劉 瑩,董麗芳,牛雪姣,張 超
河北大學物理科學與技術(shù)學院,河北 保定 071002
介質(zhì)阻擋放電中亮暗點超六邊形斑圖的光譜研究
劉 瑩,董麗芳*,牛雪姣,張 超
河北大學物理科學與技術(shù)學院,河北 保定 071002
采用雙水電極介質(zhì)阻擋放電裝置,在空氣和氬氣的混合氣體中,首次研究了由中心亮點和暗點組成的亮暗點超六邊形斑圖。通過觀察斑圖照片,可以發(fā)現(xiàn)暗點位于周圍其他三個亮點的質(zhì)心處,并且亮點和暗點的亮度有所不同,這說明亮點和暗點的等離子體狀態(tài)可能不同。利用發(fā)射光譜法,研究了亮暗點超六邊形斑圖中亮點和暗點的等離子體參量隨氬氣含量的變化趨勢。首先通過采集氮分子(N2)第二正帶系(C3Πu→B3Πg)發(fā)射譜線,計算出了亮點和暗點的分子振動溫度; 之后利用氮分子離子391.4nm和氮分子394.1nm兩條發(fā)射譜線的相對強度之比,得到了此斑圖中亮點和暗點的電子平均能量; 最后通過氬原子696.57nm(2P2→1S5)譜線的展寬,研究了此斑圖中亮點和暗點的電子密度。實驗結(jié)果發(fā)現(xiàn): 在同一氬氣含量下,亮暗點超六邊形斑圖中暗點的分子振動溫度、電子平均能量和電子密度均高于亮點的相應等離子體參量; 保持其他實驗參數(shù)不變,隨著氬氣含量從70%變化到95%,亮點和暗點的分子振動溫度和電子密度均是逐漸增大的,而電子平均能量則是逐漸減小的。亮點和暗點的等離子狀態(tài)的不同,說明二者的放電機制可能不同。進一步采用高速錄像機對斑圖進行短曝光拍攝,發(fā)現(xiàn)亮點存在沿面放電,這些沿面放電交匯形成暗點。
介質(zhì)阻擋放電; 分子振動溫度; 電子平均能量; 電子密度
介質(zhì)阻擋放電(DBD)是一種非平衡態(tài)交流氣體放電,廣泛應用于眾多工業(yè)領域中[1-5]。為了提高工業(yè)生產(chǎn)應用效率,需要測量介質(zhì)阻擋放電中的等離子體參量。等離子體參量的測量方法種類很多,其中發(fā)射光譜法因其是一種無干擾的測量方法,而成為等離子體診斷中應用最為廣泛的一種[6,7]。這種方法主要是通過對譜線線型、譜線寬度和相對強度之比的分析,來確定等離子體的多個參量,例如分子振動溫度、電子密度等。介質(zhì)阻擋放電的放電形式可分為兩類: 體放電(VD)和沿面放電(SD)。對于這兩種放電的研究已有很多被報道[8,9],但對它們的放電性能的研究較少。由以往的研究可知,體放電和沿面放電的放電機制不同,因此等離子體狀態(tài)也不同。本工作主要采用發(fā)射光譜法,對亮暗點超六邊形斑圖中亮點和暗點的分子振動溫度、電子平均能量和電子密度幾個等離子體參量隨氬氣含量的變化進行了研究,進一步比較了沿面放電和體放電這兩種放電機制的不同。其實驗結(jié)果不僅對于研究亮暗點超六邊形斑圖的形成機制有重要價值,也對沿面放電和體放電在不同領域的應用有重要意義。
實驗裝置如圖1所示,主要由水電極、高壓電源、光譜儀、數(shù)字示波器組成。水電極由兩個端面對稱且裝滿水的圓柱形玻璃管組成,兩側(cè)用石英玻璃封住,各自在一側(cè)用金屬銅環(huán)連接至高壓電源的電極。將水電極平行放置在充滿氬氣和空氣混合物的真空密閉室里,中間放一塊邊長L為3 cm, 厚度d為2.4 mm的六邊形邊界。用數(shù)碼相機(Canon Powershot G16)記錄放電照片。利用高壓探頭(Tektronix P6015A)測量外加電壓,并通過數(shù)字示波器(Tektronix DPO4104B)采集和存儲。通過透鏡放大成像,利用光纖探頭將亮點和暗點的光分別導入到光譜儀(ACTON SP-2758, CCD: 1 340×400 Pixels, 光柵300, 800, 2 400 G·mm-1, 分辨率0.005 nm),控制計算機采集和存儲光譜。用高速錄像機(pco. dimax 9000000207)拍攝短曝光時間斑圖照片。
Fig.1 Schematic diagram of the experimental setup
圖2給出了亮暗點超六邊形斑圖的照片。由圖2(a)可看出,亮暗點超六邊形斑圖是在電壓值較高的情況下獲得的,由暗點和亮點組成,斑圖中暗點的位置位于周圍其他三個亮點的質(zhì)心處。從圖2(b)中可以更清晰地看見亮暗點結(jié)構(gòu),分別由L和D指出,且亮點和暗點的亮度相差很大,說明這兩種點的等離子體狀態(tài)可能不同。為了進一步研究亮點和暗點的不同,采用發(fā)射光譜法,測量了亮點和暗點的等離子參量。
