蔚開慧姜茜張震李頎肖萍蘇琳鄒繼珍李龍潘尚領(lǐng)1廣西醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院病理生理學(xué)教研室(南寧30021)2首都兒科研究所遺傳研究室(北京100020)3首都兒科研究所遺傳研究室兒童發(fā)育營養(yǎng)組學(xué)北京市重點(diǎn)實(shí)驗(yàn)室(北京100020)首都兒科研究所附屬兒童醫(yī)院普通外科(北京100020)首都兒科研究所附屬兒童醫(yī)院病理科(北京100020)安徽醫(yī)科大學(xué)(合肥230001)廣西醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院病理生理學(xué)教研室(南寧30021)
?
Waardenburg綜合征Ⅳ型患兒SOX10基因新突變研究
蔚開慧1,2姜茜3*
張震4李頎5肖萍5蘇琳6鄒繼珍5李龍4潘尚領(lǐng)7
1廣西醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院病理生理學(xué)教研室(南寧530021)
2首都兒科研究所遺傳研究室(北京100020)
3首都兒科研究所遺傳研究室兒童發(fā)育營養(yǎng)組學(xué)北京市重點(diǎn)實(shí)驗(yàn)室(北京100020)
4首都兒科研究所附屬兒童醫(yī)院普通外科(北京100020)
5首都兒科研究所附屬兒童醫(yī)院病理科(北京100020)
6安徽醫(yī)科大學(xué)(合肥230001)
7廣西醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院病理生理學(xué)教研室(南寧530021)
【摘要】目的通過分析研究一例Waardenburg綜合征Ⅳ型(WS4)散發(fā)病例患兒的分子遺傳學(xué)病因,豐富該致病基因突變譜,為WS4遺傳咨詢提供新的證據(jù),并對該綜合征相關(guān)的SOX10基因所有無義突變進(jìn)行文獻(xiàn)回顧和總結(jié)。方法收集一個WS4患兒的詳細(xì)臨床資料,簽署知情同意書后獲取血樣,對包括SOX10、EDNRB、EDN3在內(nèi)的172個先天性巨結(jié)腸及綜合征相關(guān)基因進(jìn)行二代測序,并用聚合酶鏈反應(yīng)針對可疑致病突變進(jìn)行擴(kuò)增及Sanger測序驗(yàn)證,應(yīng)用GeneTool軟件及生物信息學(xué)網(wǎng)站的信息分析數(shù)據(jù)。結(jié)果發(fā)現(xiàn)患兒SOX10基因第4外顯子存在一雜合無義突變(c.838G>T,p.E280X),父母均表現(xiàn)正常且未發(fā)現(xiàn)有該突變。結(jié)論發(fā)現(xiàn)一新的SOX10基因致病突變,豐富了致WS4的SOX10基因突變譜,并為父母提供再生育患兒的風(fēng)險評估及必要的產(chǎn)前診斷咨詢。
【關(guān)鍵字】Waardenburg綜合征Ⅳ型;SOX10無義突變;目的基因測序;遺傳咨詢
蔚開慧和姜茜并列第一作者
No conflict of interest among the authors.
