王 光,單英春,徐久軍
(1.大連海事大學 材料系,遼寧 大連 110626;2.大連海事大學 船機修造工程交通行業(yè)重點實驗室,遼寧 大連 116026)
?
高強度β-SiAlON多孔陶瓷的微觀結(jié)構與力學性能研究*
王光1,2,單英春1,2,徐久軍1,2
(1.大連海事大學 材料系,遼寧 大連 110626;2.大連海事大學 船機修造工程交通行業(yè)重點實驗室,遼寧 大連 116026)
摘要:采用無壓燒結(jié)技術,以Si3N4、AlN和Al2O3為基體原料,淀粉為造孔劑,外摻5%(質(zhì)量分數(shù))Y2O3作為燒結(jié)助劑,研究淀粉摻量對β-SiAlON(z=2)多孔陶瓷物相組成、微觀結(jié)構和力學性能的影響規(guī)律。研究結(jié)果表明,當造孔劑摻量≤60%(質(zhì)量分數(shù))時,所制備多孔陶瓷的主相均為β-SiAlON,且當?shù)矸蹞搅吭?0%~40%(質(zhì)量分數(shù))時,氣孔內(nèi)壁形成柱狀15R,而當?shù)矸蹞搅吭黾拥?0%(質(zhì)量分數(shù))時,氣孔內(nèi)壁則為致密的交錯生長的層狀12H;β-SiAlON多孔陶瓷的氣孔形貌為橢球形,當?shù)矸蹞搅繛?0%(質(zhì)量分數(shù))時,以獨立氣孔為主,長軸約為30~80 μm,而當?shù)矸蹞搅繛?0%(質(zhì)量分數(shù))時,以連通型氣孔為主;當氣孔率約為40%(淀粉摻量60%(質(zhì)量分數(shù)))時,β-SiAlON多孔陶瓷的抗彎強度為117.3 MPa,是氣孔大小相近氮化硅多孔陶瓷抗彎強度的1.5倍。高強度的基體、橢球形的氣孔以及致密的交錯生長的15R或12H孔壁是使β-SiAlON多孔陶瓷具有高強度的主要原因。
關鍵詞:多孔陶瓷;β-SiAlON;物相組成;微觀結(jié)構;力學性能
0引言
氮化硅基陶瓷因其低密度、高強度、高硬度、耐磨損、抗氧化、耐化學腐蝕、耐有色金屬熔融液腐蝕等優(yōu)點,被認為是最具有應用前景的高溫結(jié)構陶瓷之一[1-2]。氮化硅基多孔陶瓷具有質(zhì)量輕、比表面積高、切削加工性能好和熱膨脹系數(shù)低等優(yōu)點[3],被廣泛運用在氣體和熔融液體過濾器、熱絕緣體、催化劑載體和雷達天線罩材料等方面[7]。β-SiAlON是β-Si3N4的固溶體,兩者晶體結(jié)構相似,力學性能相近,但β-SiAlON的抗熱振性能與抗氧化性均優(yōu)于Si3N4。另外,由于β-SiAlON陶瓷在燒結(jié)過程中存在大量瞬時液相,具有燒結(jié)溫度低、保溫時間短等優(yōu)點,還可采用無壓燒結(jié)技術進行材料制備,因此,以β-SiAlON為基體的多孔陶瓷具有易燒結(jié)的特點,在航空航天、醫(yī)學和催化劑載體等領域具有較好的應用前景[9]。
Si3N4多孔陶瓷制備方法較多,其中包括燃燒合成[12]、冷凍鑄造[13]、凝膠注模[14]、發(fā)泡法[15]、原位反應法[16]及添加造孔劑[17]等。對于多孔陶瓷而言,力學性能主要決定于基體強度、微觀結(jié)構、氣孔尺寸、氣孔率及氣孔形貌等[19],而添加造孔劑法制備多孔陶瓷可以通過控制造孔劑大小及摻量有效地控制陶瓷的氣孔尺寸及氣孔率,進而提高其力學性能。制備Si3N4多孔陶瓷常用的造孔劑有PMMA、多孔氮化硅微球、尿素球、酚醛樹脂球、苯甲酸球和淀粉等,采用上述造孔劑均可以制備氣孔尺寸≥50μm、孔隙率≥40%的多孔陶瓷,但其抗彎強度均較低[17,20]。在上述造孔劑中,淀粉易造粒、氣孔形貌易保持、成本低,更重要的是在除造孔劑的過程中無毒無害,因此本文選用淀粉作為造孔劑開展β-SiAlON多孔陶瓷研究。
本文采用無壓燒結(jié)技術,以Si3N4、AlN和Al2O3為基體原料,設計z=2的β-SiAlON,外摻5%(質(zhì)量分數(shù))Y2O3作為燒結(jié)助劑,研究淀粉作為造孔劑時其摻量(20%~60%(質(zhì)量分數(shù)))對多孔陶瓷物相組成、微觀結(jié)構和力學性能的影響規(guī)律。
1實驗
以α-Si3N4(E10,UBE,Japan),AlN(GradeC,Stark,Germany)和Al2O3(LM1190,Luming,China)為基體原料,根據(jù)β-SiAlON的分子式Si6-zAlzOzN8- z(0 表1 基體原料配比 按照表1配料,以Si3N4球為球磨介質(zhì),無水乙醇為分散介質(zhì)在行星式球磨機中球磨24h,料漿經(jīng)80 ℃恒溫烘干,過50目篩。將淀粉按配比摻入基體原料粉末中,采用干研磨方式研磨60min,將研磨好的粉末過50目篩后以50MPa干壓成型。成型后的生坯放入馬弗爐中,在空氣環(huán)境中以1.5 ℃/min的升溫速率升溫至600 ℃保溫60min,去除造孔劑。將除造孔劑后的生坯置于石墨模具中,放入高溫碳爐,以10 ℃/min升溫至1 750 ℃保溫40min后,以5 ℃/min降溫至室溫。 