陳擁軍林仕梅羅 莉李 云(.西南大學(xué)動(dòng)物科技學(xué)院,水產(chǎn)科學(xué)重慶市市級(jí)重點(diǎn)實(shí)驗(yàn)室,重慶 40075; 2.西南大學(xué)生命科學(xué)學(xué)院,淡水魚類資源與生殖發(fā)育教育部重點(diǎn)實(shí)驗(yàn)室,重慶 40075)
綜述
飼料油脂氧化對(duì)養(yǎng)殖魚類生長(zhǎng)及健康的危害
陳擁軍1,2林仕梅1羅 莉1李 云1
(1.西南大學(xué)動(dòng)物科技學(xué)院,水產(chǎn)科學(xué)重慶市市級(jí)重點(diǎn)實(shí)驗(yàn)室,重慶 400715; 2.西南大學(xué)生命科學(xué)學(xué)院,淡水魚類資源與生殖發(fā)育教育部重點(diǎn)實(shí)驗(yàn)室,重慶 400715)
摘要:水產(chǎn)養(yǎng)殖成功與否,除取決于遺傳、環(huán)境及養(yǎng)殖管理外,還與水產(chǎn)飼料的質(zhì)量(營(yíng)養(yǎng)素含量、營(yíng)養(yǎng)素平衡和原料品質(zhì))息息相關(guān)。與畜禽飼料相比,水產(chǎn)飼料的一大典型特征為富含多不飽和脂肪酸(PUFAs)。在飼料生產(chǎn)加工、儲(chǔ)存和運(yùn)輸過(guò)程中,飼料中的PUFAs極易發(fā)生自由基鏈?zhǔn)椒磻?yīng),產(chǎn)生一系列有害的氧化產(chǎn)物。攝食氧化油脂后,養(yǎng)殖魚類的攝食、生長(zhǎng)性能、營(yíng)養(yǎng)物質(zhì)消化吸收、骨骼發(fā)育、肌肉品質(zhì)和體表色素沉積等均會(huì)遭受不利影響,魚類的生產(chǎn)性能和健康狀態(tài)面臨嚴(yán)峻威脅。文章總結(jié)了飼料油脂氧化對(duì)養(yǎng)殖魚類生長(zhǎng)性能及健康狀態(tài)的危害,概述了油脂氧化產(chǎn)物的產(chǎn)生過(guò)程,剖析了脂肪氧化產(chǎn)物對(duì)動(dòng)物組織細(xì)胞的危害機(jī)理,指出了現(xiàn)有研究所忽略的問(wèn)題,并對(duì)未來(lái)相關(guān)研究提出了展望。
關(guān)鍵詞:飼料; 脂肪氧化; 魚類; 生長(zhǎng); 健康危害
油脂在水產(chǎn)動(dòng)物中的作用具有“二重性”:一方面,油脂具有能量供給與儲(chǔ)存、提供必需脂肪酸、促進(jìn)脂溶性維生素的吸收與轉(zhuǎn)運(yùn)等重要生理功能[1]; 另一方面,油脂中多不飽和脂肪酸(PUFAs)的非共軛雙鍵極不穩(wěn)定,在熱、光、氧、金屬離子等的誘導(dǎo)下,容易發(fā)生脂質(zhì)過(guò)氧化反應(yīng),產(chǎn)生一系列有害的初級(jí)和次級(jí)氧化產(chǎn)物[2]。
現(xiàn)有研究數(shù)據(jù)表明,飼料中脂質(zhì)過(guò)氧化會(huì)削弱油脂的營(yíng)養(yǎng)價(jià)值[3,4]。攝食氧化油脂后,養(yǎng)殖魚類攝食量下降[5,6],生長(zhǎng)受阻,營(yíng)養(yǎng)素消化吸收率降低,飼料利用效率下降[7—9]。攝食氧化油脂還會(huì)危害魚類的生長(zhǎng)發(fā)育,導(dǎo)致骨骼畸形[3,4]、肝組織變性[10]、肌肉萎縮[11]、貧血和溶血[12]等一系列病理癥狀。
油脂氧化對(duì)魚類的危害程度受魚種、生長(zhǎng)階段、油脂種類、誘導(dǎo)油脂氧化的方式、飼料組成、試驗(yàn)周期等因素影響[12—14],然而至今仍無(wú)文獻(xiàn)予以分析總結(jié)。因此,本文概述了油脂氧化產(chǎn)物的產(chǎn)生過(guò)程以及這些氧化產(chǎn)物對(duì)動(dòng)物組織細(xì)胞的危害機(jī)理,詳細(xì)總結(jié)了攝食氧化油脂對(duì)魚類生長(zhǎng)及健康的危害,以期為養(yǎng)殖魚類的病癥診斷和飼料配制提供參考。
1.1 油脂氧化與氧化產(chǎn)物
PUFAs中位于非共軛順式雙鍵間的亞甲基很不穩(wěn)定,極易失去氫原子而形成以碳原子為中心的自由基(R·)[15]。R·與分子氧(O2)作用形成過(guò)氧自由基(ROO·),這種氧化反應(yīng)的發(fā)生較為緩慢,取決于底物濃度。若ROO·的過(guò)氧自由基位于碳鏈雙鍵的末端,它將被還原成結(jié)構(gòu)最簡(jiǎn)單的初級(jí)氧化產(chǎn)物(氫過(guò)氧化物ROOH)[16]。若ROO·的過(guò)氧自由基位于順式雙鍵之間的亞甲基上,則會(huì)發(fā)生分子內(nèi)環(huán)化,形成環(huán)狀化合物。在O2參與下,環(huán)狀化合物被繼續(xù)氧化生成環(huán)狀的ROOH。當(dāng)不存在金屬離子時(shí),ROOH相對(duì)穩(wěn)定; 但存在金屬離子時(shí),ROOH易被氧化成烷氧自由基,并誘發(fā)變構(gòu)、重排、環(huán)化、裂解斷裂等反應(yīng),形成一系列結(jié)構(gòu)復(fù)雜的氧化產(chǎn)物[17]。與結(jié)構(gòu)復(fù)雜且不穩(wěn)定的初級(jí)氧化產(chǎn)物相比,油脂的次級(jí)氧化產(chǎn)物分子量小且較穩(wěn)定,主要包括以下三類:酮醛(如丙二醛,MDA),羥基醛(如4-羥基-壬烯醛,4-HNE)以及2-稀醛[18]。
1.2 影響油脂氧化及氧化產(chǎn)物的因素
一般來(lái)講,富含PUFAs的油脂(如魚油、亞麻籽油、菜油、葵花籽油等)比飽和度高的油脂(如豬油)更易氧化。當(dāng)飼料(油脂)暴露在高溫、潮濕、陽(yáng)光暴曬的環(huán)境中或存在變價(jià)金屬離子(Fe、Cu、Cr、Mn等)時(shí),會(huì)加速PUFAs的氧化變質(zhì)[17]。
油脂氧化產(chǎn)物的組成同樣會(huì)受到油脂種類影響,如4-HNE主要來(lái)源于n-6 PUFAs的氧化分解,而MDA則主要來(lái)自n-3 PUFAs的氧化分解[19]。另外,油脂氧化產(chǎn)物的組成還會(huì)受到氧化誘導(dǎo)因子的影響,如分子氧誘導(dǎo)的氧化以初級(jí)氧化產(chǎn)物為主,而高溫誘導(dǎo)的氧化則以次級(jí)氧化產(chǎn)物為主[13,20]。
1.3 評(píng)定油脂氧化酸敗的指標(biāo)
油脂氧化酸敗后,其物理性狀和化學(xué)性狀均會(huì)發(fā)生改變。葵花籽油歷經(jīng)氧化酸敗后,其呈色中黃色和紅色增強(qiáng)[13]; 而魚油氧化變質(zhì)后,其呈色中黃色所占比例增加,魚腥味減弱[10]。評(píng)定油脂氧化酸敗的常見(jiàn)指標(biāo)有過(guò)氧化值(POV)、酸價(jià)(AV)、碘價(jià)(IV)、硫代巴比妥酸值(TBARS)、p-茴香胺值(p-AnV)、共軛二烯值(E232)、共軛三烯值(E268)和極性化合物含量(TPC)等[3,13,21]。其中,POV和AV反映了油脂初級(jí)氧化產(chǎn)物的含量,TBARS和p-AnV分別反映油脂次級(jí)氧化產(chǎn)物中醛基和酮基化合物的含量,IV、E232和E268均反映了油脂的不飽和程度。一般來(lái)講,油脂氧化酸敗后,除IV值升高外,上述其他評(píng)價(jià)指標(biāo)的數(shù)值均會(huì)下降。任何一個(gè)評(píng)判指標(biāo)都有其優(yōu)勢(shì)和局限性,通常要結(jié)合多個(gè)指標(biāo)來(lái)判定某種油脂的新鮮度和酸敗狀況[22]。
2.1 油脂氧化削弱飼料的營(yíng)養(yǎng)價(jià)值
脂肪氧化酸敗會(huì)改變油脂的脂肪酸組成,降低油脂中還原性維生素的含量,進(jìn)而削弱飼料的營(yíng)養(yǎng)價(jià)值。Fontagné等[3]發(fā)現(xiàn):與添加8%新鮮魚油相比,添加8%氧化魚油后,飼料的飽和脂肪酸含量增加了39.4%,而維生素A和 n-3 PUFAs含量分別下降了97.1%和49.1%。n-3 PUFAs中,二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)的含量分別下降了64.7%和70%[3]。Lewis-McCrea和Lall[4]報(bào)道,飼料中新鮮魚油被氧化后(POV:93.4 meq/kg),其n-3 PUFAs的含量(尤其是EPA的含量)明顯下降。
