王 娜 綜述,欒材富 審校
(1.青島大學(xué),山東青島 266000;2.青島大學(xué)醫(yī)學(xué)院附屬煙臺(tái)毓璜頂醫(yī)院,山東煙臺(tái) 264000)
?
EGFR/PI3K/AKT信號(hào)通路在肺癌中的研究進(jìn)展
王娜1綜述,欒材富2審校
(1.青島大學(xué),山東青島 266000;2.青島大學(xué)醫(yī)學(xué)院附屬煙臺(tái)毓璜頂醫(yī)院,山東煙臺(tái) 264000)
關(guān)鍵詞:表皮生長因子受體;磷脂酰肌醇-3激酶;AKT;肺癌;靶向治療
肺癌是臨床最常見的惡性腫瘤之一,為我國城市腫瘤相關(guān)死亡的主要病因,近年來肺癌的發(fā)病率和病死率增長迅速,嚴(yán)重危害人類健康和生命。在我國,每年大約有30萬人被診斷患有肺癌,超過25萬人因該病死亡[1]。肺癌從組織學(xué)上分為小細(xì)胞型肺癌和非小細(xì)胞型肺癌(NSCLC),其中NSCLC占85%左右,包括鱗癌、腺癌、大細(xì)胞性肺癌[2]。NSCLC的傳統(tǒng)治療包括放療、化療和手術(shù),但是超過75%的晚期肺癌患者不適合手術(shù)[3]。近年來腫瘤的靶向治療迅速發(fā)展,為NSCLC的治療提供了機(jī)遇。研究發(fā)現(xiàn),EGFR/PI3K/AKT信號(hào)通路的過度激活將促進(jìn)肺癌細(xì)胞增殖、 侵襲及轉(zhuǎn)移并抑制細(xì)胞凋亡[4]。
1EGFR/PI3K/AKT信號(hào)轉(zhuǎn)導(dǎo)通路概述
表皮生長因子受體(EGFR)也被稱為ERBB1和HER1,是一種跨膜酪氨酸激酶受體(RTK),相對分子質(zhì)量為170×103,廣泛分布在除造血組織細(xì)胞、體壁內(nèi)胚層細(xì)胞及成熟骨骼肌細(xì)胞外的人體細(xì)胞中。EGFR是參與細(xì)胞信號(hào)通路的重要成分,由胞外區(qū)、跨膜區(qū)和胞內(nèi)區(qū)三部分組成,其中胞外區(qū)主要與配體結(jié)合,而胞內(nèi)區(qū)含有ATP結(jié)合區(qū)和酪氨酸激酶區(qū)。EGFR 與配體在胞外區(qū)結(jié)合后形成二聚體并使胞內(nèi)區(qū)磷酸化,進(jìn)而激活下游一系列信號(hào)通路。EGFR在正常的胚胎發(fā)育、組織損傷修復(fù)中發(fā)揮著重要作用,它與表皮生長因子和轉(zhuǎn)化生長因子-α等共同調(diào)節(jié)人體細(xì)胞的增殖、分化、存活和轉(zhuǎn)移等[5]。研究表明,EGFR 高表達(dá)可促進(jìn)腫瘤細(xì)胞增殖、抑制細(xì)胞凋亡,并使血管形成加速、 細(xì)胞黏附性增強(qiáng),導(dǎo)致腫瘤發(fā)生、侵襲和轉(zhuǎn)移[6]。
磷脂酰肌醇-3激酶(PI3K)是脂類激酶家族中一員,在細(xì)胞增殖、存活等細(xì)胞功能方面具有重要的作用[7]。PI3Ks根據(jù)結(jié)構(gòu)和功能分為Ⅰ、Ⅱ和Ⅲ類,Ⅰ類又分為ⅠA和ⅠB,其中ⅠA類是異質(zhì)二聚體蛋白,在腫瘤形成中發(fā)揮重要作用。ⅠA類PI3Ks由p110(即PIK3CA)催化亞基和p85調(diào)節(jié)亞基構(gòu)成,這兩個(gè)亞基都能被表皮生長因子酪氨酸激酶(RTKs)激活。p110亞基由p110α、p110β和p110δ 3個(gè)亞型組成,分別被 PIK3CA、PIK3CB和PIK3CD基因編碼;p85亞基由5個(gè)亞型p85α、p85β、 p55α、p55γ和p50α組成。
AKT是一種絲氨酸/蘇氨酸激酶,也被稱為蛋白激酶B(PKB),由N端PH區(qū)、中心催化區(qū)和C端調(diào)節(jié)區(qū)三部分組成。AKT能夠磷酸化TSC2、FOXO蛋白、eNOS、BAD及IKKα等多種蛋白底物,是細(xì)胞增殖、存活和代謝的調(diào)節(jié)器。哺乳動(dòng)物雷帕霉素靶蛋白(mTOR)是一種絲氨酸/蘇氨酸激酶,屬于磷脂酰肌醇激酶相關(guān)激酶(Pikk)家族,分為mTORC1和mTORC2。