根據(jù)阿基米德定律采用煮沸法,依據(jù)式(1)計算樣品的開氣孔率 (1) 式中,Pa為開氣孔率,m0為干燥樣品的質(zhì)量,m1為飽和樣品表觀質(zhì)量,m2為飽和樣品在空氣中的質(zhì)量。 用X射線衍射儀分析樣品的物相組成(D/Max-ULtima+, Rigaku, Japan),用掃描電鏡觀察微觀形貌并利用其配備的能譜儀測元素分布(FEI QUANTA200, Philips, German)。采用三點彎曲法測抗彎強度(Instron5569),樣品尺寸為4 mm×3 mm×40 mm。 2結(jié)果與討論 2.1氣孔形貌 當造孔劑摻量為20%~60%(質(zhì)量分數(shù))時,所制備β-SiAlON多孔陶瓷的氣孔形貌及分布如圖1所示。多孔陶瓷的氣孔形貌均為橢球形,分布較均勻。當?shù)矸蹞搅繛?0%(質(zhì)量分數(shù))時,以獨立氣孔為主,氣孔直徑約為30~80 μm,且隨著淀粉摻量增加氣孔含量增大,連通氣孔增多。當?shù)矸蹞搅吭黾拥?0%(質(zhì)量分數(shù))時,樣品中的氣孔以連通型為主。 圖1 不同造孔劑摻量β-SiAlON多孔陶瓷的微觀結(jié)構 2.2物相組成和微觀結(jié)構 圖2為當造孔劑摻量不同時β-SiAlON多孔陶瓷的XRD圖譜。圖2表明所制備多孔陶瓷的主相均為β-SiAlON(Si4Al2O2N6),當?shù)矸蹞搅康陀?0%(質(zhì)量分數(shù))時,樣品存在第二相15R(SiAl4O2N4),且15R峰的峰強隨淀粉摻量增大而增強。而當?shù)矸蹞搅吭黾拥?0%(質(zhì)量分數(shù))時,15R峰的數(shù)量減少,強度減弱,同時出現(xiàn)大量峰強較高的12H(SiAl5O2N5)相。 圖2 不同淀粉摻量樣品XRD圖譜 Fig 2 XRD patterns of specimens with different starch content 圖3為不同造孔劑摻量多孔陶瓷的微觀結(jié)構和EDX分析結(jié)果。根據(jù)EDX測試結(jié)果中各組成元素的原子百分比計算樣品不同位置處的Si/Al見表2。結(jié)果表明,當造孔劑摻量為0~60%(質(zhì)量分數(shù))時,樣品基體的Si/Al=2.08~2.28,與z=2 β-SiAlON分子式的Si/Al值相近,即所有多孔陶瓷的基體為β-Si-AlON。圖3表明所有摻造孔劑的樣品其孔壁處的Al含量均明顯高于基體,且隨造孔劑摻量增加孔壁處的Al含量不斷增大,即隨造孔劑摻量的增加孔壁Si/Al值減小,由造孔劑摻量20%(質(zhì)量分數(shù))時的1.39減小到孔劑摻量60%(質(zhì)量分數(shù))時的0.44(見表2),結(jié)合XRD測試結(jié)果,表明多孔陶瓷中的第二相15R或12H應集中在孔壁處。 不同造孔劑摻量β-SiAlON多孔陶瓷孔壁的微觀結(jié)構如圖4所示。圖4表明,造孔劑摻量≤40%(質(zhì)量分數(shù))時,孔壁為大小均勻、緊密交錯生長的柱狀晶,這是15R的典型形貌,而當造孔劑摻量增加至60%(質(zhì)量分數(shù))時,孔壁以致密的層狀、交錯生長的12H晶粒為主。 在Si3N4、AlN和Al2O3體系燒結(jié)過程中,氣氛中的N2易沿著造孔劑留下的孔洞通道向坯體內(nèi)部擴散。在反應完成前,由于燒結(jié)體系中同時存在β-Si-AlON、AlN和Al2O3,如反應式(2)所示,碳爐的還原性C氣氛易促進Al2O3與生坯氣孔通道內(nèi)的N2反應生成AlN,然后體系中過量的AlN再與Al2O3和β-SiAlON繼續(xù)反應,或者AlN直接與β-SiAlON反應生成15R(見圖4(a)和(b)),見反應式(3)和(4) (2) (3) (4) 當造孔劑摻量增加到60%(質(zhì)量分數(shù))時,由于氣孔含量增加,氣孔通道增多,N2與坯體接觸面積增加,使反應生成的AlN量增大,更有利于生成AlN含量更高的12H(見圖4(c)),反應式如下 (5) (6) 圖3 β-SiAlON及其多孔陶瓷的SEM和EDS測試結(jié)果 Table 2 Si/Al value of β-SiAlON matrix and porous ceramic 造孔劑摻量/wt%0204060基體Si/Al2.132.082.282.16孔壁Si/Al-1.390.740.44 注:m(Si)/m(Al)=2(z=2 β-SiAlON);m(Si)/m(Al)=0.25(15R);m(Si)/m(Al)=0.2(12H)。 2.3氣孔率及力學性能 圖5為β-SiAlON陶瓷及其多孔陶瓷的開氣孔率和抗彎強度測試結(jié)果。圖5(a)表明,β-SiAlON多孔陶瓷的開氣孔率隨造孔劑摻量增加而增大,樣品的氣孔率由未摻造孔劑時的5.6%增加到添加60%(質(zhì)量分數(shù))造孔劑時的38.4%。圖5(b)表明,當開氣孔率為19.32%(造孔劑摻量為20%(質(zhì)量分數(shù)))時,多孔陶瓷抗彎強度為221.71 MPa,且隨開氣孔率增大樣品的抗彎強度逐漸減小,當氣孔率增大至38.48%時(造孔劑摻量60%(質(zhì)量分數(shù))),抗彎強度下降到117.3 MPa。