2.2 飼料油脂氧化導(dǎo)致魚類生長(zhǎng)性能下降
一般來(lái)講,飼料油脂氧化酸敗會(huì)導(dǎo)致養(yǎng)殖魚類采食量下降。但是,不同魚種對(duì)氧化油脂的辨別能力不盡相同:飼料中油脂氧化會(huì)降低大西洋鮭(Salmo salar)[8,23]和奧尼羅非魚(Oreochromis niloticus ×O.aureus)[5]的攝食量,卻不影響大西洋庸鰈(Hippoglossus hippoglossus)[24]、海鯛(Sparus aurata)[24]和牙鲆(Paralichthys olivaceus)[25]的攝食。即便同一魚種,不同研究的結(jié)論也不一致。Smith[26]報(bào)道,虹鱒(Salmo gairdneri)攝食酸敗油脂后采食量下降,但后續(xù)研究卻報(bào)道虹鱒的攝食量不受飼料油脂氧化影響[27]。Gao等[6]報(bào)道飼料中添加氧化魚油會(huì)導(dǎo)致花鱸(Lateolabrax japonicas)的攝食量下降,但王珺等[28]報(bào)道,飼料中魚油氧化反而會(huì)促進(jìn)花鱸攝食。同樣,Chen等[10]報(bào)道,飼料中添加氧化魚油促進(jìn)了大口黑鱸(Micropterus salmoides)攝食,而在后續(xù)研究中卻發(fā)現(xiàn)飼料中魚油氧化并不影響大口黑鱸攝食[29]。不同魚種甚至同一魚種的試驗(yàn)結(jié)果相互矛盾,原因可能與不同研究中的魚體生理狀況、生長(zhǎng)階段、試驗(yàn)周期、油脂的氧化酸敗程度、養(yǎng)殖環(huán)境及飼料組成不同有關(guān)[12—14]。
除了影響魚類攝食,飼料中油脂氧化還會(huì)削弱營(yíng)養(yǎng)素的消化吸收率,進(jìn)而降低飼料效率和生長(zhǎng)性能。長(zhǎng)吻鮠(Leiocassis longirostris)攝食氧化魚油后,飼料干物質(zhì)、蛋白質(zhì)和脂肪的表觀消化率不受影響,但能量的表觀消化率下降[9]; 斑點(diǎn)叉尾鲖(Ictalurus puncfafus)攝食氧化魚油后,飼料干物質(zhì)、蛋白和能量的表觀消化率均下降[30]。鯉魚(Cyprinus carpio)攝食氧化豆油后其飼料效率下降,生長(zhǎng)受阻[31],類似研究結(jié)果在非洲鯰(Clarias gariepinus)[7]、奧尼羅非魚[5]、大西洋鮭[8]、草魚(Ctenopharyngodon idella)[32]和團(tuán)頭魴(Megalobrama amblycephala)[33]中也有所報(bào)道。
如前所述,油脂氧化會(huì)削弱飼料的營(yíng)養(yǎng)價(jià)值,勢(shì)必會(huì)導(dǎo)致魚類出現(xiàn)必需脂肪酸(如EPA、DHA)和維生素(如維生素A、維生素E)缺乏癥,危害魚類的生長(zhǎng)發(fā)育和存活。Lewis-McCrea和Lall[4]采用含不同氧化度魚油(POV:7.5和15 meq/kg)的飼料飼喂大西洋庸鰈14周后,新鮮魚油組、POV7.5組和POV15組脊柱側(cè)凸癥的發(fā)生率分別為4.3%,29.1%和30.1%,脊柱前彎癥的發(fā)生率分別為0、19.2%和13.0%。Fontagné 等[3]采用含POV為245 meq/ kg的氧化魚油飼料,飼喂西伯利亞鱘(Acipenserbaeri)稚魚27d后,死亡率高達(dá)61%,脊柱畸形率達(dá)25%。此外,飼料油脂氧化還會(huì)導(dǎo)致許多其他魚種的存活率下降[3,10,11,24,34—37]。
總的來(lái)講,飼料油脂氧化可通過(guò)對(duì)攝食量、飼料(原料)的消化率和魚類生長(zhǎng)發(fā)育產(chǎn)生負(fù)面影響,導(dǎo)致魚類生產(chǎn)性能下降?,F(xiàn)有研究結(jié)果顯示,飼料中油脂氧化會(huì)削弱絕大多數(shù)試驗(yàn)魚種的生長(zhǎng)性能(表 1),但也有少數(shù)魚種如海鱸(Dicentrarchus labrax)[12]和海鯛[24]的生長(zhǎng)不受影響,甚至部分魚種更偏愛(ài)攝食氧化油脂,導(dǎo)致其生長(zhǎng)性能反而優(yōu)于新鮮油脂組[10,28]。但是,這種由于“偏愛(ài)攝食氧化油脂而促進(jìn)生長(zhǎng)”的現(xiàn)象,很可能隨著試驗(yàn)周期的延長(zhǎng)而消失,最終導(dǎo)致生長(zhǎng)受阻。在實(shí)際生產(chǎn)中,相比油脂氧化導(dǎo)致攝食量下降的魚類,更應(yīng)注重對(duì)酸敗油脂有良好攝食的魚類,因?yàn)樗鼈儠?huì)攝入更多的油脂氧化產(chǎn)物,其生長(zhǎng)發(fā)育、健康及存活將面臨更大的威脅。
2.3 飼料油脂氧化導(dǎo)致魚類抗氧化防御崩潰
目前,有關(guān)油脂氧化對(duì)魚類組織器官抗氧化防御影響的研究,主要集中于肝臟、肌肉和血液。攝食氧化油脂后,絕大多數(shù)魚類會(huì)出現(xiàn)組織氧化應(yīng)激,表現(xiàn)為血漿、肝臟和肌肉的MDA含量上升(表 1)。體內(nèi)MDA的積累是來(lái)自于腸道對(duì)次級(jí)氧化產(chǎn)物的吸收[38],還是來(lái)自次級(jí)氧化產(chǎn)物的毒副作用導(dǎo)致的內(nèi)源性MDA積累,或這兩方面都存在,目前仍無(wú)定論[39]。另外,MDA不僅僅是PUFAs過(guò)氧化的分解產(chǎn)物,還是前列腺素和凝血噁烷合成代謝的副產(chǎn)物之一[40]。目前,攝食氧化油脂是否會(huì)影響魚類的前列腺素和凝血噁烷的合成代謝,而導(dǎo)致MDA積累還未有研究涉及。
Tocher等[24]比較了大菱鲆(Scophthalmus maximus)、大西洋庸鰈和海鯛的抗氧化防御體系對(duì)飼料中魚油氧化的響應(yīng),結(jié)果發(fā)現(xiàn):大西洋庸鰈的抗氧化防御不受氧化魚油添加影響,而海鯛和大菱鲆肝臟的過(guò)氧化氫酶(CAT)、超氧化物歧化酶歧化酶(SOD)、谷胱甘肽過(guò)氧化物酶(GPX)、谷胱甘肽硫轉(zhuǎn)移酶(GST)和谷胱甘肽還原酶(GR)活性增加。攝食氧化油脂會(huì)導(dǎo)致組織或血清抗氧化酶活性增加這一研究結(jié)果還在奧尼羅非魚[5]、大口黑鱸[10]、虹鱒[14]、花鱸[28]、大黃魚(Pseudosciaena crocea)[41]和黃鰤?mèng)~(Seriola quinqueradiata)[42]中有所報(bào)道。但是,鯉魚攝食含POV為264 meq/kg的氧化魚油后,其肝臟的SOD和GPX活性下降[11]。一般來(lái)講,攝食氧化油脂后,氧化產(chǎn)物起初會(huì)刺激魚類組織細(xì)胞的抗氧化防御,表現(xiàn)為維生素E和還原性谷胱甘肽(GSH)的消耗[10]、抗氧化酶基因表達(dá)上調(diào)及抗氧化酶活性上升[14]。然而,遭受持續(xù)壓倒性的氧化應(yīng)激后,魚類組織細(xì)胞的抗氧化防御將不堪重負(fù),表現(xiàn)為還原性物質(zhì)的枯竭和抗氧化酶活性的下降。
魚類攝食氧化油脂后,其胃腸道是最先接觸氧化產(chǎn)物的組織,但關(guān)于油脂氧化對(duì)魚類胃腸道結(jié)構(gòu)、抗氧化防御、消化酶活性及腸道微生物群落變化的研究仍然十分缺乏。直到最近,才有少量報(bào)道初步評(píng)估了氧化油脂對(duì)鯉魚腸黏膜結(jié)構(gòu)、腸道炎癥反應(yīng)和微生物群落結(jié)構(gòu)的影響[43]以及MDA對(duì)草魚腸上皮細(xì)胞的生長(zhǎng)、形態(tài)和亞顯微結(jié)構(gòu)的影響[44]。葉元土等[45]比較灌喂新鮮魚油和氧化魚油的草魚腸黏膜的轉(zhuǎn)錄組數(shù)據(jù)后發(fā)現(xiàn),氧化魚油組草魚腸黏膜細(xì)胞的膽固醇和膽汁酸的合成代謝通路相關(guān)基因上調(diào)。
一方面,魚類攝食氧化油脂后,其胃腸道的結(jié)構(gòu)、抗氧化防御和微生物菌群的變化仍需進(jìn)一步探討; 另一方面,魚類胃腸道對(duì)油脂氧化產(chǎn)物的吸收、轉(zhuǎn)運(yùn)及代謝也亟需開展研究。只有明晰了油脂氧化產(chǎn)物在魚體組織細(xì)胞的代謝動(dòng)向,才有可能闡明氧化產(chǎn)物對(duì)魚類組織細(xì)胞的結(jié)構(gòu)、抗氧化防御和營(yíng)養(yǎng)素利用的危害機(jī)制。