EGFR與其配體結(jié)合后,引起自身磷酸化和二聚體化,激活PI3K/AKT下游信號(hào)通路,使ⅠA類PI3Ks募集到細(xì)胞膜上,使磷脂酰肌醇-4,5-二磷酸(PIP2)磷酸化為磷脂酰肌醇-3,4,5-三磷酸(PIP3),PIP3作為第二信使與AKT的PH區(qū)域結(jié)合,隨后AKT的催化結(jié)構(gòu)域Thr308位點(diǎn)被PDK1磷酸化,而C-末端疏水區(qū)域的Ser473位點(diǎn)則被mTORC2磷酸化,從而激活A(yù)KT。AKT活化后使結(jié)節(jié)性硬化癥相關(guān)蛋白2和1(TSC2-TSC1)磷酸化而失活,從而導(dǎo)致Rheb GTP水平升高,激活mTORC1,mTORC1活化后磷酸化多種下游蛋白如核糖體p70S6激酶(p70S6K)、eIF4E結(jié)合蛋白(4E-BPs)等,這些效應(yīng)蛋白共同促進(jìn)腫瘤細(xì)胞的生長和蛋白質(zhì)合成[8-10],如圖1。
圖1 EGFR/PI3K/AKT/mTOR信號(hào)通路[11]
2EGFR/PI3K/AKT信號(hào)傳導(dǎo)通路的調(diào)控機(jī)制
EGFR/PI3K/AKT信號(hào)傳導(dǎo)通路受多種因子的調(diào)節(jié),如Gab1、PTEN等。Grb2相關(guān)蛋白1(Gab1)是正調(diào)控因子,在EGFR/PI3K/AKT信號(hào)通路中發(fā)揮著重要作用。當(dāng)EGFR被激活后,磷酸化Gab1,招募大量的PI3K等下游信號(hào)蛋白,Gab1的PH區(qū)能特異的結(jié)合PI3K激酶產(chǎn)物PIP3,促使Gab1遷移到細(xì)胞膜上,增強(qiáng)Gab1介導(dǎo)的EGFR/PI3K/AKT信號(hào)通路的傳導(dǎo),而C端特異性酪氨酸磷酸化后可與PI3K調(diào)節(jié)亞基的p85結(jié)合,從而使PI3K大量激活,增強(qiáng)EGFR/PI3K/AKT信號(hào)的傳遞[12]。腫瘤抑制基因PTEN是EGFR/PI3K/AKT信號(hào)通路的負(fù)調(diào)控因子。PTEN具有磷酸酶活性,可以使細(xì)胞內(nèi)PIP3去磷酸化形成PIP2,使其喪失第二信使作用并阻斷PI3K信號(hào)通路。研究發(fā)現(xiàn),PTEN表達(dá)缺失可以導(dǎo)致p-AKT活性增強(qiáng),促進(jìn)癌細(xì)胞增殖,抑制細(xì)胞凋亡[13]。此外,Zhong等[14]發(fā)現(xiàn)嵌合泛素連接酶通過負(fù)調(diào)控EGFR信號(hào)通路,促進(jìn)EGFR泛素化和降解,阻滯下游的PI3K/AKT信號(hào)通路,抑制細(xì)胞的增殖和轉(zhuǎn)移,促進(jìn)細(xì)胞凋亡。Yu等[15]研究發(fā)現(xiàn)mTORC1磷酸化S6激酶和Grb10后能發(fā)揮負(fù)反饋效應(yīng),減少PI3K、AKT的活化,從而抑制腫瘤細(xì)胞的發(fā)展進(jìn)程。
3EGFR/PI3K/AKT信號(hào)通路在肺癌中的作用機(jī)制
EGFR作為腫瘤生長的刺激物,其突變和異常過表達(dá)與肺癌的發(fā)生有關(guān)。RAS/RAF/MEK/ERKS信號(hào)通路和PI3K/AKT信號(hào)通路是EGFR突變的2個(gè)主要的信號(hào)網(wǎng)絡(luò)系統(tǒng)[16-17]。其中,PI3K/AKT作為主要的信號(hào)通路可通過直接磷酸化多種轉(zhuǎn)錄因子促進(jìn)腫瘤細(xì)胞的增殖、抑制凋亡并增強(qiáng)細(xì)胞的侵襲和轉(zhuǎn)移能力。
