段玉寶王英樹(shù)馬建章白素英戎 可(1.西南林業(yè)大學(xué)林學(xué)院,云南省森林災(zāi)害預(yù)警與控制重點(diǎn)實(shí)驗(yàn)室,云南昆明6504;.東北林業(yè)大學(xué)野生動(dòng)物資源學(xué)院,黑龍江哈爾濱150040;.上海野生動(dòng)物園,上海0199)
?
緬甸蟒養(yǎng)殖種群的遺傳多樣性分析
段玉寶1,2王英樹(shù)3馬建章2白素英2戎 可2
(1.西南林業(yè)大學(xué)林學(xué)院,云南省森林災(zāi)害預(yù)警與控制重點(diǎn)實(shí)驗(yàn)室,云南昆明650224;2.東北林業(yè)大學(xué)野生動(dòng)物資源學(xué)院,黑龍江哈爾濱150040;3.上海野生動(dòng)物園,上海201399)
摘要:利用微衛(wèi)星標(biāo)記分析緬甸蟒養(yǎng)殖群體的遺傳多樣性,結(jié)果表明:在42個(gè)緬甸蟒個(gè)體中,共檢測(cè)到76個(gè)等位基因,平均有效等位基因數(shù)為5.78個(gè),平均期望雜合度為0.815,平均多態(tài)信息含量為0.78,8個(gè)微衛(wèi)星位點(diǎn)呈現(xiàn)高度多態(tài)性;僅有3個(gè)位點(diǎn)顯著偏離了Hardy-Weinberg平衡;緬甸蟒海南養(yǎng)殖群體表現(xiàn)出較高的遺傳多樣性水平。突變-漂移平衡分析結(jié)果表明,群體部分位點(diǎn)雜合顯著過(guò)剩,并未顯著偏離突變-漂移平衡,近期沒(méi)有經(jīng)歷過(guò)瓶頸效應(yīng),群體數(shù)量無(wú)明顯下降。
關(guān)鍵詞:緬甸蟒;微衛(wèi)星;遺傳多樣性;養(yǎng)殖種群
緬甸蟒(Python bivittatus)屬于蛇亞目(Serpentes)、蟒科(Pythonidae)、蟒屬(Python)蛇類,是我國(guó)一級(jí)重點(diǎn)保護(hù)野生動(dòng)物,國(guó)際《瀕危野生動(dòng)植物國(guó)際貿(mào)易公約》(CITES)附錄Ⅱ物種[1-2]。緬甸蟒主要分布在東南亞各國(guó),以及我國(guó)的海南、云南(南部)、廣東、廣西、福建、香港、四川等地[3-4]。棲息于低海拔的熱帶、亞熱帶低山叢林,由于過(guò)度人為干擾和破壞,使其棲息地不斷萎縮、片段化,其種群狀況呈銳減趨勢(shì)[5]。
緬甸蟒作為模式生物,在生物醫(yī)學(xué)、發(fā)育生物學(xué)、分子生態(tài)學(xué)、分子遺傳進(jìn)化等領(lǐng)域中起到關(guān)鍵作用[6-10]。目前,不僅在蟒蛇基因組測(cè)序、快速微衛(wèi)星標(biāo)記的發(fā)展等方面進(jìn)行了研究,在相關(guān)物種間引物的通用性等方面也進(jìn)行了探討[11-14]。利用分子生物學(xué)手段,Groot等在Artis動(dòng)物園發(fā)現(xiàn)緬甸蟒存在孤雌生殖,然而在野生種群的研究中并沒(méi)有發(fā)現(xiàn)這一現(xiàn)象[15-16]。Collins等從Jordan等報(bào)道的27對(duì)蟒科蛇類的引物中選取10對(duì),分析了美國(guó)大沼澤國(guó)家公園(Everglades National Park)入侵的緬甸蟒的種群遺傳特征[16-17]。但是在緬甸蟒原始分布地中國(guó),在分子生物學(xué)方面研究甚少,王志方等擴(kuò)增了緬甸蟒的Dmrt基因的DM結(jié)構(gòu)域,You等、柯文燦等、劉雅芳等均利用線粒體DNA做了分子鑒定和遺傳分化等方面的研究[18-21]。
微衛(wèi)星DNA因其分布廣泛、變異度極高和易于檢測(cè)等特點(diǎn)能清楚地了解種群間關(guān)系、種群動(dòng)態(tài)及其進(jìn)化歷史,從而為野生動(dòng)物的繁育和保護(hù)提供更精確的科學(xué)依據(jù)[22-24]。近些年,國(guó)內(nèi)緬甸蟒野外數(shù)量急劇減少,而對(duì)該種原有分布區(qū)遺傳學(xué)、分子生物學(xué)等相關(guān)研究十分缺乏。本研究對(duì)緬甸蟒養(yǎng)殖種群的遺傳學(xué)參數(shù)等進(jìn)行研究,為人工繁育的緬甸蟒種群健康發(fā)展和野生資源的遷地保護(hù)提供參考。