Waardenburg綜合征(Waardenburg syndrome,WS)又稱聽力-色素綜合征(auditory-pigmentary syndrome),是1951年由荷蘭眼科遺傳學(xué)醫(yī)師PJ Waardenburg首先提出的一種較常見的綜合征型遺傳性耳聾,發(fā)病率約為1/42000,約占各類先天性耳聾的2%-5%[1,2]。WS被認(rèn)為與胚胎期神經(jīng)嵴細(xì)胞(neural crest cells,NCC)源性黑素細(xì)胞增殖、分化及遷移功能缺陷而導(dǎo)致的發(fā)育異常有關(guān),以感音神經(jīng)性聾、眼間距異常和虹膜、毛發(fā)、皮膚的色素沉淀異常為主要特征[3]。根據(jù)癥狀表現(xiàn)的不同可分為4個亞型:WS1主要表現(xiàn)為內(nèi)眥外移易位(W>1.95)、鼻根寬闊、皮膚色素減退、聽力障礙和虹膜異色癥等;WS2 與WS1相比無內(nèi)眥外移易位(W<1.95)、鼻根寬闊的表現(xiàn);WS3與WS1的表型相似,其顯著特點(diǎn)為同時伴顏面或上肢肌肉骨骼的發(fā)育異常;WS4與WS2表型相似但伴有先天性巨結(jié)腸[2,4,5]。
截至目前,20%-40%的WS4患者發(fā)病原因不明,另有約20%-30%的患者由EDN3或EDNRB基因突變引起,絕大多數(shù)WS4患者(約45%-55%)均是由SOX10突變所引起,且無義突變居多[6]。SOX10是NCC遷移分化過程中的一種關(guān)鍵的轉(zhuǎn)錄因子,主要通過與靶基因(如MITF、TYR、TYRPl、DCT)的增強(qiáng)子或啟動子結(jié)合來發(fā)揮其轉(zhuǎn)錄調(diào)節(jié)功能。1998年P(guān)ingault V等首次在WS4患者中發(fā)現(xiàn)了SOX10基因的雜合突變,確定SOX10為WS4的第三個致病基因,并進(jìn)一步研究證實(shí)該基因所編碼蛋白對小鼠及人神經(jīng)嵴發(fā)育的重要調(diào)節(jié)作用[7,8]。后又發(fā)現(xiàn)該基因突變可導(dǎo)致另一種伴有嚴(yán)重神經(jīng)系統(tǒng)疾病的綜合征PCWH (peripheral demyelinating neuropathy,central dysmyelinating leukodystrophy,WS,and Hirschsprung disease)[9]。此后,在WS4患者中檢測到SOXl0基因突變的報道越來越多,Lu Jiang[10]等于2011年首次報道了2例來自中國的WS4伴SOX10基因突變(c.254G>A 和c.698-2A>T)的患兒,也證實(shí)了突變基因SOX10與WS4的相關(guān)性。但目前發(fā)現(xiàn)的與WS4/PCWH相關(guān)的SOX10突變中只有3個來自中國,且突變所致的表型高度變異,還需要更多的相關(guān)報道來完善。
本研究收集并分析一WS4散發(fā)病例患兒,發(fā)現(xiàn)先證者攜帶的SOX10基因雜合無義突變(c.838G>T,p.E280X,E4)國內(nèi)外尚未見報道,屬新突變,且患兒父母均正常無突變,該突變?yōu)樾掳l(fā)突變。我們進(jìn)一步對文獻(xiàn)已報道的所有WS4相關(guān)SOX10基因無義突變病例的臨床表型進(jìn)行了總結(jié),希望探索該綜合征表型與基因型之間可能存在的關(guān)系。
1.1臨床資料
先證者及其父母來自中國大連,問卷式采集先證者及其父母的健康資料,并進(jìn)行耳科、眼科、皮膚、毛發(fā)、消化系統(tǒng)和四肢關(guān)節(jié)等全面體格檢查。取得家庭成員的知情同意并簽署知情同意書后獲取先證者及其父母的外周靜脈血各5ml,用于基因組DNA的提取。
1.2172個先天性巨結(jié)腸及綜合征相關(guān)基因二代測序
(1)DNA提取及全基因組文庫制備:應(yīng)用Qiagen公司試劑盒(the QIAamp DNA Blood Midi Kit,Qiagen,Hilden,Germany)提取患兒靜脈血基因組DNA,將質(zhì)量檢測合格的基因組DNA隨機(jī)打斷(Biorupter),純化長度在150~250bp之間的片段;然后利用T4 DNA Polymerase、T4 phosphorylated polynucleotide kinase和Eseheriehia coli DNA聚合酶Klenow片段對純化后的DNA片段進(jìn)行末端修復(fù),再按照Illumina公司二代測序儀的操作說明在片段兩端加上A堿基,最后在兩端加上接頭(adaptor)并對其進(jìn)行磁珠純化。
(2)雜交:已加接頭純化后的模板首先進(jìn)行捕獲前PCR擴(kuò)增,然后將PCR產(chǎn)物與自主設(shè)計的GenCap Custom Enrichment Kit(北京邁基諾基因科技有限責(zé)任公司)在適宜條件下雜交22h,此時目標(biāo)片段因與特異性探針結(jié)合而被捕獲,未雜交的片段則被洗掉,洗脫后保留在探針上的目標(biāo)片段再進(jìn)行一次捕獲PCR以顯著增加待測片段的數(shù)量。
