国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

分離培養(yǎng)適用于染色體分選的新生小鼠皮膚成纖維細(xì)胞

2016-08-06 07:28:51晁天柱徐福意周宇荀肖君華
關(guān)鍵詞:流式細(xì)胞術(shù)

晁天柱, 徐福意, 徐 偉, 李 凱, 周宇荀, 肖君華

(東華大學(xué) 生物科學(xué)與技術(shù)研究所,上海 201620)

?

分離培養(yǎng)適用于染色體分選的新生小鼠皮膚成纖維細(xì)胞

晁天柱, 徐福意, 徐偉, 李凱, 周宇荀, 肖君華

(東華大學(xué) 生物科學(xué)與技術(shù)研究所,上海 201620)

摘要:采用酶消化法分離培養(yǎng)新生小鼠皮膚成纖維細(xì)胞(mouse skin fibroblasts, MSFs).通過噻唑藍(lán)(MTT)比色法和流式細(xì)胞術(shù)(flow cytometry, FCM),深入探討不同培養(yǎng)基和血清濃度對(duì)MSFs增殖率和同步化效率的影響.結(jié)果表明:酶消化法能快速獲取大量健康、高活力的MSFs;在杜氏培養(yǎng)液(DMEM)傳代培養(yǎng)條件下,P2代MSFs具有高增殖率和有絲分裂指數(shù);地美可辛工作濃度為0.05 μg/mL時(shí),阻斷同步化獲取M期MSFs的效率最佳.研究結(jié)果為流式細(xì)胞術(shù)分選染色體提供實(shí)驗(yàn)材料和研究基礎(chǔ).

關(guān)鍵詞:成纖維細(xì)胞; 噻唑藍(lán)(MTT); 細(xì)胞同步化; 流式細(xì)胞術(shù)

純化的染色體可應(yīng)用于物理作圖[1-2]、熒光原位雜交(fluorescence in situ hybridization, FISH)[3-4]、構(gòu)建DNA文庫(kù)[5-6]、有絲分裂相關(guān)蛋白質(zhì)[7-8]的研究和二代測(cè)序.染色體純化和測(cè)序技術(shù)相結(jié)合能快速、高效地獲取目標(biāo)染色體的DNA序列信息[9],并廣泛應(yīng)用于動(dòng)植物個(gè)體,如小麥[10]、山羊草[11]、人[12]、小鼠[13]和倉(cāng)鼠[14]等.在染色體純化方法中,顯微切割技術(shù)雖能獲得高純度染色體,但耗時(shí)、耗力,得率低[15];磁珠分選法的純度低,且染色體不完整[16];而流式細(xì)胞術(shù)(FCM)是染色體純化效率最高的方法[17].

雖然各種細(xì)胞類型都能用于流式細(xì)胞術(shù)分選染色體[18],但細(xì)胞的質(zhì)量、穩(wěn)定性和有絲分裂指數(shù),嚴(yán)重影響單染色體懸液的質(zhì)量和流式分辨率[19].成纖維細(xì)胞在適當(dāng)體外培養(yǎng)條件下可迅速增長(zhǎng)繁殖,而具有較高有絲分裂指數(shù)的胎鼠成纖維細(xì)胞(mouse embryonic fibroblasts, MEFs)是最佳選擇[20].但原代培養(yǎng)MEFs需處死母鼠和子鼠,因此針對(duì)珍貴的數(shù)量性狀基因座(quantitative trait locus, QTL)定位新策略“野生小家鼠來源一號(hào)染色體替換系”群體(population chromosome substitution strains, PCSSs)[21],選取快捷、方便的新生小鼠皮膚是更合適的選擇.