3.1EGFR/PI3K/AKT信號(hào)傳導(dǎo)通路與肺癌細(xì)胞的增殖、凋亡EGFR/PI3K/AKT信號(hào)通路是重要的抗凋亡通路,而且與新生血管的生成有關(guān)。該通路促增殖和抗凋亡機(jī)制主要包括以下3種:
3.1.1轉(zhuǎn)化生長因子(TGF)途徑TGF-α通過EGFR/PI3K/AKT信號(hào)通路上調(diào)Sox-2和生存素蛋白的表達(dá),促進(jìn)腫瘤細(xì)胞的凋亡[18]。Liu等[19]發(fā)現(xiàn)TGF-β在轉(zhuǎn)錄后水平上通過EGFR/PI3K/AKT抑制TGIF(TG相互作用因子)的表達(dá),促進(jìn)轉(zhuǎn)錄細(xì)胞凋亡。
3.1.2Notch信號(hào)途徑Notch信號(hào)在調(diào)節(jié)細(xì)胞的增殖、分化、凋亡中具有重要作用。Notch家族在腫瘤細(xì)胞中主要通過EGFR/PI3K/AKT信號(hào)通路發(fā)揮作用,但是各成員扮演的角色不盡相同,Notch2上調(diào)可以抑制細(xì)胞生長和侵襲轉(zhuǎn)移,介導(dǎo)細(xì)胞凋亡,而敲除Notch1則可以達(dá)到上述同樣效果[20]。
3.1.3Bcl-2家族Bcl-2家族蛋白是EGFR信號(hào)通路與凋亡的主要聯(lián)系樞紐。根據(jù)其功能和四種Bcl-2同源區(qū)域不同分為三大類,其中BH3亞家族(促凋亡蛋白)中的PUMA能夠促進(jìn)EGFR突變的肺癌細(xì)胞的凋亡。PI3K/AKT信號(hào)通路抑制劑能觸發(fā)FOXO轉(zhuǎn)錄因子核轉(zhuǎn)移,反式激活PUMA,促使腫瘤細(xì)胞凋亡[21]。
3.2EGFR/PI3K/AKT信號(hào)傳導(dǎo)通路與肺癌細(xì)胞的侵襲與轉(zhuǎn)移腫瘤細(xì)胞侵襲和轉(zhuǎn)移到遠(yuǎn)處器官是一個(gè)復(fù)雜的過程,包括多種細(xì)胞因子、溶性生長因子、黏附受體和組織重構(gòu)。EGFR/PI3K/AKT信號(hào)通路在肺癌細(xì)胞侵襲和轉(zhuǎn)移中占有重要作用。上皮-間質(zhì)細(xì)胞轉(zhuǎn)變(EMT)是癌細(xì)胞侵襲轉(zhuǎn)移的重要機(jī)制,主要表現(xiàn)為帶有上皮標(biāo)記的E-鈣黏蛋白表達(dá)下降,上皮細(xì)胞間黏附性和極性降低,而代表間葉細(xì)胞性質(zhì)的N-鈣黏蛋白和波形蛋白表達(dá)升高。E-鈣黏蛋白缺失或N-鈣黏蛋白表達(dá)升高都能加速NSCLC細(xì)胞的侵襲和轉(zhuǎn)移[22-23]。研究發(fā)現(xiàn),EGF/EGFR信號(hào)通過激活PI3K/AKT下游通路,介導(dǎo)FoxO1核輸出信號(hào),激活基質(zhì)蛋白酶MMP9,從而加速NSCLC的侵襲和轉(zhuǎn)移[24]。Li等[25]研究發(fā)現(xiàn)暴露在電離輻射(IR)的肺癌患者其EGFR和整聯(lián)蛋白α2β1明顯升高,它們通過介導(dǎo)PI3K/AKT信號(hào)通路,共同促進(jìn)了腫瘤細(xì)胞的侵襲和轉(zhuǎn)移。有研究發(fā)現(xiàn)腫瘤細(xì)胞能夠分泌大量的乙酰膽堿,它可以激活M3毒蕈堿受體,通過EGFR/PI3K/AKT信號(hào)通路傳導(dǎo)促進(jìn)腫瘤細(xì)胞增殖、侵襲和轉(zhuǎn)移[26]。
4以EGFR/PI3K/AKT信號(hào)通路為靶點(diǎn)的藥物在肺癌中的治療應(yīng)用