(3)生物信息學(xué)分析:本實(shí)驗(yàn)中使用的芯片捕獲區(qū)包含172個先天性巨結(jié)腸及綜合征相關(guān)基因的外顯子及其側(cè)翼序列約100 bp。高通量測序數(shù)據(jù)使用Illumina Pipeline(version 1.8.2)產(chǎn)生原始數(shù)據(jù),去除低質(zhì)量的數(shù)據(jù)后利用BWA(Burrows wheeler aligner)將“干凈的”讀序與人類基因組參考序列比對(UCSC,hg19),再分別使用SOAPsnp軟件和GATK軟件進(jìn)行SNP和InDel的收集。本實(shí)驗(yàn)中樣品基因的平均測序深度約為96×,捕獲區(qū)覆蓋度達(dá)90%以上,為了找出致病性的點(diǎn)突變,參考dbSNP數(shù)據(jù)庫、Hapmap、千人基因組數(shù)據(jù)庫及ESP(NHLBI Exome Sequencing Project)和內(nèi)部正常對照人群數(shù)據(jù)庫,將頻率小于0.05的變異視為可疑。
1.3先證者及其父母突變驗(yàn)證
應(yīng)用在線PRIMER3對可疑突變(c.838G>T)設(shè)計引物:正向引物:5'-ccttgcgctctctctctctg-3',反向引物:5'-GGCAGGTACTGGTCCAACTC-3',擴(kuò)增片段長度為244bp。采用鹽析法提取患兒及其父母的靜脈血基因組DNA并進(jìn)行PCR擴(kuò)增,反應(yīng)體系(50μl)包含10ng/μl DNA模板15μl,20μM正、反向引物各2μl,10×PCR buffer 5μl,2.5mM dNTPmix 5μl,Takara Taq酶0.5μl,去離子水20.5μl。反應(yīng)條件為94℃預(yù)變性1min,35個循環(huán)(94℃變性30s,55℃退火30s,68℃延伸30s),72℃補(bǔ)充延伸1min,將擴(kuò)增產(chǎn)物保存在4℃。PCR擴(kuò)增產(chǎn)物經(jīng)純化及雙向測序后(北京諾賽基因)進(jìn)行突變分析。
2.1臨床資料分析患兒,女,出生后2天聽力篩查及42天復(fù)篩雙側(cè)耳聲發(fā)射均未通過,雙耳聽力誘發(fā)電位檢查異常。雙側(cè)虹膜呈淺藍(lán)色,生后2個月即因確診先天性巨結(jié)腸長段型行橫結(jié)腸造瘺術(shù)。臨床擬診為Waardenburg綜合征IV型。患兒足月順產(chǎn),出生體重2950g,身長49cm,出生時反應(yīng)尚可,Apgar評分9分-9分-9分?;純河诔錾?個月時突然死亡,原因不明,患兒父母均表現(xiàn)正常,無家族史。
圖1 患兒面部正側(cè)位照片。雙眼虹膜著色異常,呈藍(lán)色,余未見明顯異常。頭圍正常。皮膚、毛發(fā)顏色正常。Fig.1 Anterior and lateral photographs of the patient's face.Her irises were in light blue and no other abnormalities were observed.Her head circumference was in the normal range,as with the color of skin and hair.
圖2 患兒影像學(xué)表現(xiàn)及術(shù)中病理切片鑒別診斷(HE染色)。A:腹部X線平片提示為腸梗阻表現(xiàn),盆腔無氣。B:腹部下消化道造影顯示直腸、乙狀結(jié)腸、降結(jié)腸、橫結(jié)腸痙攣狹窄,升結(jié)腸、盲腸擴(kuò)張。小腸脹氣明顯。C:患者術(shù)中橫結(jié)腸遠(yuǎn)端冰凍切片普通HE染色×200,D:患者術(shù)中乙狀結(jié)腸冰凍切片普通HE染色×200,兩張切片均未找見神經(jīng)節(jié)細(xì)胞,證實(shí)為長段型先天性巨結(jié)腸。Fig.2 Imaging findings and pathological diagnosis of the patient in operation(HE staining).A:Abdominal X-ray plain film of the patient showed intestinal obstruction and pelvic airless.B:Lower intestinal radiography of the patient showed spasm narrow in the rectum,sigmoid colon,descending colon,transverse colon and expansion in the ascending colon,the cecum.Small intestine bloated severely.C:The distal transverse colon frozen section of the patient in operation showed a long segment aganglionisis(×200 magnification,HE),D:The sigmoid colon frozen section of the patient in operation showed a long segment aganglionisis(×200 magnification,HE).