Fig.2 Discharge images of hexagonal super-lattice pattern with light spot and dim spot
實驗中,中心波長設為390 nm, 選擇300 G·mm-1的光柵,采集了氮分子第二正帶系(C3Πu→B3Πg)波長范圍在360~420nm之間的發(fā)射譜線,如圖3所示。采用第二正帶系的兩組振動序帶: (0-2,1-3,2-4)和(0-3,1-4,2-5)[10],對其進行處理,計算出了亮暗點超六邊形斑圖中亮點和暗點的分子振動溫度。
圖4給出了亮暗點超六邊形斑圖中亮點和暗點的分子振動溫度隨氬氣含量的變化關(guān)系。由圖中可以看出,在相同氬氣含量條件下,暗點的分子振動溫度要高于亮點的。保持其他參數(shù)不變,隨著氬氣含量由70%增大至95%,亮點和暗點的分子振動溫度都隨著氬氣含量的增加而增大。亮點的分子振動溫度在2 300~2 600K范圍內(nèi),暗點的分子振動溫度在2 400~2 900K范圍內(nèi)。
Fig.3 Emission spectra in the range of 360~420 nm
Fig.4 Variation of molecular vibration temperature of two kinds of spots as a function of argon concentration
氮分子離子譜線和氮分子譜線的相對強度比可反映電子平均能量。因此,本實驗通過計算氮分子離子391.4 nm譜線與氮分子394.1 nm的相對強度之比,研究了電子平均能量隨氬氣含量的變化,如圖5所示。由圖可知,亮暗點超六邊形斑圖中暗點比亮點的電子平均能量要高; 隨著氬氣含量增加,亮點和暗點的電子平均能量均逐漸減小。
Fig.5 Variation of the ratio of intensity of the nitrogen molecule ion line and nitrogen molecule line as a function of argon concentration
中心波長選為696 nm, 選用2400 G·nm-1的光柵,采集了發(fā)射譜線。利用處理后得到的氬原子696.5 nm(2P2→1S5)的譜線展寬[6],研究了亮暗點超六邊形斑圖中亮點和暗點的電子密度,如圖6所示。由圖可知,暗點的譜線線寬要高于亮點的。改變氬氣含量,研究了亮暗點超六邊形斑圖中亮點和暗點的譜線線寬隨氬氣含量的變化,其結(jié)果圖7所示。粗略來講,譜線的線寬可反映電子密度大小[10]。實驗結(jié)果表明,亮點和暗點的電子密度隨著氬氣含量的增加而增大。
Fig.6 Profiles of the spectral line 696.5 nm of two kinds of spots
Fig.7 Variation of broadenings of spectral line 696.5 nm of two kinds of spots as a function of argon concentration
以上光譜結(jié)果表明,亮暗點超六邊形斑圖中亮點和暗點的等離子狀態(tài)是不同的。為了進一步研究它們放電機制的不同,采用高速錄像機對此斑圖進行短曝光拍攝,其結(jié)果如圖8所示。實驗發(fā)現(xiàn),亮點對應于體放電,暗點對應沿面放電,亮點周圍的沿面放電交匯形成暗點。
采用雙水電極介質(zhì)阻擋放電裝置,在空氣和氬氣的混合氣體中,首次研究了由中心亮點和暗點組成的亮暗點超六邊形斑圖。采用發(fā)射光譜法,研究了亮暗點超六邊形斑圖中亮點和暗點的等離子體參量隨氬氣含量的變化。結(jié)果發(fā)現(xiàn): 在相同氬氣含量下,亮暗點超六邊形斑圖中暗點的分子振動溫度、電子平均能量和電子密度均高于亮點的相應等離子體參量; 隨著氬氣含量從70%變化到95%,亮暗點超六邊形斑圖中亮點和暗點的分子振動溫度和電子密度均是逐漸增大的,而亮點和暗點的電子平均能量則是逐漸減小的。采用高速錄像機對斑圖進行短曝光拍攝,發(fā)現(xiàn)亮點存在沿面放電,亮點的沿面放電交匯形成暗點。實驗結(jié)果對進一步研究此斑圖的形成有重要意義。
[1] Sinclair J, Walhout M. Physical Review Letters, 2012, 108: 035005.