EGFR是驅(qū)動(dòng)肺癌發(fā)生和發(fā)展的主要病因之一。據(jù)報(bào)道,在NSCLC中,EFGR突變頻繁發(fā)生[27]。由于EGFR在腫瘤發(fā)生中有至關(guān)重要的作用,這使EFGR被作為最重要的靶點(diǎn)之一來治療NSCLC?,F(xiàn)在,已知的85%~90% EGFR突變位點(diǎn)位于開放閱讀框的第19號(hào)外顯子的E746_A750位點(diǎn)和第21號(hào)外顯子的L858R位點(diǎn)[28]。攜帶這些突變基因的患者用EGFR-TKIs如吉非替尼、埃羅替尼或阿法替尼(二代EGFR抑制劑)進(jìn)行治療后會(huì)顯著延長其無進(jìn)展生存期[29]。對于攜帶特定EGFR突變的肺癌患者來說,吉非替尼等EGFR-TKIs無疑給他們帶來了福音,遺憾的是經(jīng)過一段時(shí)間治療后,患者總是不可避免的獲得耐藥性[30]。研究發(fā)現(xiàn),多種機(jī)制參與了NSCLC患者對EGFR-TKIs的抵抗,例如PI3K/AKT通路異常激活、MET擴(kuò)增[31]、肝細(xì)胞生長因子(HGF)過表達(dá)[32]、EGFR二次突變[33]及PTEN基因缺失[34]等,其中PI3K/AKT通路異常激活是EGFR-TKIs的獲得性抵抗的最重要機(jī)制。研究發(fā)現(xiàn)244-MPT通過降低EGFR的磷酸化,抑制PI3K/AKT下游信號(hào)通路,從而阻斷了吉非替尼的抵抗[35];去甲斑蝥素(NCTD)通過抑制Met磷酸化,從而抑制PI3K/AKT下游信號(hào)通路,逆轉(zhuǎn)了HGF介導(dǎo)的EGFR-TKIs抵抗[36]。除了單個(gè)藥物的靶向治療,多藥物聯(lián)合靶向治療對耐藥的肺癌患者也產(chǎn)生了很好的療效。miR-34a與吉非替尼聯(lián)合靶向作用于MET克服了EGFR突變型肺癌細(xì)胞中HGF介導(dǎo)的吉非替尼抵抗[37];Xie等[38]研究顯示谷氨酰胺酶C(GAC)抑制劑968與埃羅替尼聯(lián)合應(yīng)用對EGFR-TKIs耐藥的NSCLC患者有很好的療效;抗EGFR突變的酪氨酸激酶抑制劑BIBW2992和抗MET擴(kuò)增的酪氨酸激酶抑制劑ARQ 197聯(lián)合用藥,通過抑制PI3K/AKT和MEK/EPK信號(hào)通路,抑制細(xì)胞活力,控制細(xì)胞進(jìn)程,從而避免了T790M-EGFR介導(dǎo)的埃羅替尼抵抗[39]。
5展望
肺癌作為臨床常見的惡性腫瘤,在隨著社會(huì)發(fā)展和環(huán)境變化的同時(shí)其發(fā)病率和病死率逐年提高,這嚴(yán)重威脅著人類的健康和生命。近年來,在肺癌發(fā)病機(jī)制方面的研究越來越多,但是肺癌的確切發(fā)病機(jī)制還不是十分清楚。EGFR/PI3K/AKT信號(hào)通路是腫瘤生長的重要通路,它的失調(diào)會(huì)加快細(xì)胞周期進(jìn)程,促進(jìn)腫瘤細(xì)胞生長并抑制細(xì)胞凋亡。闡明EGFR/PI3K/AKT信號(hào)通路在肺癌尤其是NSCLC中相互調(diào)節(jié)的機(jī)制,可能會(huì)加深對肺癌發(fā)生、發(fā)展機(jī)制的認(rèn)識(shí)并且為設(shè)計(jì)NSCLC靶向藥物提供依據(jù)。然而,隨著基因的突變,針對EGFR突變的單靶點(diǎn)抗肺癌藥物已逐漸出現(xiàn)耐藥,因此,針對EGFR/PI3K/AKT信號(hào)通路的多靶點(diǎn)聯(lián)合用藥方案在肺癌治療中開始實(shí)施并取得了良好的療效,這為肺癌患者的治療提供了的新發(fā)展方向。
參考文獻(xiàn)
[1]She J,Yang P,Hong Q,et al.Lung cancer in China:challenges and interventions[J].Chest,2013,143(4):1117-1126.