2.2突變分析
對患兒進(jìn)行172個先天性巨結(jié)腸及綜合征相關(guān)基因二代測序后發(fā)現(xiàn),3個WS4已知致病基因中只有SOX10在第4外顯子存在雜合無義突變(c.838G>T,p.E280X,表1),且該突變國內(nèi)外均尚未見報道,為一新突變。對患者父母進(jìn)行突變驗(yàn)證后證實(shí)此突變?yōu)樾掳l(fā)突變(見圖3 A)。
圖3 患兒及其父母SOX10基因測序結(jié)果及模式圖。A:對照(control)、患者(HSCRMG01)、患者父親(HSCRMG01 Father)及患者母親(HSCRMG01 Mother)的Sanger測序結(jié)果,箭頭所示為c.838G>T突變。B:SOX10基因(下)及所編碼蛋白(上)的模式圖,圖中D代表二聚體化功能域;NLS代表核定位信號;HMG代表高度保守的高活性組分結(jié)構(gòu)域;E代表SOX8/9/ 10的一個保守區(qū)域;TAD代表C端轉(zhuǎn)錄激活域。與PCWH相關(guān)的無義突變用黑色加粗字體表示;與WS4相關(guān)的無義突變用黑色字體表示;本研究新發(fā)現(xiàn)的無義突變標(biāo)記為紅色字體?!?表示同一突變報道2次。Fig.3 Sequencing results and schematic representation of the SOX10 mutation.A:Sanger sequencing chromatogram of the SOX10 mutation from the control,the patient(HSCRMG01)and her parents,the arrow indicates the site of the mutation (c.838G>T,p.E280X).B:Nonsense mutations identified in the schematic representation of SOX10 gene(below)and protein (above).“D”represents a dimerization domain;“NLS”represents nuclear localization signal;“HMG”represents a highly conserved DNA-binding high mobility group domain;“E”represents a conserved domain in SOX8/9/10;“TAD”represents a carboxyterminal transactivation domain.Mutations associated with PCWH are in bold,mutations associated with WS4 are in black,and the novel mutation founded in our study is in red.The“×2”indicates one mutation has been reported twice.
2.3SOX10基因無義突變文獻(xiàn)回顧與總結(jié)
結(jié)合近年文獻(xiàn)報道,總結(jié)發(fā)現(xiàn)導(dǎo)致WS4或PCWH的SOX10無義突變共有20種(WS4和PCWH各有10種),約占導(dǎo)致WS4或PCWH的所有SOX10突變的44%??梢姡琒OX10無義突變在WS4和PCWH的發(fā)生中均扮演了重要角色,具體無義突變信息總結(jié)見圖3 B和表2。從表2可見所有突變均為雜合突變,男性多發(fā),且先證者合并其他突變(如EDNRB、EDN3)的可能性很小。同時還發(fā)現(xiàn)絕大多數(shù)已報道的與WS4相關(guān)的SOX10無義突變均為新發(fā)突變,只有4例有明確的家族遺傳傾向(p.W85X、p.Y313X、p.Q377X和p.S376X,見表2),p.W85X、p.Y313X和p.Q377X先證者父母中均有一位表型正常的雜合突變攜帶者,p.S376X患兒的母親有耳聾的癥狀,基因型未知,p.W85X和p.Q377X先證者家系中均有一位攜帶雜合突變的姊妹患病。從圖3 B中則可看出引起短段型巨結(jié)腸或單純型WS4的無義突變多發(fā)生在2、3外顯子上,引起長段型、全結(jié)腸型巨結(jié)腸或PCWH的無義突變多發(fā)生在第4外顯子上,而TAD域內(nèi)極少發(fā)生突變。