1.1樣品采集與DNA提取
本研究樣本來(lái)自海南東盛弘蟒業(yè)科技股份有限公司文昌養(yǎng)殖基地,采用無(wú)損傷取樣法收集緬甸蟒蛇蛻樣本,共42份,來(lái)自42個(gè)不同親本。利用經(jīng)典的苯酚-氯仿的方法提取緬甸蟒的蛇蛻基因組DNA[25],用分光光度計(jì)確定DNA的濃度,用滅菌水將DNA稀釋至50 ng/μL,-20℃保存?zhèn)溆谩?/p>
1.2微衛(wèi)星引物篩選及擴(kuò)增
參照Groot和Collins等共合成17對(duì)引物(PM-1、PM-2、PM-3、PM-5、30、Nsμ-3、Nsμ-10、MS5、MS6、MS9、MS10、MS11、MS13、MS16、MS19、MS22、MS24)[15-16],用于擴(kuò)增緬甸蟒的基因組DNA,其中11對(duì)能夠穩(wěn)定擴(kuò)增,但僅有8對(duì)具有多態(tài)性,選用這8對(duì)位點(diǎn)用于本次研究(表1)。上游或者下游引物的5′端加上FAM熒光(M13,5′-TGT AAA ACG ACG GCC AGT-3′)標(biāo)記。所有引物均在上海生工生物公司合成。
表1 緬甸蟒8對(duì)微衛(wèi)星引物的信息(n=42)Table 1 Information of 8 pairs of microsatellite primers of Python bivittatus(n=42)
PCR反映采用12.5μL體系,內(nèi)含1.25μL 10× buffer(Mg2+plus),1.25 μL dNTP(2 mmol/ L),0.2 μL F-Primer(10 μmol/ L),0.2 μL R-Primer (10 μmol/ L),0.1μL MS13-Tag(10μmol/ L),0.1μL EasyTaq DNA聚合酶(5 U/μL),1 μL DNA模板(50 ng/μL),補(bǔ)充無(wú)菌水8.4 μL。PCR擴(kuò)增均在Eppendorf梯度PCR儀上完成,按照以下參數(shù)進(jìn)行:95℃預(yù)變性5 min;94℃變性30 s,56~58℃(表1)復(fù)性45 s,72℃延伸40 s,擴(kuò)增36個(gè)循環(huán);最后再72℃延伸8 min,4℃保溫。取反應(yīng)產(chǎn)物2 μL,在ABI3730xl遺傳自動(dòng)分析儀(Applied Biosystems,美國(guó))上對(duì)微衛(wèi)星擴(kuò)增產(chǎn)物進(jìn)行分析。電泳結(jié)果用GeneMapper 4.0讀取。
1.3數(shù)據(jù)統(tǒng)計(jì)
根據(jù)分子量數(shù)據(jù)確定個(gè)體各位點(diǎn)基因型,用POPGEN3.2計(jì)算等位基因數(shù)(Na),有效等位基因數(shù)(Ne),觀測(cè)雜合度(Ho),期望雜合度(He)[26];用CERVUS 3.0計(jì)算多態(tài)信息含量(PIC),并采用馬爾科夫鏈方法進(jìn)行Hardy-Weinberg平衡檢驗(yàn)[27]。
根據(jù)各位點(diǎn)等位基因頻率,用BOTTLENECK 3.4進(jìn)行瓶頸效應(yīng)分析,基于無(wú)限等位基因模型(IAM)、雙相突變模型(TPM)及逐步突變模型(SMM)計(jì)算平均期望雜合度(Heq),重復(fù)1 000次,采用符號(hào)檢驗(yàn)和Wilcoxon符號(hào)秩次檢驗(yàn)分析雜合過(guò)度是否顯著,通過(guò)分析群體突變-漂移平衡來(lái)估計(jì)群體數(shù)量動(dòng)態(tài)變化[28-29]。使用Populations 1.2.32(http:/ / bioinformatics.org/~tryphon/ populations/)和Treeview計(jì)算個(gè)體間遺傳距離,根據(jù)遺傳距離生成NJ聚類圖[30]。