通過優(yōu)化細(xì)胞培養(yǎng)條件提高細(xì)胞有絲分裂指數(shù),結(jié)合秋水仙酰胺[20]或地美可辛[22]提高有絲分裂中期(mitosis metaphase, M-phase)細(xì)胞的比例,能有效降低影響流式分辨率的細(xì)胞碎片數(shù)量[18,23].本文以PCSSs群體新生小鼠皮膚為樣本,利用酶消化法分離培養(yǎng)新生小鼠皮膚成纖維細(xì)胞(mouse skin fibroblasts, MSFs),并進(jìn)一步通過噻唑藍(lán)(MTT)比色法和流式細(xì)胞周期檢測(cè)技術(shù)獲得MSFs最佳培養(yǎng)條件.

1材料和方法

1.1實(shí)驗(yàn)動(dòng)物

遵守1988年《實(shí)驗(yàn)動(dòng)物管理?xiàng)l例》,在東華大學(xué)生物科學(xué)與技術(shù)研究所屏障動(dòng)物實(shí)驗(yàn)室設(shè)施進(jìn)行實(shí)驗(yàn),獲取清潔級(jí)PCSSs群體新生小鼠,并在冰冷的碘酊和75%酒精中,分別處理2~3min,備用.

1.2新生小鼠皮膚成纖維細(xì)胞培養(yǎng)

取新生小鼠皮膚,磷酸鹽緩沖液(PBS,Hyclone)漂洗后用手術(shù)刀將其切成盡量小塊,膠原酶(1mg/mL, Sigma)37℃消化處理30min;1 500 r/min離心5min,棄上清;PBS重懸清洗,胰酶(0.5mg/mL,含乙二胺四乙酸(EDTA),上海吉泰生物科技有限公司)37℃消化處理20min;離心棄上清;加入含特級(jí)胎牛血清(FBS,體積分?jǐn)?shù)為15%,Gibico)和雙抗(250 μg /mL青霉素和400 μg/mL鏈霉素,南京凱基生物科技發(fā)展有限公司)的杜氏培養(yǎng)液和F12培養(yǎng)液混合培養(yǎng)基(DMEM/F12,體積比為1∶1,Gibco)培養(yǎng)基,重懸吹散沉淀并接種于T75培養(yǎng)瓶(Corning)中,置入37℃,5% CO2培養(yǎng)箱.用胰酶(2.5 mg/mL)消化傳代融合在85%的MSFs,傳代培養(yǎng)條件分別為含雙抗(50 μg /mL青霉素和80 μg/mL鏈霉素)的DMEM-15%FBS,DMEM-10%FBS,DMEM/F12-15%FBS和DMEM/F12-10%FBS.取P1~P5代MSFs開展實(shí)驗(yàn).

1.3MTT法評(píng)估細(xì)胞增殖狀況

MSFs以1×104細(xì)胞/孔于96孔培養(yǎng)板上接種細(xì)胞,培養(yǎng)48h后,加入質(zhì)量濃度為0.5mg/mL的MTT溶液,37℃,4h后棄上清并加入100μL二甲基亞砜(DMSO,Sigma),15min后采用Multiskan MK3(Thermo)型酶標(biāo)儀測(cè)定490nm處的吸光度值.

1.4MSFs阻斷同步化

取P2代MSFs以1×105細(xì)胞/孔于6孔培養(yǎng)板接種細(xì)胞,在細(xì)胞密度約為70%時(shí),分別加入質(zhì)量濃度為0.20,0.10,0.05 μg/mL的地美可辛.放入培養(yǎng)箱,分別在0,12,14,16,18,20,22 h,用胰酶消化法收集細(xì)胞,PBS清洗2次,緩慢加入1mL體積分?jǐn)?shù)為75%的乙醇重懸細(xì)胞,-20℃保存?zhèn)溆茫?/p>

1.5細(xì)胞周期分析

取酒精固定MSFs,PBS清洗2次,加入500μL 含核糖核酸酶(100 μg/mL,Sigma)、乙二胺四乙酸(0.003 7 mg/mL,Sigma)和碘化丙啶(50 μg/mL,上海生工生物工程技術(shù)有限公司)的混合溶液,避光4℃染色1h.通過BD Accuri C6檢測(cè)MSFs細(xì)胞周期,用BD Csampler software軟件分析MSFs細(xì)胞周期各時(shí)期細(xì)胞的百分比.