2.4 飼料油脂氧化導(dǎo)致魚類組織病變
攝食氧化油脂會(huì)引起虹鱒[27]和黃鰤?mèng)~[42]肌肉組織變性、萎縮、肌纖維壞死。鯉魚攝食酸敗油脂后,體色變黑,眼球凹陷,肌肉營(yíng)養(yǎng)不良,并出現(xiàn)典型的瘦背癥[11]。攝食酸敗油脂會(huì)導(dǎo)致斑點(diǎn)叉尾鲖出現(xiàn)以瘦背病、滲出性素質(zhì)和脫色素三種癥狀為特征的綜合癥[46]。
作為機(jī)體的脂肪代謝中心和解毒中心,肝臟極易遭受脂肪氧化帶來(lái)的氧化損傷。任澤林等[47]采用含POV分別為59、119、160、189、332和368 meq/ kg的氧化魚油飼料,飼喂60 g的鯉魚9周,結(jié)果發(fā)現(xiàn),POV59試驗(yàn)組肝體比(HSI)、腎體比(KSI)和脾體比(SSI)增加,隨著魚油POV的上升這種趨勢(shì)受到抑制。Sakaguchi和Hamaguchi[48]報(bào)道,黃鰤?mèng)~攝食氧化油脂后,在前66d肝臟以增生為主,而后氧化產(chǎn)物對(duì)肝臟的破壞作用超過(guò)增生作用,肝組織出現(xiàn)萎縮。斑點(diǎn)叉尾鲖攝食氧化魚油86d后,HSI顯著下降[30]。飼料油脂氧化導(dǎo)致的養(yǎng)殖魚類肝臟腫大或萎縮往往伴隨著肝細(xì)胞脂滴積累和空泡化[10],肝細(xì)胞膜流動(dòng)性下降[29],蠟樣物質(zhì)積累[48]。除肝組織外,攝食氧化油脂還會(huì)導(dǎo)致魚類腎臟、胰腺、心臟等組織產(chǎn)生明顯病變[11]。
表 1 攝食氧化油脂對(duì)養(yǎng)殖魚類生長(zhǎng)和生理病理特征的影響Tab.1 Effects of dietary oil oxidation on the growth,physiological and pathological features of fish
此外,血細(xì)胞對(duì)脂肪氧化帶來(lái)的氧化應(yīng)激亦特別敏感。攝食酸敗油脂往往會(huì)導(dǎo)致養(yǎng)殖魚類出現(xiàn)貧血和(或)溶血癥狀。海鱸攝食氧化油脂后,血液的血細(xì)胞壓積(HCT)降低,紅細(xì)胞數(shù)目下降,血細(xì)胞滲透脆性(EOF)上升[12]; 大口黑鱸攝食酸敗魚油后,全血血紅蛋白含量雖不受影響,但HCT降低[10]; 攝食氧化油脂后,大西洋鱈(Gadus morhua)全血的HCT不受影響,但其EOF增加[36]。飼料油脂氧化除直接危害血細(xì)胞的功能外,還可通過(guò)加速魚體內(nèi)的維生素E消耗,間接導(dǎo)致貧血或溶血癥狀[10]。當(dāng)維生素E缺乏時(shí),大西洋鮭全血的血紅蛋白含量降低,紅細(xì)胞體積變小,紅細(xì)胞數(shù)量下降,未成熟紅細(xì)胞的比例增加[49]。
2.5 飼料油脂氧化導(dǎo)致魚類肌肉品質(zhì)下降
攝食氧化油脂后,養(yǎng)殖魚類的肌肉品質(zhì)如脂肪酸組成、維生素E含量、風(fēng)味、保質(zhì)期等均可能遭受不利影響。攝食氧化魚油后,大西洋庸鰈肌肉的C16:0和C18:0含量上升,飽和脂肪酸含量升高,PUFAs含量下降,以EPA的含量下降最為明顯[4]。大西洋鱈攝食酸敗魚油后,其肌肉的EPA和DHA含量下降[36]。將肌肉總脂分離成中性和極性脂肪后,含量下降最為明顯的是中性脂肪的EPA[50]。類似地,飼料油脂氧化還會(huì)導(dǎo)致許多其他魚類肌肉的亞麻酸、EPA和DHA等n-3 PUFAs的含量下降[5,6,8,51]。另外,攝食氧化油脂還會(huì)導(dǎo)致大西洋庸鰈肌肉的n-6 PUFAs含量下降[4]。鯉魚攝食氧化油脂后,肌肉的維生素E含量下降,下降程度與魚油的過(guò)氧化程度呈現(xiàn)正相關(guān)關(guān)系; 肌肉的揮發(fā)性鹽基氮(VBN)含量雖不受影響,但肌肉的滲出性損失增加[52]。
飼料油脂氧化導(dǎo)致魚類肌肉脂肪酸組成改變,可能原因如下:一是脂質(zhì)過(guò)氧化改變了油脂的營(yíng)養(yǎng)組成,飼料油脂的脂肪酸組成反映了肌肉的脂肪酸組成[3]; 二是油脂氧化可能降低了PUFAs的吸收效率[35]; 三是油脂氧化產(chǎn)物MDA被機(jī)體吸收,或油脂氧化誘導(dǎo)氧化應(yīng)激導(dǎo)致魚體內(nèi)源性MDA生成,MDA攻擊細(xì)胞膜的PUFAs,PUFAs發(fā)生脂質(zhì)過(guò)氧化而分解,含量下降。
除改變肌肉的脂肪酸組成外,攝食酸敗油脂還會(huì)改變魚體其他組織如肝臟的脂肪酸組成[6,51]。此外,攝食氧化油脂還會(huì)導(dǎo)致魚體皮膚黑色素含量下降[9]以及背部皮膚亮度下降[53]。在生產(chǎn)實(shí)踐中,部分養(yǎng)殖魚類的體色乃至肌肉顏色發(fā)生變化已在我國(guó)多地發(fā)生,飼料油脂氧化極可能是重要原因。但是,油脂氧化產(chǎn)物通過(guò)何種途徑調(diào)節(jié)細(xì)胞色素積累仍不清楚,有待進(jìn)一步研究。
3.1 氧化產(chǎn)物影響組織細(xì)胞的生長(zhǎng)與存活
與初級(jí)氧化產(chǎn)物相比,油脂的次級(jí)氧化產(chǎn)物分子量小、穩(wěn)定、毒副作用大。作為油脂次級(jí)氧化產(chǎn)物的典型代表,MDA和4-HNE均具備高度的反應(yīng)活性。在動(dòng)物體內(nèi),即便在非常低的濃度下,它們也能修飾巰基基團(tuán)、氨基酸殘基(尤其是半胱氨酸、組氨酸、賴氨酸殘基)、核酸堿基、及磷脂含氮功能機(jī)團(tuán),進(jìn)而消耗機(jī)體的還原性物質(zhì),影響細(xì)胞膜結(jié)構(gòu)的完整性,造成蛋白質(zhì)功能失活,導(dǎo)致染色體畸變和基因毒性[16,19]。
在哺乳動(dòng)物中,對(duì)4-HNE危害機(jī)制的研究要比MDA的研究更為透徹。越來(lái)越多的證據(jù)顯示:作為氧化應(yīng)激的媒介,4-HNE與一系列炎癥反應(yīng)相關(guān)的人類疾病如動(dòng)脈粥樣硬化、老年癡呆癥、帕金森病等的發(fā)生密切相關(guān)。一般來(lái)講,低濃度的4-HNE會(huì)誘導(dǎo)組織細(xì)胞增殖,而高濃度的4-HNE會(huì)導(dǎo)致細(xì)胞凋亡。分子機(jī)制上,4-HNE主要通過(guò)影響NF-κB、AP-1、Nrf2等轉(zhuǎn)錄因子的表達(dá),激活或抑制酪氨酸激酶受體(RTKs)、絲裂原活化蛋白激酶(MAPK:JNK、p38、ERKs)、絲氨酸/蘇氨酸激酶(Akt)、蛋白激酶C(PKC)等信號(hào)途徑,調(diào)節(jié)細(xì)胞的炎癥反應(yīng)、脫毒反應(yīng)和蛋白質(zhì)周轉(zhuǎn)過(guò)程,誘導(dǎo)細(xì)胞走向增殖或凋亡[19,54](圖 1)。
圖 1 4-HNE引發(fā)的生物學(xué)效應(yīng)[19]
近年來(lái),關(guān)于MDA對(duì)哺乳動(dòng)物細(xì)胞損傷機(jī)制的研究亦逐漸受到重視。研究表明,MDA能激活p38 MAPK信號(hào)途徑而導(dǎo)致大鼠心室肌細(xì)胞收縮障礙[55]; MDA通過(guò)調(diào)節(jié)cAMP/PKA信號(hào)途徑導(dǎo)致大鼠海馬神經(jīng)元的Ca2+內(nèi)穩(wěn)態(tài),導(dǎo)致Ca2+過(guò)量涌入而影響其正常功能[56]; MDA能激活JNK和ERKs信號(hào)途徑而導(dǎo)致大鼠腦皮質(zhì)神經(jīng)元壞死或走向凋亡[57]。MDA是否能調(diào)節(jié)RTKs和Akt信號(hào)途徑而影響哺乳動(dòng)物細(xì)胞的正常功能,還有待進(jìn)一步驗(yàn)證??紤]到MDA和4-HNE性質(zhì)的相似性,它們很可能具備類似的細(xì)胞毒理作用機(jī)制。在哺乳動(dòng)物中,4-HNE和MDA造成的氧化損傷與疾病發(fā)生的聯(lián)系已是現(xiàn)代醫(yī)學(xué)研究的熱門領(lǐng)域之一[54,58]。