2.4再生育聾兒風(fēng)險評估
鑒于患兒父母均表現(xiàn)正常,無相應(yīng)突變,對該家庭進(jìn)行再生育聾兒風(fēng)險評估可分為兩種情況:如果其父母中有一方為生殖細(xì)胞鑲嵌體,再生育后代發(fā)生該基因雜合突變的風(fēng)險為50%,可以通過產(chǎn)前SOX10基因同位點(diǎn)測序進(jìn)行明確的產(chǎn)前診斷;如果父母的體細(xì)胞和生殖細(xì)胞均無突變,則再生育后代發(fā)生相同突變且患病的可能性極小(約相當(dāng)于該病的一般人群發(fā)病率1/42000),但是也建議他們進(jìn)行產(chǎn)前SOX10、EDNRB、EDN3基因全序列檢查以明確胎兒的基因型,若基因診斷結(jié)果顯示有突變則再生育后代為一聾兒的風(fēng)險大于90%(由表2總結(jié):有突變而表型正常者約占突變攜帶者總?cè)藬?shù)的10%)。
SOXl0基因(性別決定區(qū)盒基因,SRY - box 10)位于22q13,是神經(jīng)系統(tǒng)發(fā)育中的一種重要的轉(zhuǎn)錄因子,含有4個外顯子,其中只有2、3、4號外顯子編碼蛋白(見圖3 B)。SOX10最先在NCC遷移早期的胚胎背神經(jīng)管中表達(dá)[11],然后隨著NCC的逐漸分化而在其衍生物如黑素細(xì)胞、胃腸道系統(tǒng)及周圍神經(jīng)系統(tǒng)中表達(dá)。SOX1O蛋白屬于20個SOX基因超級家族成員中的一員,含有466個氨基酸,相對分子質(zhì)量約為51kDa,發(fā)揮主要功能的是高活性組分結(jié)構(gòu)域(high mobility group,HMG)和C端轉(zhuǎn)錄激活域(C-terminal transactivation domain,TAD)[12]。HMG域由80個氨基酸(第102-181位)組成,形成3個“L”型彎曲排列的α螺旋區(qū),可單獨(dú)或與其他轉(zhuǎn)錄因子協(xié)同作用來識別靶基因特異DNA序列并與其小溝結(jié)合,導(dǎo)致DNA的構(gòu)象發(fā)生改變,TAD域可激活該基因的轉(zhuǎn)錄[13]。研究發(fā)現(xiàn)SOX10可通過與MITF啟動子中特定序列結(jié)合而使MITF的轉(zhuǎn)錄活性提高100倍,且SOX10與PAX3的協(xié)同作用可增強(qiáng)這種激活效應(yīng)[14,15]。HMG域的兩側(cè)各有一個核定位信號(nuclear localization signal,NLS),可使SOX10蛋白在細(xì)胞質(zhì)與細(xì)胞核之間穿梭運(yùn)動,進(jìn)而可能影響黑素細(xì)胞或神經(jīng)嵴的發(fā)育[16]。
SOX10基因突變曾先后在WS2和WS4/PCWH患者中發(fā)現(xiàn)過,已被確定為這兩種亞型的致病基因。截至2014年,文獻(xiàn)已報道的SOX10基因突變共有82種(http://grenada.lumc.nl/LOVD2/WS/home.php),其中絕大多數(shù)為堿基置換突變(46種)和缺失突變(23種),在突變蛋白中無義突變和移碼突變均有25種,錯義突變有19種。文獻(xiàn)已報道的與疾病相關(guān)的SOX10突變共有66種,其中與WS4或PCWH相關(guān)的有45種(WS4有22種,PCWH有23種),與WS2相關(guān)的只有7種(http://research.nhgri.nih.gov/pigment_cell/ templates/files/SOX10_polymorphism.shtml)。SOX10所引起的WS4/PCWH的遺傳方式主要為單基因致病的常染色體顯性遺傳伴不全外顯,而EDNR3、EDNRB所引起的WS4則主要表現(xiàn)為常染色體隱性遺傳。