2結(jié)果與分析

2.1新生小鼠成纖維細(xì)胞分離培養(yǎng)

利用酶消化法獲取大量、高活力新生小鼠成纖維細(xì)胞如圖1所示.由圖1(a)可知,初始培養(yǎng)12h后原代培養(yǎng)的MSFs散布貼壁,細(xì)胞呈紡錘形或不規(guī)則三角形,有少量上皮細(xì)胞,細(xì)胞核清晰,無(wú)集落.培養(yǎng)2d,細(xì)胞生長(zhǎng)成單層細(xì)胞,呈典型梭形,旋渦狀排列或縱橫交錯(cuò)(圖1(b)).3d左右單層細(xì)胞鋪滿瓶底,可消化傳代進(jìn)行傳代培養(yǎng)(圖1(c)).傳代培養(yǎng)48h細(xì)胞可鋪滿皿底(圖1(d)).

2.2MSFs增殖率檢測(cè)

采用MTT比色法檢測(cè)各世代MSFs增殖率,測(cè)試結(jié)果如圖2所示.由圖2可知,在DMEM培養(yǎng)條件下,P1~P2代MSFs的吸光度最高(吸光度與細(xì)胞數(shù)量成正比),說明此時(shí)MSFs增殖率最高,P3代開始快速下降;DMEM/F12培養(yǎng)條件下,MSFs增殖率逐代下降,且在P3~P4代開始凋亡.P1~P2代MSFs的增殖率,在DMEM和DMEM/F12兩種培養(yǎng)基之間具有極顯著差異(P<0.000 1),而10%FBS和15% FBS對(duì)MSF增殖率無(wú)顯著影響(P>0.1),說明影響P1~P2代MSF增殖率的主要因素為培養(yǎng)基.

(a) MSFs初始培養(yǎng)12 h(×50)

(b) MSFs初始培養(yǎng)2 d(×100)

(d) MSFs傳代培養(yǎng)48 h(×100)

圖2 MSFs的增殖率Fig.2 The proliferation rate of MSFs

高濃度雙抗既抑制細(xì)菌滋生也抑制細(xì)胞增殖,MSFs初始培養(yǎng)的雙抗?jié)舛雀哂趥鞔囵B(yǎng),因此P1→P2代MSFs的增殖率逐漸上升.MSFs對(duì)氧化壓力敏感,在20% O2的培養(yǎng)條件下易發(fā)生氧化損傷和傳代危機(jī)[24-25],氧化壓力是導(dǎo)致P3代MSFs活力急速下降的可能原因.雖然DMEM/F12能促進(jìn)MSFs貼壁和增殖,但會(huì)降低MSFs傳代次數(shù),是P1~P2代MSFs低增殖率和有絲分裂指數(shù)以及P3代MSFs開始凋亡的原因.

2.3流式細(xì)胞術(shù)檢測(cè)MSFs細(xì)胞周期

采用流式細(xì)胞術(shù)檢測(cè)細(xì)胞周期,根據(jù)單細(xì)胞中DNA含量的差異將細(xì)胞周期分為 G0/G1期(2倍體)、S期(2~4倍體)和G2/M期(4倍體).表1列舉了4種培養(yǎng)條件下,地美可辛(0.05, 0.10,0.20 μg/mL)阻斷同步化MSFs停滯在M期,導(dǎo)致G2/M期4倍體MSFs的百分?jǐn)?shù)變化情況.由表1可知,0.05 μg/mL地美可辛阻斷同步化MSFs的效率最佳:在DMEM-15%FBS培養(yǎng)條件下,阻斷同步化MSFs 18h,G2/M期細(xì)胞百分?jǐn)?shù)達(dá)到最大(56.4%±0.19%);DMEM-10%FBS為18h(58.6%±0.53%);DMEM/F12-15%FBS為16h(57.4%±0.52%);DMEM/F12-10%FBS為22 h(58.5%±0.69%),都高于0.10和0.20μg/mL地美可辛阻斷同步化的效率,且具有顯著差異(P<0.05).在DMEM傳代培養(yǎng)條件下,指數(shù)生長(zhǎng)期MSFs(對(duì)照組)的有絲分裂指數(shù)更高,即G2/M期細(xì)胞比例高于DMEM/F12傳代培養(yǎng)的MSFs且存在極顯著差異(P<0.000 1),表明DMEM更適于MSFs傳代培養(yǎng).