在魚類中,針對(duì)油脂氧化產(chǎn)物對(duì)魚類組織細(xì)胞毒理作用分子機(jī)制的研究仍十分缺乏。近幾年,國(guó)內(nèi)學(xué)者在草魚中開展了一些開拓性的工作,研究目標(biāo)主要集中于腸道組織[44,59]。姚仕彬等[44]報(bào)道,當(dāng)培養(yǎng)基中MDA濃度超過(guò)1.23 μmol/L時(shí),草魚腸黏膜細(xì)胞的生長(zhǎng)和存活便會(huì)受到抑制,細(xì)胞(器)膜結(jié)構(gòu)遭到破壞,暗示MDA處理能誘導(dǎo)草魚腸細(xì)胞走向凋亡。同樣,在培養(yǎng)基中添加氧化豆油水溶物后,草魚腸細(xì)胞的生長(zhǎng)、存活與細(xì)胞形態(tài)的變化結(jié)果與MDA處理的結(jié)果類似[59]??紤]到魚類(尤其是肉食性魚類)對(duì)脂肪的利用能力較強(qiáng),在長(zhǎng)期的進(jìn)化過(guò)程中,魚類對(duì)脂肪氧化產(chǎn)物的耐受程度可能比哺乳動(dòng)物高,但這仍待進(jìn)一步驗(yàn)證。
3.2 氧化產(chǎn)物導(dǎo)致抗氧化防御體系崩潰
魚類具備完善的抗氧化系統(tǒng),能抵御機(jī)體正常新陳代謝過(guò)程所產(chǎn)生的自由基和活性氧。動(dòng)物體的抗氧化防御體系包含3個(gè)層次:一是內(nèi)源性抗氧化酶系,如CAT、SOD、GPX、GST和GR; 二是內(nèi)源性還原性物質(zhì),如還原性谷胱甘肽(GSH)、NADH、NADPH、巰基機(jī)團(tuán)等; 三是外源攝取的還原性物質(zhì)如維生素E、維生素C、類胡蘿卜素等[60,61]。魚類攝食氧化油脂后,各種氧化產(chǎn)物首先進(jìn)入胃腸道,對(duì)胃腸道的抗氧化防御體系構(gòu)成直接威脅。研究表明,大鼠攝食亞油酸或甘油三酯氫過(guò)氧化物后,在到達(dá)腸道之前,這些初級(jí)氧化產(chǎn)物已被轉(zhuǎn)變成醛類化合物; 僅當(dāng)大鼠攝入大量的初級(jí)氧化產(chǎn)物,才能在其腸道檢測(cè)到少量的氫過(guò)氧化物[62,63]。在魚類胃腸道中,是否存在與大鼠一樣強(qiáng)健的抗氧化還原體系還不得而知。油脂氧化產(chǎn)物被魚體細(xì)胞吸收后,細(xì)胞處于氧化應(yīng)激狀態(tài),胞膜磷脂雙分子層的維生素E會(huì)首先被利用,以阻斷脂質(zhì)過(guò)氧化反應(yīng)[64]。由于維生素C能節(jié)約維生素的E使用[65],細(xì)胞內(nèi)的維生素C也會(huì)逐漸被消耗。然后,細(xì)胞內(nèi)抗氧化酶活性增加,以消除脂質(zhì)過(guò)氧化所產(chǎn)生的超氧自由基和H2O2,細(xì)胞內(nèi)的GSH也同時(shí)會(huì)被消耗(GPX反應(yīng)所需)。由于GSH的再生需要NADPH的參與,細(xì)胞內(nèi)的NADPH亦會(huì)被消耗。最終,細(xì)胞內(nèi)的還原性物質(zhì)消耗殆盡,抗氧化體系崩潰,抗氧化酶活性下降。
現(xiàn)有研究大多采用加熱通氣的方式來(lái)制備氧化油脂,這種氧化方式是否能夠代表生產(chǎn)實(shí)踐中多因素(水分、空氣、光照、溫度交替)誘導(dǎo)的油脂氧化過(guò)程,氧化產(chǎn)物的組成有何差別? 大部分研究所使用的商品油脂,可能已經(jīng)添加了相當(dāng)量的抗氧化劑,而只有少數(shù)報(bào)道測(cè)定了油脂中抗氧化劑的含量,如此可能部分掩蓋了油脂氧化對(duì)魚類造成的危害。隨著時(shí)間推移,飼料油脂氧化的負(fù)面影響將會(huì)在更多魚種中得以評(píng)定,評(píng)估時(shí)需注意以上兩方面的因素。另外,現(xiàn)有研究集中于飼料油脂氧化對(duì)養(yǎng)殖魚類早期生長(zhǎng)發(fā)育的負(fù)面影響,對(duì)親魚的繁殖性能乃至子代F1的健康狀況少有涉及,將來(lái)需要加強(qiáng)這一方面的研究工作,以期指導(dǎo)生產(chǎn)實(shí)踐。
部分研究表明,飼料油脂氧化會(huì)導(dǎo)致攝食量下降、骨骼畸形及死亡率增加,但是其潛在分子機(jī)制仍然未知。是否飼料油脂氧化會(huì)影響魚類大腦中的攝食信號(hào)感知,進(jìn)而調(diào)控?cái)z食? 是否攝食氧化油脂會(huì)影響魚類對(duì)鈣磷的吸收、沉積和排泄,而導(dǎo)致成骨細(xì)胞與破骨細(xì)胞生長(zhǎng)紊亂? 攝食氧化油脂如何參與魚類的免疫調(diào)節(jié),而影響魚類抗病力? 油脂氧化何以調(diào)節(jié)細(xì)胞的色素積累? 這些問(wèn)題都亟待解決,需將營(yíng)養(yǎng)學(xué)、毒理學(xué)和分析化學(xué)研究方法結(jié)合起來(lái),運(yùn)用現(xiàn)代分子細(xì)胞生物學(xué)技術(shù),予以解答,并指導(dǎo)實(shí)際生產(chǎn)。
參 考 文 獻(xiàn):
[1]Glencross B D.Exploring the nutritional demand for essential fatty acids by aquaculture species[J].Reviews in Aquaculture,2009,1(2):71—124
[2]Frankel E N.Lipid Oxidation[M].Dundee:the Oily Press Ltd.1998,13—22
[3]Fontagné S,Bazin D,Brèque J,et al.Effects of dietary oxidized lipid and vitamin A on the early development and antioxidant status of Siberian sturgeon(Acipenser baeri)larvae[J].Aquaculture,2006,257(1):400—411
[4]Lewis-Mccrea L M,LallS P.Effects of moderately oxidized dietary lipid and the role of vitamin E on the development of skeletal abnormalities in juvenile Atlantic halibut(Hippoglossus hippoglossus)[J].Aquaculture,2007,262(1):142—155
[5]Huang K,Ruan D J,Zhan G,et al.Effects of oxidized oils on the growth and antioxidant activities of juvenile tilapia[J].Freshwater Fisheries,2006,36(6):21—24[黃凱,阮棟儉,戰(zhàn)歌,等.氧化油脂對(duì)奧尼羅非魚生長(zhǎng)和抗氧化性能的影響.淡水漁業(yè),2006,36(6):21—24]
[6]Gao J,Koshio S,Ishikawa M,et al.Effects of dietarypalm oil supplements with oxidized and non-oxidized fish oil on growth performances and fatty acid compositions of juvenile Japanese sea bass,Lateolabrax japonicas[J].Aquaculture,2012,324:97—103
[7]Baker R T M,Davies S J.Oxidative nutritional stress associated with feeding rancid oils to African catfish,Clarias gariepinus(Burchell)and the protective role of α-tocopherol[J].Aquaculture Research,1996,27(10):795—803
[8]Sutton J,Balfry S,Higgs D,et al.Impact of iron-catalyzed dietary lipid peroxidation on growth performance,general health and flesh proximate and fatty acid composition of Atlantic salmon(Salmo salar L.)reared in seawater[J].Aquaculture,2006,257(1):534—557