2.1微衛(wèi)星引物在緬甸蟒中的PCR擴(kuò)增結(jié)果
所選的17對(duì)微衛(wèi)星引物中11對(duì)在中國(guó)緬甸蟒的養(yǎng)殖(HR)種群中獲得了擴(kuò)增產(chǎn)物。除了PM2、PM3、30表現(xiàn)單態(tài)外,其余8對(duì)微衛(wèi)星引物在所有群體中均表現(xiàn)不同程度的多態(tài)性,根據(jù)各位點(diǎn)熒光引物PCR擴(kuò)增產(chǎn)物ABI3100 Genetic Anslyzer檢測(cè)結(jié)果,最終選擇8個(gè)位點(diǎn)的遺傳信息進(jìn)行詳細(xì)分析(表1)。
2.2微衛(wèi)星遺傳多樣性
海南籠養(yǎng)種群的遺傳多樣性參數(shù)見(jiàn)表2。8個(gè)微衛(wèi)星座位共檢測(cè)出76個(gè)等位基因,平均等位基因數(shù)9.5個(gè)。其中,每對(duì)引物檢測(cè)到的等位基因5~12個(gè)不等,有效等位基因數(shù)5.78。觀測(cè)雜合度范圍0.595~0.929,期望雜合度范圍為0.734~0.851。
多態(tài)信息含量指標(biāo)(PIC)值介于0.678和0.826之間,根據(jù)Botstein等提出的衡量基因變異程度高低的PIC[31],所選取的8個(gè)位點(diǎn)均為高度多態(tài)位點(diǎn),說(shuō)明可以有效進(jìn)行遺傳多樣性分析。
2.3Hardy-Weinberg平衡
8個(gè)微衛(wèi)星位點(diǎn)在緬甸蟒種群進(jìn)行Hardy-Weinberg平衡檢測(cè)(表2),位點(diǎn)MS10、MS13、MS6不同程度地偏離Hardy-Weinberg平衡(p<0.05),其中位點(diǎn)MS10、MS13處于極顯著不平衡狀態(tài)p<0.01)。在這3個(gè)位點(diǎn)中,MS10是由于雜合子過(guò)剩引起的,而MS13和MS6是由于雜合子缺失引起的。群體內(nèi)固定系數(shù)為Fis=0.028。
表2 緬甸蟒8對(duì)微衛(wèi)星引物遺傳多樣性分析Table 2 Genetic diversity comparison of 8 pairs of microsatellite primers of Python bivittatus
2.4瓶頸效應(yīng)分析
緬甸蟒養(yǎng)殖群體標(biāo)記檢驗(yàn)和標(biāo)記秩檢驗(yàn)結(jié)果,在IAM、TPM和SMM 3種突變模型假設(shè)下的平均期望雜合度(Heq)如表3所示,8個(gè)位點(diǎn)中,在IAM假設(shè)下,位點(diǎn)MS10、MS11、MS13、MS5、MS19、PM1的He均高于Heq,所有位點(diǎn)的He和Heq差異不顯著(p > 0.05);在TPM假設(shè)下,位點(diǎn)MS10、MS13、MS5、PM1的He均高于Heq,且在MS16位點(diǎn)差異顯著(p<0.05);在SMM假設(shè)下,位點(diǎn)MS13、PM1的He值高于Heq,其余的位點(diǎn)He低于Heq,且在MS16位點(diǎn)差異極顯著(p<0.01),MS11、MS6位點(diǎn)差異顯著(p<0.05)。Sign Test和Wilcoxon Test的結(jié)果如表4所示,雖然出現(xiàn)了雜合過(guò)剩的位點(diǎn),但在IAM、TPM、SMM模型假設(shè)條件下,Sign Test和Wilcoxon Test均顯示緬甸蟒養(yǎng)殖群體未顯著偏離突變-飄移平衡(p > 0.05)。
表3 緬甸蟒種群微衛(wèi)星瓶頸效應(yīng)分析Table 3 Microsatellite analysis of bottleneck effect in breeding populations of Python bivittatus
