周建立,康振,3,劉慶濤,堵國(guó)成,陳堅(jiān)
1 江南大學(xué) 工業(yè)生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 無(wú)錫 2141222 江南大學(xué)生物工程學(xué)院,江蘇 無(wú)錫 2141223 江南大學(xué) 糖化學(xué)與生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 無(wú)錫 214122
?
重組酸性脲酶對(duì)黃酒中尿素和氨基甲酸乙酯的降解應(yīng)用
周建立1,2,康振1,2,3,劉慶濤1,2,堵國(guó)成2,3,陳堅(jiān)2,3
1 江南大學(xué) 工業(yè)生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 無(wú)錫 214122
2 江南大學(xué)生物工程學(xué)院,江蘇 無(wú)錫 214122
3 江南大學(xué) 糖化學(xué)與生物技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室,江蘇 無(wú)錫 214122
周建立, 康振, 劉慶濤, 等. 重組酸性脲酶對(duì)黃酒中尿素和氨基甲酸乙酯的降解應(yīng)用. 生物工程學(xué)報(bào), 2016, 32(1): 74–83.
Zhou JL, Kang Z, Liu QT, et al. Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease. Chin J Biotech, 2016, 32(1): 74–83.
摘 要:氨基甲酸乙酯 (Ethyl carbamate,EC) 作為一種潛在致癌物質(zhì)普遍存在于傳統(tǒng)發(fā)酵食品中。利用酸性脲酶消除EC前體物質(zhì)尿素是一種具有潛在重要應(yīng)用價(jià)值的策略。本研究在前期成功實(shí)現(xiàn)食品級(jí)耐乙醇酸性脲酶高效表達(dá)制備的基礎(chǔ)上,系統(tǒng)研究了重組酸性脲酶對(duì)尿素和EC的水解過(guò)程。重組酸性脲酶對(duì)模擬體系以及黃酒體系中的尿素具有很好的降解能力 (60 mg/L的尿素在25 h內(nèi)完全被降解),表明該重組酸性脲酶適用于黃酒中尿素的消除。雖然重組酸性脲酶也具有降解EC的催化活性,但在黃酒中添加重組酸性脲酶對(duì)EC的濃度無(wú)明顯影響。進(jìn)一步研究發(fā)現(xiàn)重組酸性脲酶對(duì)尿素和EC的Km值分別為0.714 7 mmol/L和41.32 mmol/L,研究結(jié)果為應(yīng)用定向進(jìn)化策略改造重組酸性脲酶實(shí)現(xiàn)同時(shí)水解尿素和EC提供了理論依據(jù)。
關(guān)鍵詞:重組酸性脲酶,氨基甲酸乙酯,尿素,食品安全,酶法降解
Received: March 27, 2015; Accepted: May 21, 2015
Supported by: National Basic Research Program of China (973 Program) (No. 2012CB720802), National High Technology Research and Development Program of China (863 Program) (No. 2011AA100905), the National Science Foundation for Post-doctoral Scientists of China (No. 2013 M540414).