[9]Dong X,Lei W,Zhu X,et al.Effects of dietary oxidized fish oil on growth performance and skin colour of Chinese longsnout catfish(Leiocassis longirostris Günther)[J].Aquaculture Nutrition,2011,17(4):e861-e868
[10]Chen Y J,Liu Y J,Yang H J,et al.Effect of dietary oxidized fish oil on growth performance,body composition,antioxidant defense mechanism and liver histology of juvenile largemouth bass Micropterus salmoides[J].Aquaculture Nutrition,2012,18(3):321—331
[11]Ye S G.Pathological study on the carp fed oxidized fish oil and the protective effect of vitamin E[D].Ya'an:Sichuan Agricultural University.2002[葉仕根.氧化魚油對(duì)鯉魚危害的病理學(xué)及VE的保護(hù)作用研究.雅安:四川農(nóng)業(yè)大學(xué).2002]
[12]Messager J L,Stephan G,Quentel C,et al.Effects of dietary oxidized fish oil and antioxidant deficiency on histopathology,haematology,tissue and plasma biochemistry of sea bass Dicentrarchus labrax[J].Aquatic Living Resources,1992,5(3):205—214
[13]Tabatabaei N,Jamalian J,Owji A A,et al.Effects of dietary selenium supplementation on serum and liver selenium,serum malondialdehyde and liver glutathione peroxidase activity in rats consuming thermally oxidized sunflower oil[J].Food and Chemical Toxicology,2008,46(11):3501—3505
[14]Fontagné-Dicharry S,Lataillade E,Surget A,et al.Antioxidant defense system is altered by dietary oxidized lipid in first-feeding rainbow trout(Oncorhynchus mykiss)[J].Aquaculture,2014,424:220—227
[15]Porter N A.Mechanisms for the autoxidation of poly-unsaturated lipids[J].Accounts of Chemical Research,1986,19:262—268
[16]Marnett L J.Lipid peroxidation-DNA damage by malondialdehyde[J].Mutation Research,1999,424(1):83—95
[17]Dix T A,Aikens J.Mechanisms and biological relevance of lipid peroxidation initiation[J].Chemical Research in Toxicology,1993,6(1):2—18
[18]Ralf R H.Leukocytes and oxidative stress:dilemma for sperm function and male fertility[J].Asian Journal of Andrology,2011,13(1):43—52
[19]Uchida R.4-Hydroxy-2-nonenal:a product and mediator of oxidative stress[J].Progress in Lipid Research,2003,42(4):318—343
[20]Eder K,Keller U,Hirche F,et al.Thermally oxidized dietary fats increase the susceptibility of rat LDL lipid peroxidation but not their uptake by macrophages[J].Journal of Nutrition,2003,133:2830—2837
[21]Fritsch C W.Measurements of frying fat deterioration:a brief review[J].Journal of the American Oil Chemists Society,1981,58:272—274
[22]Al-Kahtani H A.Survey of quality of used frying oils from restaurants[J].Journal of the American Oil Chemists Society,1991,68(11):857—862
[23]Koshio S,Ackman R G,Lall S P.Effects of oxidized herring and canola oils in diets on growth,survival,and flavor of Atlantic salmon,Salmo salar[J].Journal of Agricultural and Food Chemistry,1994,42(5):1164—1169
[24]Tocher D R,Mourente G,Eecken A V D,et al.Comparative study of antioxidant defense mechanisms in marine fish fed variable levels of oxidized oil and vitamin E[J].Aquaculture International,2003,11(1—2):195—216
[25]Gao J,Koshio S,Ishikawa M,et al.Interactive effects of vitamin C and E supplementation on growth performance,fatty acid composition and reduction of oxidative stress in juvenile Japanese flounder Paralichthys olivaceus fed dietary oxidized fish oil[J].Aquaculture,2014,214,422:84—90
[26]Smith C E.The prevention of liver lipid degeneration(ceroidosis)and microcytic anaemia in rainbow trout Salmon gaindneri Richardson fed rancid diets:a preliminary report[J].Journal of Fish Diseases,1979,2(5):429—437
[27]Hung S S O,Cho C Y,Slinger S J.Effect of oxidized fish oil,DL-a-tocopheryl acetate and ethoxyquin supplementation on the vitamin E nutrition of rainbow trout(Salmo gairdneri)fed practical diets[J].Journal of Nutrition,1981,111:648—654