表4 緬甸蟒養(yǎng)殖群體突變-漂移平衡分析Table 4 Analysis on the test of departure from mutation-drift equilibrium in breeding populations of Python bivittatus
2.5個(gè)體遺傳距離和聚類分析
緬甸蟒個(gè)體NJ聚類見(jiàn)圖1。
圖1 緬甸蟒養(yǎng)殖個(gè)體NJ聚類Fig.1 NJ cluster in breeding individual of Python bivittatus
緬甸蟒個(gè)體間遺傳距離變化范圍為0.062 5~1,平均值0.66,其中遺傳距離小于0.5占7.78%,0.5~0.6占16.38%,0.6~0.7占27.64%,0.7~0.8占24.27%,大于0.8占23.93%。從圖1可見(jiàn)所有個(gè)體分布在3個(gè)不同的分支上,其中1個(gè)分支較大有24個(gè)個(gè)體,另外2個(gè)分支均由9個(gè)個(gè)體組成。
對(duì)于野生動(dòng)物的遷地保護(hù)來(lái)說(shuō),為了保持其遺傳性狀防止退化而進(jìn)行遺傳多樣性的研究是必要的,其中雜合度是反映遺傳多樣性高低的重要指標(biāo)之一[32]。根據(jù)研究結(jié)果,該養(yǎng)殖種群He值為0.815,高于大沼澤國(guó)家公園Collins研究的He(0.634)、Hunter研究的He(0.25~0.80)和越南的He(0.78)[15,17]。此外,與我國(guó)同一保護(hù)級(jí)別的其他物種遺傳多樣性進(jìn)行比較,緬甸蟒He值也高于海南坡鹿(0.042~0.640)、大熊貓(0.483~0.704)、黃腹角雉(0.54)、揚(yáng)子鱷(0.551)[33-36]。比近緣物種牙買(mǎi)加虹蚺(Epicrates subflavus)的He(0.57~0.64)略高,與馬達(dá)加斯加樹(shù)蚺(Sanzinia madagascariensis madagascariensis)He(0.825)、環(huán)頸蛇(Diadophis punctatus)He(0.816~0.962)相差不大[37-39]??梢?jiàn)海南人工養(yǎng)殖的緬甸蟒種群的遺傳多樣性處于較高的水平。在Hardy-Weinberg平衡檢驗(yàn)中,大部分位點(diǎn)處于平衡狀態(tài),可能由于該養(yǎng)殖基地種蟒繁殖力較強(qiáng),在選育過(guò)程中并未受到數(shù)量、選擇壓力的限制,此外在種蟒交配繁殖過(guò)程中,注重分子遺傳學(xué)的應(yīng)用,有效地避免了近交等因素的影響。
雜合子過(guò)剩是檢驗(yàn)瓶頸效應(yīng)的有效方法之一[29]。而微衛(wèi)星數(shù)據(jù)已被證明更符合TPM模型用于群體數(shù)量瓶頸效應(yīng)分析[40],本研究?jī)H有位點(diǎn)MS16的He低于Heq且差異顯著。從符號(hào)檢驗(yàn)和Wilcoxon符號(hào)秩次檢驗(yàn)的結(jié)果來(lái)看,在IAM和TPM 2種進(jìn)化模式下檢驗(yàn)表明,該養(yǎng)殖群體均沒(méi)有顯著的雜合過(guò)剩位點(diǎn)。本研究結(jié)果表明,緬甸蟒海南養(yǎng)殖群體在近期沒(méi)有經(jīng)歷過(guò)瓶頸效應(yīng),群體數(shù)量沒(méi)有出現(xiàn)過(guò)明顯下降。
雜交優(yōu)勢(shì)是動(dòng)物繁育過(guò)程中一種普遍現(xiàn)象,雜交優(yōu)勢(shì)大小一定程度上取決于雙親的遺傳距離[41]。本研究個(gè)體間的遺傳距離主要分布在0.5~1(92.22%),表明在以往的繁育過(guò)程中近交概率較小。在以后的種群選育過(guò)程中可選取距離較遠(yuǎn)的個(gè)體進(jìn)行配對(duì)繁殖[42],同時(shí),建立譜系管理制度,有效避免近交衰退,保持較豐富的遺傳多樣性。
[參考文獻(xiàn)]
[1]趙爾宓.中國(guó)蛇類[M].合肥:安徽科學(xué)技術(shù)出版社,2006.
