祁淼
【關(guān)鍵詞】 數(shù)學(xué)教學(xué);概念;感性材料;新概念;生活實(shí)踐
【中圖分類號(hào)】 G623.5
【文獻(xiàn)標(biāo)識(shí)碼】 A
【文章編號(hào)】 1004—0463(2016)06—0103—01
數(shù)學(xué)概念是客觀現(xiàn)實(shí)中的數(shù)量關(guān)系和空間形式的本質(zhì)屬性在人腦中的反映。小學(xué)數(shù)學(xué)中有很多概念,如數(shù)的概念、運(yùn)算的概念等。這些概念是構(gòu)成小學(xué)數(shù)學(xué)基礎(chǔ)知識(shí)的重要內(nèi)容。那么,如何搞好小學(xué)數(shù)學(xué)概念教學(xué)呢?筆者現(xiàn)陳述幾點(diǎn)認(rèn)識(shí)和體會(huì)。
一、以感性材料為基礎(chǔ)引入新概念
用學(xué)生在日常生活中所接觸到的事物或教材中的實(shí)際問(wèn)題以及模型、圖形、圖表等作為感性材料,引導(dǎo)學(xué)生通過(guò)觀察、分析、比較、歸納和概括去獲取概念。
例如,要學(xué)習(xí)“平行線”的概念,可以讓學(xué)生辨認(rèn)一些熟悉的實(shí)例,像鐵軌、門框的上下兩條邊、黑板的上下邊緣等,然后分化出各例的屬性,從中找出共同的本質(zhì)屬性。鐵軌有屬性:是鐵制的、可以看成是兩條直線、在同一個(gè)平面內(nèi)、兩條邊可以無(wú)限延長(zhǎng)、永不相交等。同樣可分析出門框和黑板上下邊的屬性。通過(guò)比較可以發(fā)現(xiàn),它們的共同屬性是:可以抽象地看成兩條直線、兩條直線在同一平面內(nèi)、彼此間距離處處相等、兩條直線沒有公共點(diǎn)等,最后抽象出本質(zhì)屬性,得到平行線的定義。
二、以新、舊概念之間的關(guān)系引入新概念
如果新、舊概念之間存在某種關(guān)系,如相容關(guān)系、不相容關(guān)系等,那么新概念的引入就可以充分地利用這種關(guān)系去進(jìn)行。
例如,學(xué)習(xí)“乘法意義”時(shí),可以從“加法意義”來(lái)引入。又如,學(xué)習(xí)“整除”的概念時(shí),可以從“除法”中的“除盡”來(lái)引入。再如,學(xué)習(xí)“質(zhì)因數(shù)”可以從“因數(shù)”和“質(zhì)數(shù)”這兩個(gè)概念引入。
三、辨析概念的肯定例證和否定例證
學(xué)生能背誦概念并不等于真正理解概念,還要通過(guò)實(shí)例突出概念的主要特征,幫助他們加深對(duì)概念的理解。教師不僅要充分運(yùn)用肯定例證來(lái)幫助學(xué)生理解概念的內(nèi)涵,同時(shí)要及時(shí)運(yùn)用否定例證來(lái)促進(jìn)學(xué)生對(duì)概念的辨析。
如,教完“三角形按角分類”后,可以出示:一個(gè)三角形不是直角三角形,并且有兩個(gè)角是銳角,這個(gè)三角形一定是銳角三角形。讓學(xué)生判斷對(duì)錯(cuò),引起學(xué)生討論,進(jìn)而鞏固三角形的分類,以深化對(duì)三角形這一概念的外延的進(jìn)一步認(rèn)識(shí)。
四、對(duì)近似的概念及時(shí)加以對(duì)比辨析
在小學(xué)數(shù)學(xué)中,有些概念其含義接近,但本質(zhì)屬性又有區(qū)別。如數(shù)與數(shù)字、數(shù)位與位數(shù)、奇數(shù)與質(zhì)數(shù)、偶數(shù)與合數(shù)、化簡(jiǎn)比與求比值、時(shí)間與時(shí)刻、質(zhì)數(shù)、質(zhì)因數(shù)與互質(zhì)數(shù)、周長(zhǎng)與面積等等。對(duì)這類概念,學(xué)生常常容易混淆,必須及時(shí)把它們加以比較,以避免互相干擾。
如,學(xué)習(xí)了“整除”,為了和以前學(xué)的“除盡”加以比較,可以設(shè)計(jì)這樣的練習(xí)題:下列等式中,哪些是整除,哪些是除盡?
(1)8÷2=4
(2)48÷8=6
(3)30÷7=4……2
(4)8÷5=1.6
(5)6÷0.2=30
(6)1.8÷3=0.6
引導(dǎo)學(xué)生通過(guò)分析、比較,讓學(xué)生明白:整除是除盡的一種特殊情況,除盡包括了整除和一切商是有限小數(shù)的情況。
五、運(yùn)用于生活實(shí)踐
數(shù)學(xué)概念來(lái)源于生活,就必然要回到生活實(shí)際中去。教師引導(dǎo)學(xué)生運(yùn)用概念去解決數(shù)學(xué)問(wèn)題,是培養(yǎng)學(xué)生思維、發(fā)展各種數(shù)學(xué)能力的過(guò)程。并且,也只有讓學(xué)生把所學(xué)習(xí)到的數(shù)學(xué)概念,拿到生活實(shí)際中去運(yùn)用,才會(huì)使學(xué)到的概念鞏固下來(lái)。為此,教師在教學(xué)中應(yīng)當(dāng)根據(jù)教材內(nèi)容和學(xué)生實(shí)際,在掌握小學(xué)數(shù)學(xué)教材邏輯系統(tǒng)的基礎(chǔ)上,有意識(shí)地深化和發(fā)展學(xué)生的數(shù)學(xué)概念。
例如,在教學(xué)“正比例應(yīng)用題”時(shí),可以啟發(fā)學(xué)生運(yùn)用旗桿高度與影長(zhǎng)的關(guān)系,巧妙地算出了旗桿的高度。這樣通過(guò)創(chuàng)設(shè)有效的教學(xué)情境,教師適時(shí)點(diǎn)撥,不但啟迪了學(xué)生的思維,而且培養(yǎng)了學(xué)生學(xué)以致用的興趣和能力,也加深了對(duì)所學(xué)概念的理解。
總之,數(shù)學(xué)概念隨著客觀事物本身的發(fā)展變化和研究的深入不斷地發(fā)展演變。學(xué)生對(duì)數(shù)學(xué)概念的認(rèn)識(shí),也需要隨著數(shù)學(xué)學(xué)習(xí)的程度的提高,由淺入深,逐步深化。教學(xué)時(shí),教師既要注意教學(xué)的階段性,不能把后面的要求提到前面,超越學(xué)生的認(rèn)識(shí)能力,又要注意教學(xué)的連續(xù)性,教前面的概念要留有余地,為后繼教學(xué)“打下埋伏”,從而處理好掌握概念的階段性與連續(xù)性的關(guān)系。
編輯:謝穎麗