[28]Wang J.Effects of ethoxyquin,oxidized fish oil and chromium polynicotinate on the growth performance and their(or metabolites)residues in tissues of large yellow croaker Pseudosciaena crocea and Japanese seabass Lateolabrax japonicas[D].Qingdao:Ocean University of China.2010[王珺.乙氧基喹啉,氧化魚油和煙酸鉻對(duì)大黃魚與鱸魚生長(zhǎng)性能的影響及其(或代謝物)在魚體組織中殘留的研究.青島:中國(guó)海洋大學(xué).2010]
[29]Chen Y J,Liu Y J,Tian L X,et al.Effect of dietary vitamin E and selenium supplementation on growth,body composition,and antioxidant defense mechanism in juvenile largemouth bass(Micropterus salmoide)fed oxidized fish oil[J].Fish Physiology and Biochemistry,2013,39(3):593—604
[30]Dong G F,Huang F,Zhu X M,et al.Nutriphysiological and cytological responses of juvenile channel catfish(Ictalurus punctatus)to dietary oxidized fish oil[J].Aquaculture Nutrition,2012,18(6):673—684
[31]Liu W,Zhang G L,Chen H Y.Effects of adding oxidative oil in diet on lipid peroxidation and hematological values for common carps[J].Journal of Fishery Sciences of China,1997,4(1):94—96[劉偉,張桂蘭,陳海燕.飼料添加氧化油脂對(duì)鯉魚體內(nèi)脂質(zhì)過(guò)氧化及血液指標(biāo)的影響.中國(guó)水產(chǎn)科學(xué),1997,4(1):94—96]
[32]Chen K Q,Ye Y T,Cai C F,et al.Effects of dietary oxidized fish oil on growth and muscle fatty acid composition of grass carp(Ctenopharyngodon idella)[J].Chinese Journal of Animal Nutrition,2015,27(6):1698—1708[陳科全,葉元土,蔡春芳,等.飼料中氧化魚油對(duì)草魚生長(zhǎng)及肌肉脂肪酸組成的影響.動(dòng)物營(yíng)養(yǎng)學(xué)報(bào),2015,27(6):1698—1708]
[33]Wang Y Q.Protection of Silymarine to liver injury of Megalobrama amblycephala induced by oxidized oil[D].Shanghai:Shanghai Ocean University.2012[王永慶.水飛薊素對(duì)團(tuán)頭魴(Megalobrama amblycephala)氧化油脂肝損傷的保護(hù)作用.上海:上海海洋大學(xué).2012]
[34]Obach A,Laurencin F B.Effects of dietary oxidized fish oil and deficiency of anti-oxidants on the immune response of turbot,Scophthalmus maximus[J].Aquaculture,1992,107(2):221—228
[35]Gao C R,Lei J L.Effects of oxidized fish oils in diets on the growth,survival and fatty acid composition of juvenile red seabream Pagrus major[J].Journal of Shanghai Ocean University,1999,8(2):124—130[高淳仁,雷霽霖.飼料中氧化魚油對(duì)真鯛幼魚生長(zhǎng),存活及脂肪酸組成的影響.上海水產(chǎn)大學(xué)學(xué)報(bào),1999,8(2):124—130]
[36]Zhong Y,Lall S P,Shahidi F.Effects of dietary oxidized oil and vitamin E on the growth,blood parameters and body composition of juvenile Atlantic cod Gadus morhua(Linnaeus 1758)[J].Aquaculture Research,2008,39(15):1647—1657
[37]Peng S M,Chen L Q,Ye J Y,et al.Effects of dietary oxidized fish oil on growth performance of juvenile black seabream Acanthopagrus schlegeli[J].Journal of Fisheries of China,2007,31(sup.):109—115[彭士明,陳立僑,葉金云,等.飼料中添加氧化魚油對(duì)黑鯛幼魚生長(zhǎng)的影響.水產(chǎn)學(xué)報(bào),2007,31(增刊):109—115]
[38]Engberg R M,Lauridsen C,Jensen S K,et al.Inclusion of oxidized vegetable oil in broiler diets and its influence on nutrient balance and on the anti-oxidative status of broilers[J].Poultry Science,1996,75(8):1003—1011
[39]Hamre K,Kolas K,Sandnes K,Et Al.Feed intake and absorption of lipid oxidation products in Atlantic salmon(Salmo salar)fed diets coated with oxidized fish oil[J].Fish Physiology and Biochemistry,2001,25(3):209—219
[40]Diczfalusy U,F(xiàn)alardeau P,Hammarstrom S.Conversion of prostaglandin endoperoxides to C17-hydroxy acids catalyzed by human platelet thromboxane synthase[J].Febs Letters,1977,84(2):271—274
[41]Tang X,Wang J,Xu H G,et al.Effects of oxidized fish oil and vitamin E supplementation on activities of SOD and CAT in large yellow croaker(Pseudosciaena crocea R.)[J].Periodical of Ocean University of China,2010,40(sup.):55—58[唐筱,王珺,徐后國(guó),等.氧化魚油和維生素E對(duì)大黃魚SOD和CAT酶活性的影響.中國(guó)海洋大學(xué)學(xué)報(bào)(自然科學(xué)版),2010,40(增刊):55—58]
[42]Sakai T,Murata H,Yamauchi K,et al.Effects of dietary lipid peroxides content on in vivo lipid peroxidation,α-tocopherol content,and superoxide dismutase and glutathione peroxidase activities in the liver of yellowtail[J].Nippon Suisan Gakkaishi,1992,58(8):1483—1486