當開氣孔率約為40%時,β-SiAlON多孔陶瓷的抗彎強度約為文獻報道中氣孔尺寸相近的Si3N4多孔陶瓷抗彎強度的1.5倍[17]。 圖4 孔壁微觀結(jié)構 β-SiAlON陶瓷基體高強度(792 MPa,如圖5(b)所示)、氣孔內(nèi)壁致密交錯生長的柱狀15R和層狀12H及橢球形的氣孔形貌均有利于提高β-SiAlON多孔陶瓷的抗彎強度。 另外,由于15R和12H具有從室溫~1 250 ℃抗彎強度保持不變或增加50%的特點[23],因此本文所制備的含有15R和12H的β-SiAlON多孔陶瓷應具有較高的高溫抗彎強度。 圖5 不同淀粉摻量樣品的開氣孔率和抗彎強度 Fig 5 The flexural strength and open porosity with different starch content 3結(jié)論 針對z=2的β-SiAlON設計組成,添加20%~60%(質(zhì)量分數(shù))淀粉作為造孔劑,在氮氣氛條件下1 750 ℃保溫40 min無壓燒結(jié)制備了高強度β-Si-AlON多孔陶瓷。不同淀粉摻量多孔陶瓷的主相均為β-SiAlON,且當?shù)矸蹞搅繛?0%~40%(質(zhì)量分數(shù))時,氣孔內(nèi)壁形成致密的交錯生長的15R柱狀晶,而當?shù)矸蹞搅吭黾拥?0%(質(zhì)量分數(shù))時,氣孔內(nèi)壁則為致密的層狀12H;多孔陶瓷的氣孔形貌均為橢球形,且分布較均勻;β-SiAlON多孔陶瓷的開氣孔率隨淀粉摻量增加而增大,而其抗彎強度隨氣孔率增大不斷減??;當開氣孔率為40%(淀粉摻量為60%(質(zhì)量分數(shù)))時,β-SiAlON多孔陶瓷的抗彎強度為117.3 MPa,為氣孔尺寸相近Si3N4多孔陶瓷抗彎強度的1.5倍。高強度的β-SiAlON陶瓷基體、橢球形的氣孔形貌、致密的交錯生長的柱狀15R或?qū)訝?2H孔壁均是實現(xiàn)β-Si-AlON多孔陶瓷高強度的主要原因。 參考文獻: [1]Chen I W, Rosenflanz A. A tough SiAlON ceramic based on α-Si3N4with a whisker-like microstructure [J]. Nature, 1997,89(10):701-704. [2]Han I S, Seo D W, Kim S Y,et al.Properties of silicon nitride for aluminum melts prepared by nitrided pressure less sintering [J]. Journal of the European Ceramic Society, 2008,28: 1057-1063. [3]Yang J F, Zhang G J, Ohji T. Fabrication of low-shrinkage, porous silicon nitride ceramics by addition of a small amount of carbon [J]. J Am Ceram Soc, 2001, 84(7):1639-1641. [4]Kawai C, Yamakawa A. Network formation of Si3N4whiskers for the preparation of membrane filters [J]. J Mater Sci Lett, 1998, 17:873-875. [5]Pyzik A J, Beaman D R.Microstructure and properties of self-reinforced silicon nitride [J]. J Am Ceram Soc, 1993, 76:2737-2744. [6]Riley F L. Silicon nitride and related materials [J]. J Am Ceram Soc, 2000, 83(2):245-265. [7]Yue J, Dong B, Wang H.Porous Si3N4fabricated by phase separation method using benzoic acid as pore-forming agent [J]. J Am Ceram Soc, 2011, 94(7):1989-1991. [8]Nettleship I. Application of porous ceramics [J]. Key Eng Mater, 1996, 122-124:305-324. [9]Ekstr?m T, Nygren M. SiAlON ceramics [J]. Journal of the American Ceramic Society, 1992, 75(2):259-276. [10]Jack K J. Sialons and related nitrogen ceramics [J]. Mater Sci, 