朱旭生,湯傳揚(yáng),王 莉
(華東交通大學(xué)理學(xué)院,江西 南昌 330013)
歐拉方程組徑向?qū)ΨQ正規(guī)解的爆破
朱旭生,湯傳揚(yáng),王莉
(華東交通大學(xué)理學(xué)院,江西 南昌 330013)
[摘要]研究了N維可壓縮歐拉方程組真空問(wèn)題徑向?qū)ΨQ正規(guī)解的爆破問(wèn)題,利用積分法得出該問(wèn)題非平凡徑向?qū)ΨQ正規(guī)解(ρ,v)在有限時(shí)間內(nèi)發(fā)生爆破.
[關(guān)鍵詞]歐拉方程組;徑向?qū)ΨQ;正規(guī)解;積分法;爆破
1預(yù)備知識(shí)
本文考慮N維可壓縮歐拉方程組
(1)
在滿足初始條件
(2)
(ⅰ)(ρ,u)(x,t)∈C1(Rn×[0,T));
(ⅱ)P(ρ)(x,t)∈C1(Rn×[0,T));
(ⅲ)在ρ的緊支集之外,u滿足
(3)
關(guān)于歐拉方程經(jīng)典解的爆破問(wèn)題在一些文獻(xiàn)中已有討論:文獻(xiàn)[1-2]討論初值問(wèn)題解的爆破;文獻(xiàn)[3-6]討論了真空情形經(jīng)典解的爆破,其中文獻(xiàn)[3-5]討論了正規(guī)解的爆破,文獻(xiàn)[6]利用平面自治系統(tǒng)定性理論研究了徑向?qū)ΨQ(有時(shí)也稱軸對(duì)稱或球?qū)ΨQ)解的爆破;文獻(xiàn)[7-12]討論了真空情況下歐拉方程組或帶排斥力的歐拉泊松方程徑向?qū)ΨQ解的爆破問(wèn)題.這些文獻(xiàn)研究的大多是初值問(wèn)題,只有文獻(xiàn)[6,13]研究的是初邊值問(wèn)題.
(4)
將(4)式代入(1)式中得
(5)
其相應(yīng)的初始條件為
(6)
相應(yīng)地,當(dāng)0≤r vt+VVr=0. (7) 當(dāng)然,為了去掉在x=0處的奇性,要求v(0,t)=0,vr(r,t)=o(r). 2主要結(jié)論及證明 定理1設(shè)(ρ,v)是N維歐拉方程組初值問(wèn)題(1)—(2)在真空條件下的非平凡經(jīng)典解,即做徑向變換后(5)—(6)的經(jīng)典解.假設(shè)suppρ0?{r|r≤R2},當(dāng)r≥R2時(shí)v0(r)=0,且 (8) 證明首先處理真空邊界.設(shè)suppρ(r,t)={r|r≤R1(t)},由于函數(shù)v∈C1,故由(7)式可知R1(t)滿足 (9) 將上式兩端關(guān)于t求導(dǎo),并由(7)式得 從而 R1(t)=R1(0)+v(R1(0),0)t=R1+v0(R1)t. (10) 其次,引入隨體導(dǎo)數(shù) (11) 利用(11)式可以將(1)式第一個(gè)方程改寫為 (12) (13) 下面處理速度為零的邊界點(diǎn).由于點(diǎn)R2也落在suppρ0外,故此處也滿足(7)式,從而 同樣解得 R2(t)=R2+v0(R2(0))t=R2. (14) 將壓強(qiáng)函數(shù)P=P(ρ)=Kργ代入(6)式第二個(gè)方程得 ρ(vt+VVr)+Kγργ-1ρr=0. (15) 當(dāng)0≤r (16) 由于γ>1,故ργ-1(r,t)∈C([0,+∞)×[0,T)),且當(dāng)r 引入函數(shù)φ(r)≥0,φ(r)∈C1([0,R2)),φ′(r)>0.將(16)式兩端同乘以φ(r), (17) (18) 即 (19) (20) 利用v(R2,t)=ρ(R2,t)=0,(20)式可改寫為 (21) 這里因?yàn)棣铡?r)>0,K≥0且γ>1,從而 (22) (23) 令 (24) 則(23)式化簡(jiǎn)為 (25) 進(jìn)一步由Cauchy-Schwarz不等式得 (26) 令 (27) (28) 注2如果R1=R2=R,我們的結(jié)論與文獻(xiàn)[12]中當(dāng)R(t)=R時(shí)的結(jié)論一致. [參考文獻(xiàn)] [1]ALINHAC S.Blowup for nonlinear hyperbolic equations[M].Boston:Birkhauser,1995:33-36. [2]SIDERIS T.Formation of singularities in three-dimensional compressible fluids[J].Comm Math Phys,1985,101:475-485. [3]LIU T P,YANG T.Compressible Euler equations with vacuum[J].J Differential Equations,1997,140:223-237. [4]MAKINO T,UKAI S,KAWASHIMA S.Sur la solution à support compact de l’équation d’Euler compressible[J].Japan J Indust Appl Math,1986(3):249-257. [5]ZHU XUSHENG,WANG WEIKE.The regular solutions of the isentropic Euler equations with degenerate linear damping[J].Chinese Ann Math B,2005,26(4):583-598. [6]LI T,WANG