[43]Liu W,Yang Y,Zhang J,et al.Effects of dietary microencapsulated sodium butyrate on growth,intestinal mucosal morphology,immune response and adhesive bacteria in juvenile common carp(Cyprinus carpio)prefed with or without oxidized oil[J].British Journal of Nutrition,2014,112(1):15—29
[44]Yao S B,Ye Y T,Cai C F,et al.Damage of mda on intestinal epithelial cells in vitro of grass carp(Ctenopharyngodon idella)[J].Acta Hydrobiologica Sinica,2014,39(1):133—141[姚仕彬,葉元土,蔡春芳,等.丙二醛對(duì)離體草魚腸道黏膜細(xì)胞的損傷作用.水生生物學(xué)報(bào),2015,39(1):133—141]
[45]Ye Y T,Cai C F,Xu F,et al.Feeding grass carp(Ctenopharyngodon idella)with oxidized fish oil up-regulates the gene expression in the cholesterol and bile acid synthesis pathway in intestinal mucosa[J].Acta Zoonutrimenta Sinica,2015,39(1):90—100[葉元土,蔡春芳,許凡,等.灌喂氧化魚油使草魚腸道黏膜膽固醇膽汁酸合成基因通路表達(dá)上調(diào).水生生物學(xué)報(bào),2015,39(1):90—100]
[46]Murai T,Andrews J W.Interactions of dietary alpha-tocopherol,oxidized menhaden oil and ethoxyquin on channel catfish(Ictalurus punctatus)[J].Journal of Nutrition,1974,104(11):1416—1431
[47]Ren Z L,Zeng H,Huo Q G,et al.Effects of oxidized fish oil on the anti-oxidative function and histological structure of carp hepatopancreas[J].Journal of Dalian Fisheries University,2000,15(4):235—243[任澤林,曾虹,霍啟光,等.氧化魚油對(duì)鯉肝胰臟抗氧化機(jī)能及其組織結(jié)構(gòu)的影響.大連水產(chǎn)學(xué)院學(xué)報(bào),2000,15(4):235—243]
[48]Sakaguchi H,Hamaguchi A.Influence of oxidized oil and vitamin E on the culture of yellowtail[J].Bulletin of the Japanese Society of Scientific Fisheries,1969,35(12):1207—1214
[49]Hamre K,Hjeltnes B,Kryvi H,et al.Decreased concentration of hemoglobin,accumulation of lipid oxidation products and unchanged skeletal muscle in Atlantic salmon(Salmo salar)fed low dietary vitamin E[J].FishPhysiology and Biochemistry,1994,12(5):421—429
[50]Zhong Y,Lall S P,Shahidi F.Effects of oxidized dietary oil and vitamin E supple-mentation on lipid profile and oxidation of muscle and liver of juvenile Atlantic cod(Gadus morhua)[J].Journal of Agricultural and Food Chemistry,2007,55(15):6379—6386
[51]Gao J,Koshio S,Ishikawa M,et al.Effect of dietary oxidized fish oil and vitamin C supplementation on growth performance and reduction of oxidative stress in Red Sea Bream Pagrus major[J].Aquaculture Nutrition,2013a,19(1):35—44
[52]Ren Z L,Chen Y L,Huo Q G.Effects of oxidized fish oil on the muscle quality of Cyprinus carpio[J].China Feed,2004,19:37—40[任澤林,陳義林,霍啟光.氧化魚油對(duì)鯉魚(Cyprinus carpio)肉質(zhì)的影響.飼料廣角,2004,19:37—40]
[53]Xue J P.Effects of melamine,oxidized fish oil and lipid on growth and skin colour of darkbarbel catfish[D].Qingdao:Ocean University of China.2011[薛繼鵬.三聚氰胺,氧化魚油和脂肪對(duì)瓦氏黃顙魚生長(zhǎng)和體色的影響.青島:中國(guó)海洋大學(xué).2011]
[54]Poli G,Schaur R J,Siems W G.4-Hydroxynonenal:A membrane lipid oxidation product of medicinal interest[J].Medicinal Research Reviews,2008,28(4):569—631
[55]Folden D V,Gupta A,Sharma A C,et al.Malondialdehyde inhibits cardiac contractile function in ventricular myocytes via a p38 mitogen-activated protein kinase-dependent mechanism[J].British Journal of Pharmacology,2003,139:1310—1316
[56]Cai J,Chen J,He H,et al.Carbonyl stress:malondialdehyde induces damage on rat hippocampal neurons by disturbance of Ca(2+)homeostasis[J].Cell Biology and Toxicology,2009,25:435—445
[57]Cheng J,Wang F,Yu D F,et al.The cytotoxic mechanism of malondialdehyde and protective effect of carnosine via protein cross-linking/mitochondrial dysfunction/reac- tive oxygen species/MAPK pathway in neurons[J].European Journal of Pharmacology,2011,650(1):184—194
[58]Nair U,Bartsch H,Nair J.Lipid peroxidation-induced DNA damage in cancer-prone inflammatory diseases:a review of published adduct types and levels in humans[J].Free Radical Biology and Medicine,2007,43(8):1109—1120