隨著地美可辛阻斷同步化時(shí)間的延長(zhǎng),凋亡MSFs的比例逐漸增加(如表2所示),G2/M期細(xì)胞的百分?jǐn)?shù)達(dá)到最大值(阻斷同步化16~18h)后逐漸下降,說明阻斷同步化16h后,M期細(xì)胞凋亡率高于其增加率.地美可辛阻斷同步化超過16h誘發(fā)M期細(xì)胞凋亡,生成降低流式分辨率的亞細(xì)胞結(jié)構(gòu)[19],因此地美可辛同步化MSFs的時(shí)間應(yīng)小于16h.

表1 G2/M期MSFs百分?jǐn)?shù)(平均值±標(biāo)準(zhǔn)差)

注:對(duì)照樣本和地美可辛處理樣本之間G2/M期細(xì)胞百分?jǐn)?shù)存在極顯著差異(P<0.001).

表2 凋亡MSFs百分?jǐn)?shù)(平均值±標(biāo)準(zhǔn)差)

注:4種培養(yǎng)條件下,地美可辛(0.05 ,0.10,0.20 μg/mL)阻斷同步化MSFs,凋亡MSFs的百分?jǐn)?shù).對(duì)照樣本和地美可辛處理樣本之間凋亡細(xì)胞百分比數(shù)存在極顯著差異(P<0.001).

3結(jié)語(yǔ)

本文通過酶消化法能快速獲得大量具有高增殖率的新生小鼠皮膚成纖維細(xì)胞;相比DMEM/F12,在DMEM傳代培養(yǎng)條件下MSFs具有更高的增殖率和有絲分裂指數(shù);FCM分析MSFs在不同地美可辛濃度下G2/M期百分?jǐn)?shù),發(fā)現(xiàn)0.05 μg/mL地美可辛阻斷同步化MSFs 的效率最高.根據(jù)地美可辛處理?xiàng)l件下MSFs凋亡和G2/M百分?jǐn)?shù)的變化規(guī)律,發(fā)現(xiàn)地美可辛阻斷同步化時(shí)間應(yīng)小于16h.

參考文獻(xiàn)

[1] NEELY R K, DEEN J, HOFKENS J. Optical mapping of DNA: Single-molecule-based methods for mapping genomes[J]. Biopolymers, 2011, 95(5):298-311.

[2] YONG N D, DEBELLE F, OLDROYD G E, et al. The medicago genome provides insight into the evolution of rhizobial symbiose [J]. Nature, 2011,480:520-524.

[3] HAN Y H, ZHANG Z H, HUANG S W, et al. An integrated molecular cytogenetic map of cucumis sativus L chromosome 2 [J]. BMC Genet, 2011, 12(1):18-24.

[4] SZINAY D, BAI Y, VISSER R, et al.FISH applications for genomics and plant breeding strategies in tomato and other solanaceous crops [J]. Cytogenet Genome Res, 2010, 129(1/2/3):199-210.

[5] KORSTANJE R, GILLISSEN G F, DEN BIEMAN M G, et al.Mapping of rabbit chromosome 1 markers generated from a microsatellite enriched chromosomespecific library [J]. Anim Genet, 2001, 32(5):308-312.