[2]IUCN.IUCN Red List of Threatened Species.Version 2014.2[EB/ OL].[2014-10-23].http:/ / www.iucnredlist.org.
[3]David G B,Tracy M B.The distribution of the Burmese python,Python molurus bivittatus[J].The Bulletin of the Chicago Herpetological Society,2008,43:33-38.
[4]David G B,Tracy M B.The distribution of the Burmese python,Python bivittatus[J].The Bulletin of the Chicago Herpetological Society,2010,45:86-88.
[5]國(guó)家林業(yè)局.中國(guó)重點(diǎn)陸生野生動(dòng)物資源調(diào)查[M].北京:中國(guó)林業(yè)出版社,2009.
[6]Astarita G,Rourke B C,Andersen J B,et al.Postprandial increase of oleoylethanolamide mobilization in small intestine of the Burmese python(Python molurus)[J].American Journal of Physiology-Regulatory,Integrative and Comparative Physiology,2006,290:1407-1412.
[7]Mauldin R,Savarie P J.Acetaminophen as an oral toxicant for Nile monitor lizards(Varanus niloticus)and Burmese pythons(Python molurus bivittatus)[J].Wildlife Research,2010,37:215-222.
[8]Mccue M D,Bennett A F,Hicks J W.The effect of meal composition on specific dynamic action in Burmese Pythons(Python molurus)[J].Physiological and Biochemical Zoology,2005,78:182-192.
[9]Wang T,Altimiras J,Axelsson M.Intracardiac flow separation in an in situperfused heart from Burmese python(Python molurus)[J].The Journal of Experimental Biology,2002,205:2715-2723.
[10]Ratnoff O D,Rosenberg M J,Everson B,et al.Notes on clotting in a Burmese python(Python molurus bivittatus)[J].The Journal of laboratory and clinical medicine,1990,115:629-635.
[11]Coatoe T A,deKoning A P,Hall K T,et al.Sequencing the genome of the Burmese python(Python molurus bivittatus)as a model for studying extreme adaptations in snakes[J].Genome Biology,2011,12:406.
[12]Coatoe T A,Streicher J W,Meik J M,et al.Thousands of microsatellite loci from the venomous coralsnake Micrurus fulvius and variability of select loci across populations and related species[J].Mol Ecol Resour,2012,12:1105-1113.
[13]Castoe T A,Poole A W,deKoning A P,et al.Rapid microsatellite identification from illumina paired-end genomic sequencing in two birds and a snake[J].PLoS ONE,2012,7:e30953.
[14]Hunter M E,Hart K M.Rapid microsatellite marker development using next generation pyrosequencing to inform invasive Burmese python—Python molurus bivittatus—Management[J].International Journal of Molecular Sciences,2013,14:4793-4804.
[15]Groot T V,Bruins E,Breeuwer J A.Molecular genetic evidence for parthenogenesis in The Burmese python,Python molurus bivittatus[J].Heredity,2003,90:130-135.