[59]Yao S B,Ye Y T,Cai C F,et al.The water soluble matter from oxidized soybean oil damages dissociated intestinal epithelial cells of grass carp(Ctenopharyngodon idella)[J].Acta Hydrobiologica Sinica,2014,38(4):689—698[姚仕彬,葉元土,蔡春芳,等.氧化豆油水溶物對(duì)離體草魚腸道黏膜細(xì)胞的損傷作用.水生生物學(xué)報(bào),2014,38(4):689—698]
[60]Winston G W,Di Giulio R T.Prooxidant and antioxidant mechanisms in aquatic organisms[J].Aquatic Toxicology,1991,19(2):137—161
[61]Halliwell B,Gutteridge J M C.Lipid Peroxidation:a Radical Chain Reaction[M].In:B Halliwell,J M C Gutteridge(Eds.),F(xiàn)ree Radicals in Biology and Medicine.Oxford:Clarendon Press.1996,4—18
[62]Kanazawa K,Ashida H.Catabolic fate of trilineoylglycerol hydroperoxides in rat gastrointestines[J].Biochimica et Biophysica Acta,1998a,1393(2):336—348
[63]Kanazawa K,Ashida H.Dietary hydroperoxides of linoleic acid decompose to aldehydes before being absorbed into the body[J].Biochimica et Biophysica Acta,1998b,1393(2):349—361
[64]Waldeck A R,Stocker R.Radical-initiated lipid peroxidation in low density lipoproteins:insights obtained from kinetic modeling[J].Chemical Research in Toxicology,1996,9(6):954—964
[65]Lee K J,Dabrowski K.Interaction between vitamins C and E affects their tissue concentrations,growth,lipid oxidation,and deficiency symptoms in yellow perch(Perca flavescens)[J].British Journal of Nutrition,2003,89(5):589—596
DETRIMENTAL EFFECTS OF DIETARY OIL OXIDATION ON GROWTH AND HEALTH STATUS OF FISH
CHEN Yong-Jun1,2,LIN Shi-Mei1,LUO Li1and LI Yun1
(1.Key Laboratory of Aquatic Science of Chongqing,College of Animal Science and Technology,Southwest University,Chongqing 400715,China; 2.Key Laboratory of Freshwater Fish Resources and Reproductive Development(Ministry of Education),School of Life Sciences,Southwest University,Chongqing 400715,China)
Abstract:The fish production is not only regulated by the genetic background,aquaculture environment and feeding management,but also mediated by the quality of aquatic feeds such as the quality and quantity of each ingredients.One key characteristic of aquatic feed was riched in poly-unsaturated fatty acids(PUFAs)compared with livestock and poultry feeds.During the production processing,storage and transportation processes,PUFAs in the feed easily porduce free radical chain reactions and release series of harmful oxidative products,which might impact food intake,growth performance,nutrient absorption,skeletal development,flesh quality,and skin pigmentation of fish,posing a big threat to their health and production.The current review summarize the deleterious effects of dietary lipid peroxidation on the growth and health status of fish based on the data that are available regarding the physio-pathological responses to dietary oil oxidation in different fish species.It also discuss the processes of oxidative products released from PUFAs peroxidation and toxicological mechanisms of the oxidative products to cellular components in animals,highlight ignoredissues by the existing researches,and provide future research perspectives.
Key words:Detrimental effects; Oxidized oil; Fish; Growth; Health status
中圖分類號(hào):S965.3
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1000-3207(2016)03-0624-10
doi:10.7541/2016.84
收稿日期:2015-11-03;
修訂日期:2016-03-21
基金項(xiàng)目:國(guó)家自然科學(xué)基金(31502181); 中國(guó)博士后科學(xué)基金面上資助(2015M582505); 重慶市項(xiàng)目博士后(Xm2015045)資助[Supported by the National Natural Science Foundation of China(31502181); China Postdoctoral Science Foundation(2015M582505);Chongqing Postdoctoral Science Special Foundation(Xm2015045)]
通信作者:陳擁軍(1986—),男,博士,講師; 研究方向?yàn)樗a(chǎn)動(dòng)物營(yíng)養(yǎng)與飼料。E-mail:joy616722@hotmail.com