[6] SAFAR J, BARTO S J, JANDA J, et al. Dissecting large and complex genomes: Flow sorting and BAC cloning of individual chromosomes from bread wheat [J]. Plant J, 2004, 39(6):960-968.

[7] FUKUI K. Structural analyses of chromosomes and their constituent proteins [J]. Cytogenet Genome Res, 2009, 124(3/4):215-227.

[8] BIRCHLER J A, GAO Z, HAN F P. A tale of two centromeresdiversity of structure but conservation of function in plants and animals [J]. Funct Integr Genom, 2009, 9(1):7-13.

[9] DOLE?EL J, VRNA J, SAFJ, et al. Chromosomes in the flow to simplify genome analysis [J]. Funct Integr Genomics, 2012, 12(3): 397-416.

[10] CHOULE F, ALBERTI A, FEUILLET C, et al. Structural and functional partitioning of bread wheat chromosome 3B [J]. Science, 2014, 345: 1249721.

[11] AKPINA R BA, LUCAS S J, BUDAK H, et al. Sequencing chromosome 5D of aegilops tauschii and comparison with its allopolyploid descendant bread wheat (Triticum aestivum) [J]. Plant Biotechnology Journal, 2015,13(6):740-752.

[12] YANG H, CHEN X, WONG W H. Completely phased genome sequencing through chromosome sorting [J]. Proc Natl Acad Sci USA, 2011, 108(1): 12-17.

[13] SUDBERY I, STALKER J, ADAMS D J, et al. Deep shortread sequencing of chromosome 17 from the mouse strains A/J and CAST/Ei identifies significant geimline varitaion and candidate genes that regulate liver triglyceride levels [J]. Genome Biol, 2009, 10(10): R112.1-R112.19.

[14] KURIKI H, SONATA S, MURATA K. Flow karyotype analysis and sorting of theChinese hamster chromosome: Comparing the effects of the isolation buffer [J]. J Clin Lab Anal, 1993, 7(2): 119-122.

[15] DI BUCCHIANICO S, POMA A M, GIARDI M F,et al. Atomic force microscope nanolithography on chromosomes to generate single-cell genetic probes [J]. J Nanobiotechnology, 2011, 9: 27-33.

[16] VITHARANA S N, WILSON G S. Fractionation of chromosome 15 with an affinity-based approach using magnetic beads [J]. Genomics, 2006, 87(1): 158-164.

[17] BARTHOLDI M F, PARSON J D, ALBRIGHT K A, et al.System for flow sorting chromosomes on the basis of pulse shape [J]. Cytometry, 1990, 11(1): 165-172.

[18] TRASK B. Chromosome isolation procedures [M]//GRAY J. Flow Cytogenetics. New York: Academic Press, 1989: 43-60.

[19] METEZEAU P, SCHMITZ A, FRELAT G. Analysis and sorting of chromosomes by flow cytometry: New trends [J]. Bio Cell, 1993, 78(1/2): 31-39.

[20] NG B L, CARTER N P. Factors affecting flow karyotype resolution [J]. Cytometry A, 2006, 69(9): 1028-1036.

[21] XIAO J H, LIANG Y M, LI K, et al. A novel strategy for genetic dissection of complex traits: The population of specific chromosome substitution strains from laboratory and wild mice [J]. Mamm Genome, 2010, 21(7/8): 370-376.

[22] LI Z, CHEN X, SUN X, et al. Nuclear transfer of Mphase ferret fibroblasts synchronized with the microtubule inhibitor demecoline [J]. J Exp Zool A Comp Exp Bio, 2005, 303(12):1126-1134.

[23] LOZES C. Cell culture for chromosome isolation [M]//GRAY J. Flow Cytogenetics. New York: Academic Press, 1989: 35-42.

[24] SELUANOV A, HINE C, GORBNOVA V, et al. Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan [J]. Aging Cell, 2008, 7(6): 813-823.