Jian Chen. Tel: +86-510-85918307; Fax: +86-510-85918309; E-mail: jchen@jiangnan.edu.cn
國(guó)家重點(diǎn)基礎(chǔ)研究計(jì)劃 (973計(jì)劃) (No. 2012CB720802),國(guó)家高技術(shù)研究發(fā)展計(jì)劃 (863計(jì)劃) (No. 2011AA100905),國(guó)家博士后基金面上項(xiàng)目 (No. 2013 M540414)。
網(wǎng)絡(luò)出版時(shí)間:2015-06-08 網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/11.1998.Q.20150608.1421.003.html
氨基甲酸乙酯 (Ethyl carbamate,EC),是一種天然存在于所有發(fā)酵食品和酒精飲料中的成分,是由尿素和乙醇自發(fā)反應(yīng)生成的具有潛在致癌性的物質(zhì)[1-2]。在酒精飲料中尿素含量會(huì)間接影響EC的含量,世界各國(guó)和國(guó)際衛(wèi)生組織對(duì)酒中的EC濃度都有嚴(yán)格的限量標(biāo)準(zhǔn),因此降低酒精飲料中EC濃度成了至關(guān)重要的問(wèn)題。在酒精飲料中,尿素一部分是由原料自身引入的,另外絕大部分是作為副產(chǎn)物由酵母細(xì)胞內(nèi)的精氨酸分解代謝所產(chǎn)生的[3]。因此消除酒精飲料中的尿素成為減少EC濃度的可行方法之一[4]。
脲酶普遍存在于細(xì)菌、真菌和高等植物中[5-6],所有已知的不同來(lái)源的脲酶在結(jié)構(gòu)上具有高度同源性[7]。酸性脲酶指的是在酸性條件下仍然能夠降解尿素的脲酶,因此可以在呈酸性的酒精飲料中發(fā)揮作用。酸性脲酶在大鼠胃腸道的乳酸乳桿菌中首次發(fā)現(xiàn)[8],目前已經(jīng)分離出了許多具有酸性脲酶活性的腸道細(xì)菌并研究了它們的特性[9-11],但是所報(bào)道的酸性脲酶均表現(xiàn)出高度的專(zhuān)一性,即只能專(zhuān)一地分解尿素,不能分解EC。綜上所知,深入研究酸性脲酶及其性質(zhì)對(duì)于酒類(lèi)行業(yè)的發(fā)展具有重要意義。本實(shí)驗(yàn)室前期在具有乳糖篩選標(biāo)記的食品級(jí)乳酸乳球菌NZ9000中,利用誘導(dǎo)劑乳酸鏈球菌肽成功表達(dá)了來(lái)源于羅伊氏乳桿菌的酸性脲酶[12],該酶對(duì)尿素和EC均有顯色反應(yīng),并且具有良好的耐乙醇特性。為進(jìn)一步分析其在不同體系中對(duì)尿素和EC的降解能力,首先對(duì)重組酸性脲酶進(jìn)行分離純化,研究了純酶在緩沖液 (pH 4.5) 和市售黃酒中對(duì)尿素和EC的降解能力并測(cè)定了Km值,為今后分子改造酸性脲酶提供了方向和基礎(chǔ)。
1.1材料
1.1.1菌種和培養(yǎng)基
產(chǎn)酸性脲酶菌株NZ9000-LR(MG1363 pepN::nisRK;harboring pNZ8149-ureABCEFGD;Cmr) 由本實(shí)驗(yàn)室構(gòu)建。種子培養(yǎng)基為M17肉湯培養(yǎng)基,發(fā)酵培養(yǎng)基成分為蛋白胨1.5%,酵母抽提物0.1%,葡萄糖5.0%,硫酸鎂1.0 mmol/L,硫酸錳0.1 mmol/L。
1.1.2主要試劑和儀器
M17肉湯培養(yǎng)基、蛋白胨和酵母抽提物購(gòu)自O(shè)xoid公司;其他化學(xué)試劑均為國(guó)產(chǎn)分析純。本研究所使用的儀器主要有:AKTA蛋白純化系統(tǒng) (Aamersham pharmacia biotech);SDS-PAGE系統(tǒng) (Aamersham pharmacia biotech);UV-2450光譜分光光度計(jì) (Shimadzu Co.,Kyoto,Japan);Hitrap DEAE FF弱陰離子柱 (GE Healthcare);Superdex 200 pg凝膠柱 (GE Healthcare)。
1.2方法
1.2.1重組酸性脲酶的分離純化
粗酶液的制備:將單菌落接種至含氯霉素(10 μg/mL) 的M17液體培養(yǎng)基中,30 ℃靜置培養(yǎng)16 h;按2.0%的接種量接種于3 L發(fā)酵罐中,裝液量為1.5 L,培養(yǎng)溫度為30 ℃,攪拌轉(zhuǎn)速為100 r/min,當(dāng)OD600約為0.4時(shí),加入終濃度為10 ng/mL的乳酸鏈球菌肽,誘導(dǎo)表達(dá)8 h。離心收集菌體后,用200 mL的10 mmol/L Tris-HCl (pH 7.4) 溶液洗滌菌體2次并重懸,加入終濃度為5 mg/mL的溶菌酶后30 ℃水浴處理1 h,超聲破碎20 min,離心收集上清,加入無(wú)水乙醇至不同終濃度 (10%–80%),冰上放置30 min,離心收集沉淀,用10 mmol/L Tris-HCl (pH 7.4)溶液重懸沉淀,測(cè)定各乙醇濃度下的酶活大小。