1976, 11(6):1135-1158. [11]Riley F L. Silicon nitride and related materials [J]. J Am Ceram Soc, 2000, 83(2): 245-265. [12]Chen D, Zhang B, Zhuang H, et al. Combustion synthesis of network silicon nitride porous ceramics [J]. Ceram Int, 2003, 29:363-364. [13]Yao Dongxu. Fabrication porous Si3N4ceramics via starch consolidation-freeze drying process [J]. Materials Letters, 2012, 68:75-77. [14]Yu J, Wang H, Zhang J, et al. Gelcasting preparation of porous silicon nitride ceramics by adjusting the content of monomers [J]. J Sol-Gel Sci Technol, 2010, 53:515. [15]Li Xiangming,Wu Pute. Effect of foaming pressure on the properties of porous Si3N4ceramic fabricated by a technique combining foaming and pressureless sintering [J]. Scripta Materialia, 2013, 68: 877-880. [16]Cheng Huijie,Li Yali. In situ synthesis of Si2N2O/Si3N4composite ceramics using polysilyloxycarbodiimide precursors [J]. Journal of the European Ceramic Society, 2013, 33: 2181-2189. [17]Ayse Kalemtas. Mechainical characterization of highly porous β-Si3N4ceramics fabricated via partial sintering & starch addition [J]. Journal of the European Ceramics Society, 2013, 33: 1507-1515. [18]Xia Yongfei. Mechanical and dielectric properties of porous Si3N4ceramics using PMMA as pore former [J]. Ceramics International, 2011, 37:3775-3779. [19]Kawai C. Effect of grain size distribution on the strength of porous Si3N4ceramics composed of elongated b-Si3N4grains [J]. J Mater Sci, 2001, 36: 5713-5717. [20]Wu Jiamin,Zhang Xiaoyan.Novel porous Si3N4ceramics prepared by aqueous gelcasting using Si3N4poly-hollow microspheres as pore-forming agent [J]. Journal of the European Ceramic Society,2014,34: 1089-1096. [21]Li Fangsen, Zhou Wancheng.High performance porous Si3N4ceramics prepared by coated pore-forming agent method [J]. Ceramics International, 2009, 35:3169-3173. [22]Li Xiangming,Zhang Litong. Fabrication and properties of porous Si3N4ceramic with high porosity [J]. Sci Technol, 2012, 28(12): 1151-1156. [23]Wang Peiling, Jia Yingxin, Sun Weiying. The study of AlN-polytypoids I. the formation and densification of AlN-polytypoids [J]. Journal of Inorganic Materials, 1999,14(6):881-885. 王佩玲,賈迎新,孫維營. AlN-多型體的形成及致密化 [J]. 