[16]Collins T M,F(xiàn)reeman B.Genetic characterization of populations of the nonindigenous Burmese python in Everglades National Park[G].Miami:Florida International University,2008.
[17]Jordan P W,Goodman A E,Donnellan S.Microsatellite primers for Australian and New Guinean pythons isolated with an efficient marker development method for related species[J].Molecular Ecology Notes,2002,2:78-82.
[18]王志方,曹承和,李潔,等.蟒蛇的2個(gè)Dmrt基因的克隆及序列分析[C].中國(guó)動(dòng)物學(xué)會(huì)兩棲爬行動(dòng)物學(xué)分會(huì)2005年學(xué)術(shù)研討會(huì)暨會(huì)員代表大會(huì)論文集,2005.
[19]You C W,Lin Y P,Lai Y H,et al.Return of the pythons:first formal records,with a special note on recovery of the Burmese python in the demilitarized Kinmen islands[J].Zoological Studies,2013,52(1):1-11.
[20]柯文燦,武蕾蕾,吳文珊,等.基于Cytb和COI基因序列的蟒蛇分子鑒定[J].福建師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,30(1):91-97.
[21]劉雅芳,曹婷,劉建才,等.緬甸蟒線粒體基因組全序列測(cè)定與分析[J].四川動(dòng)物,2014,33(1):23-30.
[22]Gibbs H L,Prior K A,Weatherhead P J,et al.Genetic structure of populations of the threatened eastern massasuaga rattlesnake,Sistrurus catenatus:evidence from microsatellite DNA markers[J].Molecular Ecology,1997,6:1123-1132.
[23]Paquin M M,Wylie G D,Routman E J.Population structure of the giant garter snake,Thamnophis gigas [J].Conservation Genetics,2006,7:25-36.
[24]Marshall J C,Kingsbury B A,Minchella D J.Microsatellite variation,population structure,and bottlenecks in the threatened copperbelly water snake[J].Conserv Genet,2009,10:465-476.
[25]Saghai-Maroof M,Soliman K,Jorgensen R A,et al.Ribosomal DNA spacer-length polymorphisms in barley:Mendelian inheritance,chromosomal location,and population dynamics[J].Proceedings of the National Academy of Sciences,1984,81(24):8014-8018.
[26]Nei M.Estimation of average heterozygosity and genetic distance from a small number of individuals[J].Genetics,1978,89:583-590.
[27]Kalinowski T,Taper M L,Marshall T C.Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment[J].Mol Ecol,2007,16:1099-1106.
[28]Maruyama T,F(xiàn)uerst P A.Population bottlenecks and nonequilibrium models in population genetics.II.Number of alleles in a small population that was formed by a recent bottleneck[J].Genetics,1985,111:675-689.
[29]蘇翔,汪桂玲,馮建彬,等.鄱陽(yáng)湖日本沼蝦15個(gè)群體遺傳多樣性的微衛(wèi)星分析[J].生態(tài)學(xué)雜志,2011,30(9):2007-2013.
[30]Takezaki N,Nei M.Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA[J].Genetics,1996,144:389-399.
[31]Botstein D,White R L,Skalnick M H,et al.Construction of a genetic linkage map in man using restriction fragment length polymorphism[J].American Journal of Human Genetics,1980,32:314-331.
[32]Cornuet J M,Luikart G.Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data[J].Genetics,1996,144:2001-2014.
[33]Dong L,Niu W,Zhou Z,et al.Assessing the genetic integrity of captive and wild populations for reintroduction programs:the case of Cabot’s Tragopan in China [J].Chinese Birds,2011,2(2):65-71.
[34]王芳,彭真信,張金國(guó),等.應(yīng)用微衛(wèi)星標(biāo)記分析圈養(yǎng)大熊貓遺傳多樣性[J].生物化學(xué)與生物物理進(jìn)展,2007,34(12):1279-1287.
[35]張瓊,吉亞杰,曾治高,等.奠基者效應(yīng)對(duì)海南坡鹿遷地保護(hù)種群遺傳多樣性的影響[J].動(dòng)物學(xué)雜志,2007,42(3):54-60.