[2]Sakashita S,Mai S,Ming ST.Genes and pathology of non-small cell lung carcinoma[J].Semin Oncol,2014,41(1):28-39.
[3]Wu F,Li J,Jang C,et al.The role of Axl in drug resistance and epithelial-to-mesenchymal transition of non-small cell lung carcinoma.[J].Int J Clin Exper Pathol,2014,7(10):6653-6661.
[4]倪琛琛,于敏,張志紅.EGFR與PI3K/AKT信號(hào)通路相關(guān)蛋白在非小細(xì)胞肺癌組織中的表達(dá)及其意義[J].安徽醫(yī)科大學(xué)學(xué)報(bào),2011,46(12):1264-1266.
[5]Harari PM.Epidermal growth factor receptor inhibition strategies in on cology[J].Endocr Relat Cancer,2004,11(4):689-708.
[6]Tamás P,Solti Z,Bauer P,et al.Mechanism of epidermal growth factor regulation of Vav2,a guanine nucleotide exchange factor for Rac[J].J Biol Chem,2003,278(7):5163-5171.
[7]Vanhaesebroeck B,Stephens L,Hawkins P.PI3K signalling:the path to discovery and understanding[J].Nat Rev Mol Cell Biol,2012,13(3):195-203.
[8]Li Y,Inoki K,Guan KL.Biochemical and functional characterizations of small GTPase Rheb and TSC2 GAP activity[J].Mol Cell Biol,2004,24(18):7965-7975.
[9]Sarbassov DD,Guertin DA,Ali SM,et al.Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex[J].Science,2005,307(5712):1098-1101.
[10]Shaw RJ,Cantley LC.Ras,PI(3)K and mTOR signalling controls tumour cell growth[J].Nature,2006,441(792):424-430.
[11]Yip PY.Phosphatidylinositol 3-kinase-AKT-mammalian target of rapamycin (PI3K-Akt-mTOR) signaling pathway in non-small cell lung cancer[J].Transl Lung Cancer Res,2015,4(2):165-176.
[12]Rodrigues GA,Falasca M,Zhang Z,et al.A novel positive feedback loop mediated by the docking protein Gab1 and phosphatidylinositol 3-kinase in epidermal growth factor receptor signaling[J].Mol Cell Biol,2000,20(4):1448-1459.
[13]Velasco A,Bussaglia E,Pallares J,et al.PI3KCA gene mutations in endometrial carcinoma:correlation with PTEN and K-RAS alterations[J].Hum Pathol,2006,37(11):1465-1472.
[14]Zhong D,Ru Y,Wang Q,et al.Chimeric ubiquitin ligases inhibit non-small cell lung cancer via negative modulation of EGFR signaling[J].Cancer Lett,2015,359(1):57-64.
[15]Yu Y,Yoon SO,Poulogiannis G,et al.Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling[J].Science,2011,332(635):1322-1326.
[16]Li H,Schmid-Bindert G,Wang D,et al.Blocking the PI3K/AKT and MEK/ERK signaling pathways can overcome gefitinib-resistance in non-small cell lung cancer cell lines[J].Adv Med Sci,2011,56(2):275-284.
[17]West L,Vidwans SJ,Campbell NP,et al.A novel classification of lung cancer into molecular subtypes[J].PLoS One,2012,7(2):e31906.
[18]Lin F,Lin P,Zhao D,et al.Sox2 targets cyclinE,p27 and survivin to regulate androgen-independent human prostate cancer cell proliferation and apoptosis[J].Cell Prolif,2012,45(3):207-216.
[19]Liu ZM,Tseng JT,Hong DY,et al.Suppression of TG-interacting factor sensitizes Arsenic trioxide-induced apoptosis in human hepatocellular carcinoma cells[J].Biochem J,2011,438(2):349-358.
[20]Xu P,Zhang A,Jiang R,et al.The different role of Notch1 and Notch2 in astrocytic gliomas[J].PLoS One,2013,8(1):e53654.