Inoue等[17]發(fā)現(xiàn)當(dāng)無義突變發(fā)生在第4外顯子以前時會激活無義介導(dǎo)的mRNA降解通路(nonsense-mediated mRNA decay,NMD),突變mRNA會被識別、降解,導(dǎo)致野生型等位基因編碼的蛋白質(zhì)的總量不足(即單倍體劑量不足效應(yīng),haploinsufficiency),從而造成雜合突變基因所編碼的蛋白質(zhì)無法發(fā)揮正常的生理功能,引起WS4。當(dāng)無義突變發(fā)生在第4外顯子時,突變mRNA不僅不會被降解,而且還會通過顯性負(fù)效應(yīng)競爭性結(jié)合DNA抑制野生SOX10蛋白功能而導(dǎo)致嚴(yán)重的WS4表型或PCWH。Honghan Wang[18]通過實(shí)驗(yàn)發(fā)現(xiàn)突變型蛋白(c.1063C>T,p.Q355X,E4)的表達(dá)量及與DNA結(jié)合的能力與野生型相似,但隨著突變蛋白表達(dá)量的增加,其下游基因MITF的表達(dá)量逐漸下降。Sham et al.[19]發(fā)現(xiàn)發(fā)生在SOX10上游的無義突變常引起較輕的短段型巨結(jié)腸,而發(fā)生在SOX10最后一個外顯子上的無義突變常引起較嚴(yán)重的神經(jīng)節(jié)細(xì)胞缺乏癥,這種趨勢也可以從表2所總結(jié)的臨床表現(xiàn)中觀察出來。Pingault[20]等報道的無義突變(p.R43X)發(fā)生在該基因的上游,先證者表現(xiàn)為較輕的短段型巨結(jié)腸。突變p.Gln234X則導(dǎo)致嚴(yán)重的PCWH表型,為目前發(fā)現(xiàn)未被降解的最短的截短蛋白。更多的基因型-表型關(guān)聯(lián)還需要進(jìn)一步擴(kuò)大患者樣本量繼續(xù)研究。
表1 患兒(HSCRMG1)172個目的基因測序可疑突變位點(diǎn)檢測結(jié)果Table 1 Sequencing results of the suspected mutations from 172 related genes in patient HSCRMG1
本次研究中,本研究在一散發(fā)WS4先證者中發(fā)現(xiàn)了一個新的雜合無義突變(c.838G>T,p.E280X,E4),該突變位于高度保守的SOX Group E結(jié)構(gòu)域內(nèi),即HMG域與TAD域之間。突變使第280位的谷氨酸變?yōu)橐粋€提前終止的密碼子,所產(chǎn)生的截短蛋白由于TAD域的缺失而失去了對下游靶基因啟動子或增強(qiáng)子的轉(zhuǎn)錄激活功能,從而可能影響神經(jīng)嵴細(xì)胞和黑素細(xì)胞的胚胎期發(fā)育,產(chǎn)生WS4的一系列癥狀?;純河谏?個月時突然死亡,死因不明,同時我們可以從表2中發(fā)現(xiàn)位于SOX Group E結(jié)構(gòu)域內(nèi)的4個無義突變的患兒均在嬰兒期死亡,可以推測SOX Group E結(jié)構(gòu)域可能與某種嚴(yán)重危及生命的機(jī)體功能相關(guān),有待進(jìn)一步研究。
本研究不僅對患者及其家庭進(jìn)行了基因診斷和風(fēng)險評估,還對該綜合征相關(guān)的SOX10基因所有無義突變進(jìn)行了文獻(xiàn)回顧和總結(jié)。新突變位點(diǎn)豐富了相關(guān)綜合征的疾病突變數(shù)據(jù)庫,同時還為深入了解SOX10基因型-表型關(guān)聯(lián)提供了新的證據(jù)。
表2 已報道的WS4或PCWH表型患者的SOX10基因無義突變總結(jié)Table 2 Reported cases of SOX10 nonsense mutations associated with WS4 or PCWH
參考文獻(xiàn)
1Waardenburg PJ.A new syndrome combining developmental anomalies of the eyelids,eyebrows and nose root with pigmentary defects of the iris and head hair and with congenital deafness.Am J Hum Genet,1951,3(3):195-253.