[25] PARRINELLO S, SAMPER E, CAMPISI J, et al. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts [J]. Nat Cell Bio, 2003, 5(8): 741-747.

文章編號(hào):1671-0444(2016)03-0390-05

收稿日期:2015-06-08

基金項(xiàng)目:國(guó)家自然科學(xué)基金面上資助項(xiàng)目(31371257);上海市科委關(guān)鍵資助項(xiàng)目(12140900404)

作者簡(jiǎn)介:晁天柱(1982—),男,山東棗莊人,博士研究生,研究方向?yàn)獒t(yī)學(xué)分子遺傳學(xué).E-mail:chaotianzhu@126.com 肖君華(聯(lián)系人),男,教授,E-mail:xiaojunhua@dhu.edu.cn

中圖分類號(hào):Q 952

文獻(xiàn)標(biāo)志碼:A

Isolation and Culturing of Fibroblasts from Newborn Mouse Skin for Chromosome Sorting

CHAOTian-zhu,XUFu-yi,XUWei,LIKai,ZHOUYu-xun,XIAOJun-hua

(Institute of Biological Sciences and Biotechnology,Donghua University, Shanghai 201620, China)

Abstract:The newborn mouse skin fibroblasts (MSFs) were isolated from the skin of newborn mouse using collagenase and trypsin digestion method. And the proliferation and synchronization rate of MSFs were measured by methylthiazolyl-tetrazolium (MTT ) assay and flow cytometry (FCM ) under different blood serum concentration and medium, respectively. Results show that the healthy and highly active MSFs were isolated using enzyme digestion method. In different blood serum concentration and medium, MSFs have the optimum synchronization rate with 0.05 μg/mL demecocline, and highest proliferation rate and mitoticindex under the culture of Dulbecco’s modified eagle medium (DMEM) in passage two. And the research result provides the experimental materials and research foundations for the flow chromosome sorting.

Key words:fibroblast; methylthiazolyl-tetrazolium (MTT ); cell synchronization; flow cytometry

猜你喜歡
流式細(xì)胞術(shù)
密度梯度離心法和紅細(xì)胞裂解法對(duì)小鼠外周血淋巴細(xì)胞表面分子表達(dá)的影響
不明原因反復(fù)流產(chǎn)患者外周血T淋巴細(xì)胞亞群及NK細(xì)胞的變化
腦脊液流式細(xì)胞術(shù)在兒童中樞神經(jīng)系統(tǒng)白血病早期診斷中的意義
熒光原位雜交和流式細(xì)胞術(shù)結(jié)合FISH—FCM對(duì)肉食品中腸桿菌科細(xì)菌的快速定量檢測(cè)
內(nèi)皮細(xì)胞膜微粒在慢性阻塞性肺疾病中的表達(dá)及意義
免疫性血小板減少癥患者外周血淋巴細(xì)胞亞群變化的研究
血小板微顆粒的促凝功能與流式細(xì)胞術(shù)絕對(duì)計(jì)數(shù)值的相關(guān)性
流式細(xì)胞術(shù)及其應(yīng)用
兩種重組抗CD20人源化單克隆抗體定量分析方法的比較及其在藥代動(dòng)力學(xué)研究中的應(yīng)用
多發(fā)性骨髓瘤患者化療序貫CIK細(xì)胞輸注前后MRD的監(jiān)測(cè)
水城县| 分宜县| 临猗县| 绍兴市| 大宁县| 万全县| 井研县| 潢川县| 保亭| 博爱县| 深水埗区| 宜丰县| 马尔康县| 杭锦后旗| 平舆县| 淅川县| 蓬溪县| 南丹县| 乡城县| 昂仁县| 忻城县| 威海市| 北票市| 朝阳市| 福海县| 汉阴县| 双流县| 德安县| 兴隆县| 普格县| 汤阴县| 斗六市| 安阳市| 精河县| 舞钢市| 同仁县| 枝江市| 乡城县| 文昌市| 石阡县| 新龙县|