(jī)慣量10上.發(fā)電機(jī)功率為8kW,齒輪箱輸入轉(zhuǎn)速1000r/min.負(fù)載扭矩幅值計(jì)算公式為負(fù)載扭矩以矩形波的形式施加,如圖17所示,頻率為1000Hz的波動(dòng)負(fù)載扭矩曲線.
圖17 外部負(fù)載扭矩曲線Fig.17 The torque curve of the external loading
4.2.1 不考慮齒輪嚙合動(dòng)態(tài)激勵(lì)
不考慮齒輪嚙合動(dòng)態(tài)激勵(lì)時(shí),外部負(fù)載扭矩作為軸系扭轉(zhuǎn)振動(dòng)響應(yīng)的唯一激振扭矩,計(jì)算軸系扭轉(zhuǎn)振動(dòng)響應(yīng),如圖18、19所示,外部負(fù)載頻率為1000Hz時(shí),慣量7角加速度響應(yīng)時(shí)域、頻域曲線,頻譜圖中沒(méi)有齒輪嚙合激勵(lì)頻率及其倍頻成分.軸段應(yīng)力如圖20所示,仍然是軸段2和軸段6處應(yīng)力出現(xiàn)明顯峰值.
圖18 負(fù)載扭矩作用下慣量7角加速度響應(yīng)時(shí)域曲線Fig.18 The time domain curve of the 7th-inertia angular acceleration under the external loading
圖19 負(fù)載扭矩作用下慣量7角加速度響應(yīng)頻域曲線Fig.19 The frequency domain curve of the 7th-inertia angular acceleration under the external loading
使負(fù)載扭矩頻率在60~1000Hz范圍內(nèi)變化,步長(zhǎng)取5Hz,分別計(jì)算各頻率時(shí)的扭轉(zhuǎn)振動(dòng)響應(yīng),得到的軸段2、軸段6應(yīng)力值隨波動(dòng)負(fù)載頻率變化如圖21、22所示.應(yīng)力峰值頻率為扭轉(zhuǎn)振動(dòng)固有頻率(70Hz、290Hz、510Hz、565Hz),是由于負(fù)載扭矩頻率與系統(tǒng)固有頻率相等時(shí),發(fā)生共振現(xiàn)象,響應(yīng)劇烈.除此之外,在170Hz處還有一明顯峰值,經(jīng)分析,170Hz是扭振第一階固有頻率的2.5倍,齒輪副傳動(dòng)速比是2.5,齒輪副傳動(dòng)頻率出按2.5諧次放大.因此實(shí)際工程中,也要十分注意這一現(xiàn)象.除了要避免系統(tǒng)固有頻率外,還要注意齒輪傳動(dòng)比對(duì)第一階固有頻率倍頻成分的放大作用.
圖20 負(fù)載扭矩作用下軸段應(yīng)力值Fig.20 The stress curve of each shaft section under the external loading
圖21 負(fù)載扭矩作用下軸段2應(yīng)力隨負(fù)載頻率變化曲線Fig.21 The stress curve of the second shaft section with the change of frequencies of external loading
圖22 負(fù)載扭矩作用下軸段6應(yīng)力隨負(fù)載頻率變化曲線Fig.22 The stress curve of the 6th shaft section with the change of frequencies of external loading
4.2.2 考慮齒輪嚙合動(dòng)態(tài)激勵(lì)
軸系扭振響應(yīng)的激振力矩同時(shí)考慮作用在主、從動(dòng)齒輪上的齒輪嚙合激勵(lì)扭矩以及作用在發(fā)電機(jī)負(fù)載慣量上的負(fù)載扭矩,計(jì)算軸系扭振響應(yīng).圖23、24為兩激勵(lì)扭矩共同作用、外部負(fù)載頻率為1000Hz時(shí),慣量7角加速度響應(yīng)時(shí)域曲線及頻域曲線.軸段應(yīng)力曲線如圖25所示.頻域曲線中能體現(xiàn)齒輪嚙合激勵(lì)頻率及其倍頻成分.
圖23 齒輪動(dòng)態(tài)激勵(lì)與負(fù)載扭矩共同作用下慣量7角加速度響應(yīng)時(shí)域曲線Fig.23 The time domain curve of the 7th-inertia angular acceleration under the gearmesh torque and external loading
圖24 齒輪動(dòng)態(tài)激勵(lì)與負(fù)載扭矩共同作用下慣量7角加速度響應(yīng)頻域曲線Fig.24 The frequency domain curve of the 7th-inertia angular acceleration under the gearmesh torque and external loading
圖25 齒輪動(dòng)態(tài)激勵(lì)與負(fù)載扭矩共同作用下軸段應(yīng)力值Fig.25 The stress curve of each shaft section under the gearmesh torque and external loading
改變負(fù)載扭矩的頻率,負(fù)載扭矩頻率變化范圍為60~1000Hz,變化步長(zhǎng)取5Hz,分別計(jì)算扭振響應(yīng).得到的軸段2、軸段6應(yīng)力值隨波動(dòng)負(fù)載頻率變化曲線如圖26、27所示.