[2] Bernecker B, Callegari T, Blanco S, et al. The European Physical Journal Applied Physics, 2009, 47.
[3] Hou Shiying, Zeng Peng, Liu Kun, et al. High Voltage Engineering, 2012, 38(7):.
[4] Fan Weili, Dong Lifang, Zhao Hai-tao, et al. IEEE Transaction on Plasma Science, 2009, 37(6): 1016.
[5] NIU Zheng, SHAO Tao, ZHANG Cheng, et al(年). High Voltage Engineering, 2011, 37(6): 1536.
[6] Chen Junying, Dong Lifang, Li Yuanyuan, et al. Acta Physica Sinica(物理學報), 2012, 61(7): 075211.
[7] Pu Yudong, Yang Jiamin, Jin Fengtao, et al. Acta Physica Sinica, 2011, 60(4): 045210.
[8] Gao Yenan, Pan Yuyang, Dong Lifang, et al. Phys. Plasmas, 2014, 21: 103515.
[9] Kogelschatz U. Journal of Physics: Conference Series, 2010, 256: 012015.
[10] DONG Li-fang, ZHU Ping, YANG Jing, et al(董麗芳, 朱 平, 楊 京,等). Spectroscopy and Spectral Analysis(光譜學與光譜分析), 2014, 34(4): 915.
*Corresponding author
Study on Hexagonal Super-Lattice Pattern with Light Spot and Dim Spot in Dielectric Barrier Discharge by Optical Emission Spectra
LIU Ying, DONG Li-fang*, NIU Xue-jiao,ZHANG Chao
College of Physics Science and Technology, Hebei University, Baoding 071002, China
The hexagonal super-lattice pattern composed of the light spot and the dim spot is firstly observed and investigated in the discharge of gas mixture of air and argon by using the dielectric barrier discharge device with double water electrodes. It is found that the dim spot is located at the center of its surrounding three light spots by observing the discharge image. Obviously, the brightness of the light spot and the dim spot are different, which indicates that the plasma states of the light spot and the dim spot may be different. The optical emission spectrum method is used to further study the several plasma parameters of the light spot and the dim spot in different argon content. The emission spectra of the N2second positive band(C3Πu→B3Πg)aremeasured,fromwhichthemoleculevibrationtemperaturesofthelightspotandthedimspotarecalculated.Basedontherelativeintensityratioofthelineat391.4nmandtheN2lineat394.1nm,theaverageelectronenergiesofthelightspotandthedimspotareinvestigated.Thebroadeningofspectralline696.57nm(2P2→1S5) is used to study the electron densities of the light spot and the dim spot. The experiment shows that the molecule vibration temperature, average electron energy and the electron density of the dim spot are higher than those of the light spot in the same argon content. The molecule vibration temperature and electron density of the light spot and dim spot increase with the argon content increasing from 70% to 95%, while average electron energies of the light spot and dim spot decrease gradually. The short-exposure image recorded by a high speed video camera shows that the dim spot results from the surface discharges(SDs). The surface discharge induced by the volume discharge (VD) has the decisive effect on the formation of the dim spot. The experiment above plays an important role in studying the formation mechanism of the hexagonal super-lattice pattern with light spot and dim spot. In addition, the studies exert influences on the application of surface discharge and volume discharge in different fields.
Dielectric barrier discharge; Molecule vibration temperature; Average electron energy; Electron density
Nov. 29, 2014; accepted Apr. 19, 2015)
2014-11-29,
2015-04-19
國家自然科學基金項目(11375051), 河北省科技廳重點項目(11967135D)和河北省教育廳重點項目(ZD2010140)資助
劉 瑩, 女, 1992年生, 河北大學物理科學與技術(shù)學院碩士研究生 e-mail: lying0606@163.com *通訊聯(lián)系人 e-mail: donglfhbu@163.com
O461.2; O433.4
A
10.3964/j.issn.1000-0593(2016)02-0364-04