[21]Bean GR,Ganesan YT,Dong Y,et al.PUMA and BIM are required for oncogene inactivation-induced apoptosis[J].Sci Signal,2013,6(268):ra20.
[22]Mateen S,Raina K,Agarwal C,et al.Silibinin synergizes with histone deacetylase and DNA methyltransferase inhibitors in upregulating E-cadherin expression together with inhibition of migration and invasion of human non-small cell lung cancer cells[J].J Pharmacol Exp Ther,2013,345(2):206-214.
[23] Zhang X,Liu G,Kang Y,et al.N-cadherin expression is associated with acquisition of EMT phenotype and with enhanced invasion in erlotinib-resistant lung cancer cell lines[J].PLoS One,2013,8(3):e57692.
[24] Pei J,Lou Y,Zhong R,et al.MMP9 activation triggered by epidermal growth factor induced FoxO1 nuclear exclusion in non-small cell lungcancer[J].Tumour Biol,2014,35(7):6673-6678.
[25] Li X,Ishihara S,Yasuda M,et al.Lung cancer cells that survive ionizing radiation show increased integrin α2β1- and EGFR-dependent invasiveness[J].Lab Dis Paper,2013,8(8):24-47.
[26]Xu R,Shang C,Zhao J,et al.Activation of M3 muscarinic receptor by acetylcholine promotes non-small cell lung cancer cell proliferation andinvasion via EGFR/PI3K/AKT pathway[J].Tumour Biol,2015,36(6):4091-4100.
[27] Kobayashi K,Hagiwara K.Epidermal growth factor receptor (EGFR) mutation and personalized therapy in advanced nonsmall cell lung cancer (NSCLC)[J].Targ Oncol,2013,8(1):27-33.
[28] da Cunha Santos G,Shepherd FA,Tsao MS.EGFR mutations and lung cancer[J].Annu Rev Pathol,2011,6:49-69.
[29]Yu HA,Arcila ME,Rekhtman N,et al.Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers[J].Clin Cancer Res,2013,19(8):2240-2247.
[30]Jackman D,Pao W,Riely GJ,et al.Clinical definition of acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer[J].J Clin Oncol,2010,28(2):357-360.
[31]Engelman JA,Zejnullahu K,Mitsudomi T,et al.Met amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling[J].Science,2007,316(5827):1039-1043.
[32]Takeuchi S,Wang W,Li Q,et al.Dual inhibition of Met kinaseand angiogenesis to overcome HGF-induced EGFR-TKI resistancein EGFR mutant lung cancer[J].Am J Pathol,2012,181(3):1034-1043.
[33] Kobayashi S,Boggon TJ,Dayaram T,et al.EGFR mutation and resistance of non-small-cell lung cancer to gefitinib.[J].N Engl J Med,2005,352(8):786-792.
[34]Yamamoto C,Basaki Y,Kawahara A,et al.Loss of PTEN expression by blocking nuclear translocation of EGR1 in gefitinib-resistant lung cancer cells harboring epidermal growth factor receptor-activating mutations[J].Cancer Res,2010,70(21):8715-8725.
[35] Zhang Y,Yao K,Shi C,et al.244-MPT overcomes gefitinib resistance in non-small cell lung cancer cells[J].Oncotarget,2015,6(42):44274-44288.
[36]Wu H,Fan F,Liu Z,et al.Norcantharidin combined with EGFR-TKIs overcomes HGF-induced resistance to EGFR-TKIs in EGFR mutant lung cancer cells via inhibition of Met/PI3k/Akt pathway[J].Cancer Chemother Pharmacol,2015,76(2):307-315.
[37]Zhou JY,Chen X,Zhao J,et al.MicroRNA-34a overcomes HGF-mediated gefitinib resistance in EGFR mutant lung cancer cells partly by targeting Met[J].Cancer Lett,2014,351(2):265-271.
[38] Xie C,Jin J,Bao X,et al.Inhibition of mitochondrial glutaminase activity reverses acquired erlotinib resistance in non-small cell lung cancer[J].Oncotarget,2015,7(1):610-621.
[39]Qu G,Liu C,Sun B,et al.Combination of BIBW2992 and ARQ 197 is effective against erlotinib-resistant human lung cancer cells with the EGFR T790M mutation[J].Oncol Rep,2014,32(1):341-347.
DOI:10.3969/j.issn.1673-4130.2016.14.034
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1673-4130(2016)14-1984-04
(收稿日期:2016-01-11修回日期:2016-03-24)