圖26 齒輪動(dòng)態(tài)激勵(lì)與負(fù)載扭矩共同作用下軸段2應(yīng)力隨波動(dòng)負(fù)載頻率變化曲線Fig.26 The stress curve of the second shaft section with the change of frequencies of external loading
圖27 齒輪動(dòng)態(tài)激勵(lì)與負(fù)載扭矩共同作用下軸段6應(yīng)力隨波動(dòng)負(fù)載頻率變化曲線Fig.27 The stress curve of the 6th shaft section with the change of frequencies of external loading
在非往復(fù)機(jī)械軸系的扭轉(zhuǎn)振動(dòng)計(jì)算時(shí),傳統(tǒng)的簡(jiǎn)化齒輪幅嚙合結(jié)構(gòu)為單一慣量的方式忽略了齒輪嚙合動(dòng)態(tài)激勵(lì)對(duì)軸系扭轉(zhuǎn)振動(dòng)的作用.在電機(jī)驅(qū)動(dòng)帶有簡(jiǎn)單直齒輪的傳動(dòng)軸系工作時(shí),恒轉(zhuǎn)速電機(jī)運(yùn)行平穩(wěn),外部激勵(lì)可忽略,此時(shí)軸系仍有很大的振動(dòng)噪聲,這正是由于齒輪嚙合動(dòng)態(tài)特性的作用結(jié)果.本文基于Newmark逐步積分法,得到多組軸系扭轉(zhuǎn)振動(dòng)強(qiáng)迫振動(dòng)響應(yīng)結(jié)果.說(shuō)明了齒輪嚙合動(dòng)態(tài)激勵(lì)是軸系扭轉(zhuǎn)振動(dòng)的一個(gè)重要激勵(lì)源而不可忽略.
由于齒輪嚙合動(dòng)態(tài)激勵(lì)扭矩的作用,軸系扭轉(zhuǎn)振動(dòng)頻譜中含有較大幅值的齒輪嚙合激勵(lì)頻率及其二倍頻、四倍頻等.且軸段應(yīng)力最大值均出現(xiàn)在主、從動(dòng)輪慣量與軸系其他部件慣量的連接軸段.因此齒輪嚙合動(dòng)態(tài)激勵(lì)對(duì)軸系扭轉(zhuǎn)振動(dòng)有明顯的激振作用.若忽略齒輪嚙合激勵(lì),扭轉(zhuǎn)振動(dòng)計(jì)算結(jié)果則不能完整描述軸系振動(dòng)特性,齒輪嚙合動(dòng)態(tài)激勵(lì)對(duì)軸系扭轉(zhuǎn)振動(dòng)的影響不能忽略.
齒輪傳動(dòng)作用放大了軸系扭轉(zhuǎn)振動(dòng)第一階固有頻率的某一倍頻值,該倍頻值等于齒輪副速比,在解決工程實(shí)際問(wèn)題時(shí),這一現(xiàn)象值得關(guān)注.
1 中國(guó)船級(jí)社,鋼制海船入級(jí)與建造規(guī)范.北京:人民交通出版社,(CCS,Rules and regulations for the construction and classification of sea-going steel ships.Beijing:China Communications Press(in Chinese))
2 Cai Y.Simulation on the rotational vibration of helical gears in consideration of the tooth separation phenomenon(A new stiffness function of helical involutes tooth pair).Journal of Mechanical Design,1995:460~469.
3 林騰蛟,李潤(rùn)方,朱才朝等.斜齒輪的齒面載荷及嚙合剛度數(shù)值分析.機(jī)械工藝師,2000,10:30~31(Ling T J,Li R F,Zhou C Z,etal.Numerical analysis ofmeshing stiffness and tooth surface load of helical gear.Machinery Manufacturing Engineer,2000,10:30~31(in Chinese))
4 李潤(rùn)方,林騰蛟,陶澤光.齒輪系統(tǒng)耦合振動(dòng)響應(yīng)的預(yù)估.機(jī)械設(shè)計(jì)與研究,2003,19(2):27~29(Li R F,Lin T J,Tao ZG.The response prediction of gear system coupled vibration.Machine Design and Research,2003,19(2):27~29(in Chinese))
5 李潤(rùn)方,陶澤光,林騰蛟等.齒輪嚙合內(nèi)部動(dòng)態(tài)激勵(lì)數(shù)值模擬.機(jī)械傳動(dòng),2001,25(2):1~3(Li R F,Tao Z G,Lin T J.Numerical simulation for inner dynamic excitation of gearing.Mechanical Transmission,2001,25(2):1~3(in Chinese))
6 龍凱,程穎.齒輪嚙合力仿真計(jì)算的參數(shù)選取研究.計(jì)算機(jī)仿真,2002,19(6):1~3(Long K,Cheng Y.The research of parameters by the simulation of exciting force in gears.Computer Simulation,2002,19(6):1~3(in Chinese))
7 武寶林,楊素君,姚俊紅.齒輪傳動(dòng)中嚙合沖擊的理論分析.機(jī)械科學(xué)與技術(shù),2003,22(1):55~57(Wu B L,Yang SJ,Yao JH.Theoretical analysis onmeshing impact of involute gears.Mechanical Science and Technology,2003,22(1):55~57(in Chinese))
8 盛云,武寶林.齒輪傳動(dòng)中嚙合沖擊的計(jì)算分析.機(jī)械設(shè)計(jì),2005,22(7):41~43(Sheng Y,Wu B L.Calculation analysis onmeshing impact in gear transmission.Journal of Machine Design,2005,22(7):41~43(in Chinese))
9 楊成云,林騰蛟,李潤(rùn)方等.增速箱動(dòng)態(tài)激勵(lì)下響應(yīng)分析.重慶大學(xué)學(xué)報(bào),2002,25(2):15~18(Yang CY,Lin T J,Li R F,et al.Response analysis of speed increase gearbox system in dynamic excitation.Journal of Chongqing University(Natural Science Edition),2002,25(2):15~18(in Chinese))