Hitrap DEAE FF柱離子交換層析:將酶活最高的乙醇濃度下的上清液在10 mmol/L Tris-HCl (pH 7.4) 溶液中過(guò)夜透析后,加樣到Hitrap DEAE FF柱中,用0–1.0 mol/L NaCl溶液梯度洗脫,流速4.0 mL/min,收集活性部位。
Superdex 200 pg凝膠柱過(guò)濾層析:將經(jīng)過(guò)DEAE柱洗脫的活性部位加樣到Superdex 200 pg凝膠柱中,用10 mmol/L Tris-HCl (pH 7.4) 溶液洗脫,流速1.0 mL/min,收集洗脫液后經(jīng)10% SDS-PAGE分析鑒定純化后的蛋白。
1.2.2酶活測(cè)定方法
分別向兩個(gè)比色管中加入200 μL酶液和緩沖液。然后加入800 μL 3.0%尿素或EC溶液,在37 ℃水浴反應(yīng)20 min后,立即加入1.0 mL終止劑 (10%三氯乙酸),振蕩混勻后加入1.0 mL顯色劑I (15 g苯酚和0.625 g亞硝基鐵氰化鈉用蒸餾水定容至250 mL) 和1.0 mL顯色劑II (13.125 g NaOH和7.5 mL次氯酸鈉用蒸餾水定容至250 mL),混勻后37 ℃水浴處理20 min后取出,用蒸餾水定容至25 mL,625 nm處檢測(cè)吸光值。緩沖液作空白對(duì)照。
酶活活力定義:在常壓、37 ℃、pH 4.5的條件下,每分鐘分解尿素或EC產(chǎn)生1 μmol銨離子的酶量為1個(gè)酶活單位U。
1.2.3重組酸性脲酶在緩沖液中對(duì)尿素和EC的降解能力分析
為了分析重組酸性脲酶在緩沖液中對(duì)尿素和EC的降解能力,設(shè)計(jì)了一系列含不同濃度尿素和EC的緩沖液,如表1所示。50 mL的搖瓶中裝液量為20 mL,酶的添加量為500 U/L,定時(shí)取樣,樣品中尿素含量采用高效液相色譜方法測(cè)定[13],樣品中EC含量采用GC-MS測(cè)定[14-16]。
表1 不同濃度尿素和EC的檸檬酸鈉緩沖液Table 1 Sodium citrate buffer with different concentration of urea and EC
1.2.4重組酸性脲酶在黃酒中對(duì)尿素和EC的降解能力分析
為了分析重組酸性脲酶在黃酒中對(duì)尿素和EC的降解能力,向市售黃酒中分別添加不同濃度的尿素和EC。50 mL搖瓶中裝液量為20 mL,酶的添加量分別為50、100、200和500 U/L,定時(shí)取樣,測(cè)定樣品中尿素和EC的含量。
1.2.5重組酸性脲酶對(duì)尿素和EC動(dòng)力學(xué)常數(shù)Km值的測(cè)定
為了初步分析重組酸性脲酶與尿素和EC的結(jié)合能力,將純化后的酶液與含不同濃度的尿素和EC的緩沖液反應(yīng),測(cè)定不同濃度下的吸光值,使用GraphPad Prism軟件計(jì)算重組酸性脲酶對(duì)尿素和EC的動(dòng)力學(xué)常數(shù)Km值。
1.2.6重組酸性脲酶與尿素和EC的模擬結(jié)構(gòu)分析
利用在線(xiàn)結(jié)構(gòu)模擬網(wǎng)站http://zhanglab. ccmb.med.umich.edu/I-TASSER對(duì)UreC進(jìn)行結(jié)構(gòu)模擬,獲得的UreC結(jié)構(gòu)通過(guò)http://zhanglab. ccmb.med.umich.edu/BSP-SLIM與尿素和EC進(jìn)行分子對(duì)接,并用Pymol軟件對(duì)獲得的對(duì)接結(jié)果進(jìn)行分析。
2.1重組酸性脲酶的分離與純化
重組酸性脲酶在終濃度為40%–60%的乙醇溶液中沉淀下來(lái)。圖1為純化過(guò)程中Hitrap DEAE FF柱離子交換層析的色譜圖,圖2為純化過(guò)程中Superdex 200 pg凝膠柱過(guò)濾層析的色譜圖。將各階段純化的樣品進(jìn)行SDS-PAGE檢測(cè),電泳結(jié)果如圖3所示,其中通道6為已電泳純的重組酸性脲酶。
圖1 Hitrap DEAE FF柱離子交換色譜圖Fig. 1 Ion Exchange Chromatography of acid urease by Hitrap DEAE FF. (A) Conc. (B) Cond. (C) UV.