2Read AP,Newton VE.Waardenburg syndrome.J Med Genet,1997,34(8):656-665.
3Baxter LL,Hou L,Loftus SK,et al.Spotlight on spotted mice:a review of white spotting mouse mutants and associated human pigmentation disorders.Pigment Cell Res,2004,17(3):215-224.
4Pingault V,Ente D,Dastot-Le Moal F,et al.Review and update of mutations causing Waardenburg syndrome.Hum Mutat,2010,31 (4):391-406.
5高紫璇,李金紅,盧宇,等.Waardenburg綜合征Ⅱ型一家系基因突變研究.中華耳科學(xué)雜志,2014,12(2):271-271.GAO Zixuan,LI Jinhong,LU Yu,et al.A Genetic Mutation Study in a Pedigree with Type II Waardenburg Syndrome.Chinese Journal of Otology,2014,12(2):271-271.
6Bondurand N,Dastot-Le Moal F,Stanchina L,et al.Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4.Am J Hum Genet,2007,81(6):1169-1185.
7Pingault V,Bondurand N,Kuhlbrodt K,et al.SOX10 mutations in patients with Waardenburg-Hirschsprung disease.Nat Genet,1998,18(2):171-173.
8Herbarth B,Pingault V,Bondurand N,et al.Mutation of the Sry-related Sox10 gene in Dominant megacolon,a mouse model for human Hirschsprung disease.Proc Natl Acad Sci U S A,1998,95(9):5161-5165.
9Touraine RL,Attie-Bitach T,Manceau E,et al.Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain.Am J Hum Genet,2000,66(5):1496-1503.
10 Jiang L,Chen H,Jiang W,et al.Novel mutations in the SOX10 gene in the first two Chinese cases of type IV Waardenburg syndrome.Biochem Biophys Res Commun,2011,408(4):620-624.
11Southard-Smith EM,Kos L,Pavan WJ.Sox10 mutation disrupts neural crest development in Dom Hirschsprung mouse model.Nat Genet,1998,18(1):60-64.
12 Harris ML,Baxter LL,Loftus SK,et al.Sox proteins in melanocyte development and melanoma.Pigment Cell Melanoma Res,2010,23 (4):496-513.
13 Kuhlbrodt K,Schmidt C,Sock E,et al.Functional analysis of Sox10 mutations found in human Waardenburg-Hirschsprung patients.J Biol Chem,1998,273(36):23033-23038.
14Bondurand N,Pingault V,Goerich DE,et al.Interaction among SOX10,PAX3 and MITF,three genes altered in Waardenburg syndrome.Hum Mol Genet,2000,9(13):1907-1917.
15 Potterf SB,F(xiàn)urumura M,Dunn KJ,et al.Transcription factor hierarchy in Waardenburg syndrome:regulation of MITF expression by SOX10 and PAX3.Hum Genet,2000,107(1):1-6.
16 Sinner D,Kordich JJ,Spence JR,et al.Sox17 and Sox4 differentially regulate beta-catenin/T-cell factor activity and proliferation of colon carcinoma cells.Mol Cell Biol,2007,27(22):7802-7815.
17 Inoue K,Khajavi M,Ohyama T,et al.Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations.Nat Genet,2004,36(4):361-369.
18 Wang HH,Chen HS,Li HB,et al.Identification and functional analysis of a novel mutation in the SOX10 gene associated with Waardenburg syndrome type IV.Gene,2014,538(1):36-41.
19 Sham MH,Lui VC,Chen BL,et al.Novel mutations of SOX10 suggest a dominant negative role in Waardenburg-Shah syndrome.J Med Genet,2001,38(9):E30.
20Pingault V,Girard M,Bondurand N,et al.SOX10 mutations in chronic intestinal pseudo-obstruction suggest a complex physiopathological mechanism.Hum Genet,2002,111(2):198-206.
21 Arimoto Y,Namba K,Nakano A,et al.Chronic constipation recognized as a sign of a SOX10 mutation in a patient with Waardenburg syndrome.Gene,2014,540(2):258-262.
22 Southard-Smith EM,Angrist M,Ellison JS,et al.The Sox10(Dom)mouse:modeling the genetic variation of Waardenburg-Shah(WS4)syndrome.Genome Res,1999,9(3):215-225.