10 林騰蛟,蔣仁科等.船用齒輪箱動(dòng)態(tài)響應(yīng)及抗沖擊性能數(shù)值分析.振動(dòng)與沖擊,2007,26(12):14~17(Lin T J,Jiang R K,et al.Numerical simulation of dynamic response and shock resistance ofmarine gearbox.Journal of Vibration and Shock,2007,26(12):14~17(in Chinese))
11 李慧新,呂杏梅,王靛等.彈性支撐下風(fēng)電機(jī)組傳動(dòng)系統(tǒng)結(jié)構(gòu)動(dòng)力分析.動(dòng)力學(xué)與控制學(xué)報(bào),2015,13(4):293~299(Li H X,Lv X M,Wang D,et al.Analysis of mounting on drive train structural dynamical specialty of a wind turbine.Journal of Dynamic and Control,2015,13(4):293~299(in Chinese))
12 袁興軍.含有對(duì)稱分支結(jié)構(gòu)軸系異向振動(dòng)特性研究[博士學(xué)位論文].哈爾濱:哈爾濱工程大學(xué),2010(Yuan X J.Investigation of reverse vibration characteristics of shaft with symmetrical embranchment[PhD Thesis].Harbin:Harbin Engineering University,2010(in Chinese))
13 劉文.齒輪系統(tǒng)結(jié)構(gòu)噪聲及空氣噪聲分析與試驗(yàn)研究[博士學(xué)位論文].重慶:重慶大學(xué),2010(Liu W.Numerical analysis and experiment study on structural-borne noise and air-borne noise of gear system[PhD Thesis].Chongqing:Chongqing University,2010(in Chinese))
14 陳之炎.船舶推進(jìn)軸系振動(dòng).上海:上海交大出版社,1987:7~33,60~120(Chen Z Y.Ship propulsion shafting vibration.Shanghai:Shanghai Jiaotong University,1987:7~33,60~120(in Chinese))
15 王祺.內(nèi)燃機(jī)軸系扭轉(zhuǎn)振動(dòng).遼寧:大連理工大學(xué)出版社,1991:48~53(Wang Q.The torsional vibration of the internal combustion engine.Liaoning:Dalian University of Technology Press,1991:48~53(in Chinese))
16 張志華.動(dòng)力裝置振動(dòng)數(shù)值計(jì)算.哈爾濱:哈爾濱工程大學(xué)出版社,1994:77~81(Zhang Z H.Numerical calculation of vibration of power unit.Harbin:Harbin Engi-neering University Press,1994:77~81(in Chinese) )
ANALYSISOF GEAR SHAFTING TORSIONAL VIBRATION CHARACTERISTICS CONSIDERING THE MESHING GEARS INCENTIVES*
Yu Shuwen Wang Donghua Liu Zhigang LiWanyou?
(Harbin Engineering University,Heilongjiang,Harbin150001,China)
Taking a gear-driving shaft system as the object in this paper,an equivalentmodel of the target system with shafting torsional vibration is developed.At first,the free vibration analysis is studied to obtain the natural frequencies of the torsional vibration.Then,the gear variable stiffness and the gear dynamic excitation are simulated by the software Matlab.Moreover,the Newmark Step Integration Method is applied to calculate the forced vibration response of the shaft torsional vibration under gear dynamic excitation or extra-applied load torque or both.It is concluded from the comparison of the results that gear dynamic excitation cannotbe neglected in the shafting torsional vibration.
shafting torsional vibration, gear variable stiffness, gear dynamic excitation, forced vibration response, extra-applied load torque
10.6052/1672-6553-2015-87
2015-10-29收到第1稿,2015-11-2收到修改稿.
*國(guó)家自然科學(xué)基金資助項(xiàng)目(51375104)
?通訊作者E-mail:253352615@qq.com
Received 29 October 2015,revised 2 November 2015.
*The project supported by the National Natural Science Foundation of China(51375104)
?Corresponding author E-mail:253352615@qq.com