[36]王義權(quán),朱偉銓,王朝林.揚(yáng)子鱷飼養(yǎng)種群線粒體DNA控制區(qū)的序列多態(tài)性[J].遺傳學(xué)報(bào),2003,30(5):425-430.
[37]Tzika A C,Koenig S,Miller R,et al.Population structure of an endemic vulnerable species,the Jamaican boa(Epicrates subflavus)[J].Molecular Ecology,2008,17:533-544.
[38]Ramanana M A,Bailey C A,Shore G D,et al.Characterization of 20 microsatellite marker loci in the Malagasy tree boa(Sanzinia madagascariensis madagascariensis)[J].Conservation Genetics,2009,10(6):1953-1956.
[39]Fontanella F M,Siddall M E.Isolation and characterization of 14 polymorphic microsatellite loci in the ringneck snake Diadophis punctatus(Colubridae:Dipsadinae)[J].Conserv Genet,2010,11:1193-1195.
[40]Di Rienzo A,Peterson A C,Garza J C.Mutational processes of simple sequence repeat loci in human populations[J].Proceedings of the National Academy of Sciences of the USA,1994,91:3166-3170.
[41]錢(qián)惠榮,康樂(lè).DNA標(biāo)記和分子育種[J].生物工程進(jìn)展,1998,18(3):12-18.
[42]谷晶晶,朱迎軍,孟雪松,等.微衛(wèi)星標(biāo)記對(duì)紅鰭東方鲀繁殖的指導(dǎo)應(yīng)用及遺傳分析[J].水產(chǎn)科學(xué),2010,29(9):527-531.
(責(zé)任編輯張坤)
第1作者:段玉寶(1984—),男,博士,講師。研究方向:保護(hù)生物學(xué)和動(dòng)物生態(tài)學(xué)。Email:ybduan@swfu.edu.cn。
Analysis on Genetic Diversity in Breeding Populations of Python bivittatus
Duan Yubao1,2,Wang Yingshu3,Ma Jianzhang2,Bai Suying2,Rong Ke2
(1.Key Laboratory of Forest Disaster Warning and Control of Yunnan Province,College of Forestry,Southweat Forestry University,Kunming Yunnan 650224,China;2.College of Wildlife Resource,Northeast Forestry University,Harbin Heilongjiang 150040,China;3.Shanghai Wild Animal Park,Shanghai 201399,China)
Abstract:Genetic diversity of breeding populations of Burmese python(Python bivittatus)were investigated using microsatellite DNA loci.The study showed that 76 alleles were detected among 42 sampled individuals,the average number of effective allele was 5.78,average of expected heterozygosity was 0.815,and average of PIC was 0.78.It was indicated that all the 8 loci were highly polymorphic,and only 3 loci were obviously departured from Hardy-Weinberg equilibrium High level of genetic diversities was represented in breeding popution of Python bivittatus)in Hainan.Mutation-drift equilibrium tests indicated that loci with significantly heterozygote excesses in populations,and the population was not obviously departured from mutation-drift equilibrium.It might indicate that the population did not suffer bottleneck effects in recent time,and no significant decline in the number of populations.
Key word:Python bivittatus,microsatellite,genetic diversity,breeding populations
通信作者:戎可(1972—),男,博士,副教授。研究方向:行為生態(tài)學(xué)和種群生態(tài)學(xué)。Email:rongke@nefu.edu.cn。
基金項(xiàng)目:國(guó)家自然科學(xué)基金項(xiàng)目(31372209、L1322010)資助;海南省科技廳產(chǎn)學(xué)研項(xiàng)目(CXY20130027)資助;西南林業(yè)大學(xué)博士科研啟動(dòng)金資助;西南林業(yè)大學(xué)云南省省級(jí)重點(diǎn)學(xué)科(林學(xué))資助;西南地區(qū)生物多樣性保育國(guó)家林業(yè)局重點(diǎn)實(shí)驗(yàn)室開(kāi)放基金資助。
收稿日期:2015-12-28
doi:10.11929/ j.issn.2095-1914.2016.03.028
中圖分類號(hào):S718.61
文獻(xiàn)標(biāo)志碼:A
文章編號(hào):2095-1914(2016)03-0163-06