23 Inoue K,Shilo K,Boerkoel CF,et al.Congenital hypomyelinating neuropathy,centraldysmyelination,andWaardenburg-Hirschsprung disease:phenotypes linked by SOX10 mutation.Ann Neurol,2002,52(6):836-842.
24 Toki F,Suzuki N,Inoue K,et al.Intestinal aganglionosis associated with the Waardenburg syndrome:report of two cases and review of the literature.Pediatr Surg Int,2003,19(11):725-728.
25 Oshimo T,F(xiàn)ukai K,Abe Y,et al.Pediatric case report:clinical profile of a patient with PCWH with p.Q377X nonsense mutation in the SOX10 gene.J Dermatol,2012,39(12):1022-1025.
26 Verheij JB,Sival DA,van der Hoeven JH,et al.Shah-Waardenburg syndrome and PCWH associated with SOX10 mutations:a case report and review of the literature.Eur J Paediatr Neurol,2006,10(1):11-17.
Novel SOX10 mutation in a girl with type IV Waardenburg syndrome
YU Kaihui1,2JIANG Qian3*,ZHANG Zhen4,LI Qi3,XIAO Ping5,SU Lin6,ZOU Jizhen5,LI Long4,PAN Shangling7
1 Department of Pathophysiology,School of Preclinical Sciences,Guangxi Medical University,Nanning,530021
2 China;Department of Medical Genetics,Capital Institute of Pediatrics,Beijing,100020
3 Department of Medical Genetics,Beijing Municipal Key Laboratory of Child Development and Nutriomics,Capital Institute of Pediatrics,Beijing,100020
4 Department of General Surgery,The Children's Hospital Affiliated to Capital Institute of Pediatrics,Beijing,100020
5 Department of Pathology,The Children's Hospital Affiliated to Capital Institute of Pediatrics,Beijing,100020
6 Anhui Medical University,Hefei,230001,China
7 Department of Pathophysiology,School of Preclinical Sciences,Guangxi Medical University,Nanning,530021
Corresponding author:PAN ShanglingEmail:slpan@gxmu.edu.cn
【Abstract】Objective To improve the disease causative gene mutation spectrum and provide new information for genetic counseling in Waardenburg syndrome type IV(WS4),we performed molecular genetic study in an isolated patient affected by WS4.Literature was reviewed for reported nonsense mutations in SOX10.Methods Detailed histories were collected through questionnaires and physical examination.Blood samples of the patient and her parents were collected after obtaining informed consents.Suspected mutations were amplified and verified by Sanger sequencing after the next generation sequencing of 172 related genes.The raw data were analyzed using molecular biological websites and the GeneTool software.Results A new de novo heterozygous mutation(c.838G>T,p.E280X)in the fourth exon of SOX10 was found inthe patient.Both parents were demonstrated to be wild-type and symptom free.Conclusions The novel mutation found in our study not only enriches the mutation spectrum but also is helpful for recurrent risk evaluation and genetic counseling for this family.
【Key words】Waardenburg syndrome typeⅣ;SOX10 nonsense mutation;Target gene sequencing;Genetic counseling
【中圖分類號】R764
【文獻(xiàn)標(biāo)識碼】A
【文章編號】1672-2922(2016)02-240-7
DOI:10.3969/j.issn.1672-2922.2016.02.023
*基金項(xiàng)目:國家自然科學(xué)基金青年科學(xué)基金項(xiàng)目(81300266);北京市自然科學(xué)基金面上項(xiàng)目(7142029);北京市優(yōu)秀人才培養(yǎng)個人項(xiàng)目(2013D003034000007);北京市科技新星(Z151100000315091)
作者簡介:蔚開慧,碩士研究生,研究方向:先天性巨結(jié)腸的分子和遺傳學(xué)發(fā)病機(jī)制
通訊作者:潘尚領(lǐng),Email:slpan@gxmu.edu.cn
收稿日期:(2015-12-21審核人:袁永一)
*Fund projects:National Natural Science Foundation of China(No.81300266),the Beijing Natural Science Foundation(No.7142029),the Beijing Excellent Scientist Fund(No.2013D003034000007)and Beijing Novo Program(Z151100000315091)