無機材料學報,1999,14(6):881-885. [24]Wang Peiling, Zhang Jiong, Jia Yingxin. The study of AlN-polytypoids II. the mechanical and microstructuve of AlN-polytypoids [J]. Journal of Inorganic Materials, 2000, 15(4): 756-760. 王佩玲,張炯, 賈迎新. AlN-多型體的力學性能和微觀結(jié)構 [J].無機材料學報, 2000, 15(4): 756-760. [25]Wang P L. Mechanical properties of AlN-polytypoids—15R,12H,21R [J]. Materials Science and Engineering, 1999, A272: 351-356. 文章編號:1001-9731(2016)07-07220-05 基金項目:中央高?;究蒲袠I(yè)務費專項資金資助項目(3132015097,3132013312) 作者簡介:王光(1986-),女,吉林人,在讀博士,師承徐久軍教授,從事陶瓷材料研究。 中圖分類號:TM285 文獻標識碼:A DOI:10.3969/j.issn.1001-9731.2016.07.043 Microstructure and mechanical properties of high strength β-SiAlON porous ceramic WANG Guang1,2,SHAN Yingchun1,2,XU Jiujun1,2 (1. Department of Materials, Dalian Maritime University, Dalian 116026, China;2. Key Laboratory of Marine, Mechanical and Manufacturing Engineering, Ministry of Transportation of China, Dalian Maritime University, Dalian 116026,China) Abstract:β-SiAlON(z=2) porous ceramics were prepared by pressureless sintering with Si3N4,AlN and Al2O3 as matrix material, 5wt% Y2O3 as sintering additives. The influence rule of starch content on phase composition, microstructure and mechanical properties were analyzed. The results show that the main phase of porous ceramics (starch content ≤60wt%) were β-SiAlON, the interface of pore were columnar crystal 15R with starch content 20%-40wt%, and lamellar 12H with 60wt%;Porous ceramics were ellipsoidal shape pore morphology, porous ceramic (starch content was 20wt%) was mainly in independent pore, major axises were 30-80 μm,porous ceramic (starch content was 60wt%) was mainly in connected pore; the flexure strength of β-SiAlON porous ceramics was 117.3 MPa with the porosity 40% (starch content was 60wt%), which was 1.5 fold of Si3N4 porous ceramics with similar size pores. High strength of matrix, ellipsoidal shape of pore and density of pore interface with 12H or 15R were the primary cause of preparing high strength β-SiAlON porous ceramic. Key words:porous ceramic; β-SiAlON; phase composition; microstructure; mechanical properties 收到初稿日期:2015-06-19 收到修改稿日期:2015-10-26 通訊作者:單英春,E-mail:shanychun@126.com