圖2 Superdex 200 pg凝膠柱過(guò)濾層析色譜圖Fig. 2 Gel filtration chromatography of acid urease by Superdex 200 pg. (A) UV. (B) Cond.
圖3 SDS-PAGE檢測(cè)重組酸性脲酶的純化Fig. 3 SDS-PAGE analysis of the recombinant acid urease. M: protein marker; 1: cell lysis supernatant; 2: 40%–60% ethanol precipitation; 3: penetrating fluid; 4: Hitrap DEAE FF sample; 5: concentrated liquid by Hitrap DEAE FF; 6: superdex 200 pg sample.
2.2重組酸性脲酶在緩沖液中對(duì)尿素和EC的降解能力分析
在含有不同濃度尿素和EC的緩沖液中重組酸性脲酶對(duì)尿素和EC的降解情況如圖4所示,由各降解曲線(xiàn)可知在緩沖液中酶對(duì)尿素有很強(qiáng)的降解能力,6 h時(shí)尿素已基本完全降解,而酶對(duì)EC的降解能力較微弱,并且尿素的存在對(duì)EC的降解沒(méi)有影響。
2.3重組酸性脲酶在黃酒中對(duì)尿素和EC的降解能力分析
為了分析在黃酒中重組酸性脲酶對(duì)尿素和EC的降解能力,在市售黃酒 (pH 4.1,酒精濃度≥15%) 中,添加500 U/L的酶液,同時(shí)向市售黃酒中加入50 mg/L的尿素以及400 μg/L EC后添加500 U/L的酶液,降解結(jié)果如圖5所示。檢測(cè)結(jié)果表明,在黃酒中重組酸性脲酶對(duì)尿素的降解能力明顯,2 h時(shí)已基本完全降解,但對(duì)EC的降解能力很微弱,基本無(wú)降解。
2.4不同酶量的重組酸性脲酶在黃酒中對(duì)尿素的降解能力分析
鑒于在黃酒中重組酸性脲酶對(duì)尿素有顯著的降解能力,向黃酒中及加入了50 mg/L尿素的黃酒中分別添加50、100、200和500 U/L的酶液,降解結(jié)果如圖6所示。結(jié)果表明,隨著酶量的增加,尿素的降解速率也隨之加快,酶的最佳添加量為100 U/L。
圖4 重組酸性脲酶對(duì)不同濃度的尿素和EC降解曲線(xiàn)Fig. 4 The degradation curve of different concentrations of urea and EC. (A) 10 mmol/L urea. (B) 10 mmol/L urea, 10 mmol/L EC. (C) 10 mmol/L urea, 100 mmol/L EC. (D) 10 mmol/L urea, 500 mmol/L EC. (E) 100 mmol/L EC. (F) 1 mmol/L urea, 100 mmol/L EC.
圖5 黃酒中重組酸性脲酶對(duì)尿素和EC的降解曲線(xiàn)Fig. 5 The degradation curve of urea and EC in Chinese Rice wine. (A) Without urea and EC. (B) 50 mg/L urea, 400 μg/L EC.
圖6 不同酶量的重組酸性脲酶對(duì)黃酒中尿素的降解曲線(xiàn)Fig. 6 The degradation curve of urea with different enzyme dosage in Chinese Rice wine. (A) Without urea and EC. (B) 50 mg/L urea.