D.Blowup phenomena of solutions to the Euler equations for compressible fluid flow[J].J Differential Equations,2006,221:91-101. [7]ZHU XUSHENG,TU AIHUA.Blowup of the axis-symmetric solutions for the IBVP of the isentropic Euler equations[J].Nonlinear Analysis:Theory,Methods & Applications,2014,95:99-106. [8]YUEN M W.Blowup for the Euler and Euler-Poisson equations with repulsive force[J].Nonlinear Analysis Series A:Theory,Methods & Applications,2011,74:1465-1470. [9]PERTHAME B.Nonexistence of global solutions to Euler-Possion equations for repulsive force[J].Japan J Appl Math,1990,7(2):363-367. [10]MAKINO T.Blowing up solutions of the Euler-Poisson equations for the evolution of the gaseous stars[J].Transport Theory and Statistical Physics,1992,21:615-624. [11]DENG Y B,XIANG J L,YANG T.Blowup phenomena of solutions to Euler-Poisson equations[J].J Math Anal Appl,2003,286:295-306. [6]CHAE D H,TADMOR E.On the finite time blow-up of the Euler-Poisson equations of in RN[J].Commun Math Sci,2008,6:785-789. [12]LI RUI,LIN XING,MA ZONGWEI,et al.Improved blow-up results for the Euler and Euler-Poisson equations with repulsive forces[J].J Math Anal Appl,2014,417:57-64. [13]朱旭生,陳家樂(lè),湯傳揚(yáng).可壓縮等熵歐拉方程組外問(wèn)題的爆破[J].華東交通大學(xué)學(xué)報(bào),2014(3):105-109. [14]胡衛(wèi)敏,伊磊,陳維.一類分?jǐn)?shù)階微分方程三點(diǎn)邊值問(wèn)題的多重正解[J].東北師大學(xué)報(bào)(自然科學(xué)版),2011,43(2):16-22. [15]欒姝,徐鵬.一類串聯(lián)系統(tǒng)的邊界Carleman估計(jì)[J].東北師大學(xué)報(bào)(自然科學(xué)版),2011,43(2):39-45. (責(zé)任編輯:李亞軍) Blowup of the radial symmetric regular solution for the Euler equations ZHU Xu-sheng,TANG Chuan-yang,WANG Li (School of Science,East China Jiaotong University,Nanchang 330013,China) Abstract:The blowup of the radial symmetric regular solutions for the N-dim compressible Euler equations is studied,while the initial flow is vacuum outside a ball.Under some assumptions,it is shown that the non-trivial classical solutions (ρ,V)blowup on or before the finite time . Keywords:Euler equations;radial symmetry;regular solution;integration method;blowup [文章編號(hào)]1000-1832(2016)02-0031-04 [收稿日期]2014-10-15 [基金項(xiàng)目]國(guó)家自然科學(xué)基金資助項(xiàng)目(11161021,61262031,11326139);江西省科技廳項(xiàng)目(20142BAB211010). [作者簡(jiǎn)介]朱旭生(1968—),男,副教授,主要從事偏微分方程研究;湯傳揚(yáng)(1989—),男,碩士,主要從事偏微分方程研究. [中圖分類號(hào)]O 175.27[學(xué)科代碼]110·4720 [文獻(xiàn)標(biāo)志碼]A [DOI]10.16163/j.cnki.22-1123/n.2016.02.008