2.5重組酸性脲酶對(duì)尿素和EC的動(dòng)力學(xué)常數(shù)Km值的測(cè)定
2.6重組酸性脲酶與尿素和EC的模擬結(jié)構(gòu)分析
根據(jù)在線(xiàn)模擬結(jié)構(gòu)網(wǎng)站模擬重組酸性脲酶與尿素和EC的結(jié)合區(qū)域,結(jié)果如圖8所示。模擬結(jié)構(gòu)顯示由于尿素的空間位阻比EC小,尿素更容易與重組酸性脲酶的催化活性中心結(jié)合。另一方面,尿素與氨基酸殘基Asp365和Ala368形成兩個(gè)氫鍵,而EC與氨基酸殘基Ser172形成一個(gè)氫鍵,由此推測(cè),尿素與重組酸性脲酶的結(jié)合能力比EC強(qiáng),更容易被降解。
圖7 尿素和EC的GraphPad Prism示意圖Fig. 7 GraphPad Prism plots of urea and EC. (A) Urea. (B) EC.
圖8 重組酸性脲酶與尿素和EC的結(jié)合區(qū)域Fig. 8 The binding domains of urea and EC with the recombinant acid urease. (A) Urea. (B) EC.
由于酸性脲酶能夠在酸性條件下將尿素分解為氨和二氧化碳,因此具有降解黃酒中尿素和EC的潛力。目前,人們已經(jīng)從不同菌屬如羅伊氏乳桿菌[17-18]、發(fā)酵乳桿菌[19]、節(jié)桿菌屬[20]、嗜熱鏈球菌[21-24]、唾液鏈球菌[25]以及腸桿菌屬[11]等分離純化出酸性脲酶。而所報(bào)道的酸性脲酶對(duì)尿素具有高度的催化專(zhuān)一性,對(duì)EC沒(méi)有催化活性[18-20]。本實(shí)驗(yàn)室前期成功構(gòu)建了表達(dá)酸性脲酶的乳酸乳球菌NZ9000-LR[12]。在此基礎(chǔ)上,本研究首先對(duì)酶進(jìn)行了分離純化,初步發(fā)現(xiàn)該酶不僅對(duì)尿素具有高效的催化活性,對(duì)EC也有一定的催化活性。為進(jìn)一步系統(tǒng)分析該酶在不同體系中對(duì)尿素和EC的降解能力,設(shè)計(jì)了一系列含有不同濃度尿素和EC的緩沖液,檢測(cè)發(fā)現(xiàn)重組酸性脲酶對(duì)EC的降解能力相對(duì)微弱,但當(dāng)EC過(guò)量存在時(shí) (g/L級(jí)別) 有一定的降解效果,并且尿素的存在對(duì)EC的降解沒(méi)有影響。隨后初步考察了重組酸性脲酶在黃酒中對(duì)尿素和EC的降解應(yīng)用,結(jié)果顯示對(duì)EC降解相對(duì)微弱。
本實(shí)驗(yàn)通過(guò)在黃酒中添加不同酶量的重組酸性脲酶研究對(duì)尿素的降解情況,其中添加50 U/L酶液1 d內(nèi)可使60 mg/L尿素完全降解。Yang等[11]添加80 U/L酶液7 d內(nèi)使25 mg/L尿素降解完全;Kakimoto等添加10 U/L酶液6 d內(nèi)使50 mg/L尿素降解完全;Miyagawa等[20]添加90 U/L酶液13 d內(nèi)使50 mg/L尿素降解完全,說(shuō)明該重組酸性脲酶對(duì)黃酒中尿素的降解能力十分顯著。另一方面,重組酸性脲酶對(duì)尿素和EC 的Km值分別為 0.714 7 mmol/L和41.32 mmol/L,對(duì)EC的Km值是對(duì)尿素Km值的57.8倍,并通過(guò)對(duì)重組酸性脲酶與尿素和EC的結(jié)合區(qū)域分析,初步判定該酶對(duì)EC的結(jié)合能力比尿素弱。盡管如此,該酶對(duì)EC的催化能力是之前報(bào)道的酸性脲酶所沒(méi)有的[20-26]。
綜上所述,結(jié)合重組酸性脲酶對(duì)EC的酶活顯色反應(yīng)以及其在緩沖液和黃酒中對(duì)EC的降解能力,該酶對(duì)EC具有一定的催化活性,但是由于與EC的結(jié)合能力較弱,對(duì)低濃度EC的降解能力不明顯。這為今后通過(guò)分子改造重組酸性脲酶與底物的結(jié)合區(qū)域或者催化活性區(qū)域,篩選具有高效催化EC的酸性脲酶提供了基礎(chǔ)和思路,具有廣闊的應(yīng)用前景和較高的潛在價(jià)值。
REFERENCES
[1] Ough CS, Crowell EA, Mooney LA. Formation of ethyl carbamate precursors during grape juice (Chardonnay) fermentation. I. Addition of amino acids, urea, and ammonia: effects of fortification on intracellular and extracellular precursors. Am J Enol Vitic, 1988, 39(3): 243–249.
這個(gè)意義的來(lái)源極為深遠(yuǎn)。青銅器上有關(guān)老虎的紋飾很常見(jiàn),比如饕餮紋。在古代軍隊(duì)的名稱(chēng)運(yùn)用,“虎”字和“虎”符,也流行千百年。1995年我在烏魯木齊買(mǎi)了把英吉沙小刀,刀柄就是虎紋。可惜它不允許帶上火車(chē),只好留給安檢。老虎作為一種權(quán)威,一種象征,比它作為兇獸更令人追捧和敬仰。
[2] Schlatter J, Lutz WK. The carcinogenic potential of ethyl carbamate (urethane): risk assessment at human dietary exposure levels. Food Chem Toxicol, 1990, 28(3): 205–211.
[3] Schehl B, Senn T, Lachenmeier DW, et al. Contribution of the fermenting yeast strain to ethyl carbamate generation in stone fruit spirits. Appl Microbiol Biotechnol, 2007, 74(4): 843–850.
[4] Ough CS, Trioli G. Urea removal from wine by an acid urease. Am J Enol Vitic, 1988, 39(4): 303–307.
[5] Mobley HL, Hausinger RP. Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev, 1989, 53(1): 85–108.
[6] Mobley HL, Island MD, Hausinger RP. Molecular biology of microbial ureases. Microbiol Rev, 1995, 59(3): 451–480.
[7] Qin YJ, Cabral JMS. Review properties and applications of urease. Biocatal Biotransform, 2002, 20(1): 1–14.
[8] Moreau MC, Ducluzeau R, Raibaud P. Hydrolysis of urea in the gastrointestinal tract of "monoxenic" rats: effect of immunization with strains of ureolytic bacteria. Infect Immun, 1976, 13(1): 9–15.
[9] Kakimoto S, Okazaki K, Sakane T, et al. Isolation and taxonomie characterization of acid urease-producing bacteria. Agric Biol Chem, 1989, 53(4): 1111–1117.
[10] Suzuki K, Benno Y, Mitsuoka T, et al. Urease-producing species of intestinal anaerobes and their activities. Appl Environ Microbiol, 1979, 37(3): 379–382.
[11] Yang LQ, Wang SH, Tian YP. Purification, properties, and application of a novel acid urease from Enterobacter sp.. Appl Biochem Biotechnol, 2010, 160(2): 303–313.
[12] Yang YQ, Kang Z, Zhou JL, et al. High-level expression and characterization of recombinant acid urease for enzymatic degradation of urea in rice wine. Appl Microbiol Biotechnol, 2015, 99(1): 301–308.
[13] Clark S, Francis PS, Conlan XA, et al. Determination of urea using high-performance liquid chromatography with fluorescence detection after automated derivatisation with xanthydrol. J Chromatogr A, 2007, 1161(1/2): 207–213.
[14] Lee K-G. Analysis and risk assessment of ethyl carbamate in various fermented foods. Eur Food Res Technol, 2013, 236(5): 891–898.
[15] Zhang J, Liu GX, Zhang Y, et al. Simultaneous determination of ethyl carbamate and urea in alcoholic beverages by high-performance liquidchromatography coupled with fluorescence detection. J Agric Food Chem, 2014, 62(13): 2797–2802.
[16] Huang WH, Geng PL, Cheng HP, et al. Detection of ethyl carbamate in Jiangxiang Baijiu (liquor) by SPE-GC/MS. Liquor-Making Sci Technol, 2014, (8): 105–108 (in Chinese).黃衛(wèi)紅, 耿平蘭, 程化鵬, 等. SPE-GC/MS 法測(cè)定醬香型白酒中氨基甲酸乙酯. 釀酒科技, 2014, (8): 105–108.
[17] Kakimoto S, Miyashita H, Sumino Y, et al. Properties of acid ureases from Lactobacillus and Streptococcus strains. Agric Biol Chem, 1990, 54(2): 381–386.
[18] Kakimoto S, Sumino Y, Akiyama IS, et al. Purification and characterization of acid urease from Lactobacillus reuteri. Agric Biol Chem, 1989, 53(4): 1119–1125.
[19] Kakimoto S, Sumino Y, Kawahara K, et al. Purification and characterization of acid urease from Lactobacillus fermentum. Appl Microbiol Biotechnol, 1990, 32(5): 538–543.
[20] Miyagawa K, Sumida M, Nakao M, et al. Purification, characterization, and application of an acid urease from Arthrobacter mobilis. J Biotechnol, 1999, 68(213): 227–236.
[21] Mora D, Fortina M, Parini C, et al. Genetic diversity and technological properties of Streptococcus thermophilus strains isolated from dairy products. J Appl Microbiol, 2002, 93(2): 278–287.
[22] Mora D, Maguin E, Masiero M, et al. Characterization of urease genes cluster of Streptococcus thermophilus. J Appl Microbiol, 2004, 96(1): 209–219.
[23] Mora D, Monnet C, Parini C, et al. Urease biogenesis in Streptococcus thermophilus. Res Microbiol, 2005, 156(9): 897–903.
[24] Zotta T, Ricciardi A, Rossano R, et al. Urease production by Streptococcus thermophilus. Food Microbiol, 2008, 25(1): 113–119.
[25] Chen YYM, Clancy KA, Burne RA. Streptococcus salivarius urease: genetic and biochemical characterization and expression in a dental plaque Streptococcus. Infect Immun, 1996, 64(2): 585–592.
[26] Takebe S, Kobashi K. Acid urease from Lactobacillus of rat intestine. Chem Pharm Bull, 1988, 36(2): 693–699.
(本文責(zé)編 郝麗芳)
醫(yī)學(xué)與免疫生物技術(shù)
Degradation of urea and ethyl carbamate in Chinese Rice wine by recombinant acid urease
Jianli Zhou1,2, Zhen Kang1,2,3, Qingtao Liu1,2, Guocheng Du2,3and Jian Chen2,3
1 Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
2 School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
3 The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, Jiangsu, China
Abstract:Ethyl carbamate (EC) as a potential carcinogen commonly exists in traditional fermented foods. It is important eliminate urea that is the precursors of EC in many fermented foods, including Chinese Rice wine. On the basis of achieving high-level overexpression of food-grade ethanol-resistant acid urease, we studied the hydrolysis of urea and EC with the recombinant acid urease. Recombinant acid urease showed degraded urea in both the simulated system with ethanol and Chinese Rice wine (60 mg/L of urea was completely degraded within 25 h), indicating that the recombinant enzyme is suitable for the elimination of urea in Chinese Rice wine. Although recombinant acid urease also has degradation catalytic activity on EC, no obvious degradation of EC was observed. Further investigation results showed that the Kmvalue for urea and EC of the recombinant acid urease was 0.7147 mmol/L and 41.32 mmol/L, respectively. The results provided theoretical foundation for realizing simultaneous degradation of urea and EC.
Keywords:recombinant acid urease, ethyl carbamate, urea, food safety, enzymatic degradation
DOI:10.13345/j.cjb.150134
Corresponding authors: Zhen Kang. Tel: +86-510-85918307; Fax: +86-510-85918309; E-mail: zkang@jiangnan.edu.cn