郭鵬峰
(廣東藥科大學(xué)醫(yī)藥化工學(xué)院,廣東 廣州 510006)
?
水楊醛亞胺鋅配合物催化環(huán)酯開(kāi)環(huán)聚合的研究*
郭鵬峰
(廣東藥科大學(xué)醫(yī)藥化工學(xué)院,廣東廣州510006)
脂肪族聚酯中的聚己內(nèi)酯具有良好的生物降解性、生物相容性和可滲性等特點(diǎn),在醫(yī)學(xué)、藥學(xué)和材料領(lǐng)域得到廣泛的應(yīng)用。聚己內(nèi)酯的制備主要是通過(guò)催化ε-己內(nèi)酯的開(kāi)環(huán)聚合得到,催化劑的活性是影響聚合反應(yīng)的一個(gè)重要因素。本論文選用毒性低、價(jià)廉易得的金屬鋅配合物為催化體系,設(shè)計(jì)并合成了一系列對(duì)水和空氣穩(wěn)定的水楊醛亞胺鋅催化劑,該類催化劑對(duì)已內(nèi)酯開(kāi)環(huán)聚合具有高的催化活性和選擇性。
ε-己內(nèi)酯;環(huán)酯聚合;水楊醛亞胺鋅配合物
人工合成的聚己內(nèi)酯作為一種可以用作體內(nèi)植入材料或藥物控釋材料的聚酯類高分子,在生物醫(yī)用領(lǐng)域獲得廣泛應(yīng)用。[1]目前聚己內(nèi)酯材料的合成是由ε-己內(nèi)酯單體在催化劑的作用進(jìn)行環(huán)酯開(kāi)環(huán)聚合得到,所用的催化劑主要有正離子型催化劑[2-3]、負(fù)離子型催化劑[4-5]和配位型催化劑[6],其中配位型催化劑催化的環(huán)酯開(kāi)環(huán)聚合能產(chǎn)生結(jié)構(gòu)明確、分子量可控的聚合物,激勵(lì)著人們?nèi)グl(fā)展新的高效配位型催化劑。
用于環(huán)酯開(kāi)環(huán)聚合的金屬催化劑有很多,其中Zn[7]、Mg[8]、Fe[9]、Ca[10]金屬的配合物具有對(duì)人體低毒性、較高的催化活性和選擇性等特點(diǎn)。配位型催化劑的催化性能除受金屬本身影響外,金屬的配體可以改變中心金屬的電子效應(yīng)和位阻效應(yīng),進(jìn)而引起配位型催化劑催化活性和選擇性的根本改變[11-12]。本文從合成簡(jiǎn)單、成本廉價(jià)、催化劑穩(wěn)定、金屬無(wú)毒性出發(fā),設(shè)計(jì)用水楊醛和3,5-二叔丁基水楊醛分別與一系列的烷基胺反應(yīng)合成水楊醛亞胺配體,進(jìn)而通過(guò)與金屬鋅配位獲得對(duì)水和空氣穩(wěn)定的水楊醛亞胺鋅配位催化劑,考察配體空間位阻和電子效應(yīng)對(duì)ε-己內(nèi)酯開(kāi)環(huán)聚合催化活性的影響,實(shí)現(xiàn)高活性與高立構(gòu)選擇性的環(huán)酯開(kāi)環(huán)聚合。
1.1主要試劑和儀器
六亞甲基四胺(CP),廣州市桂華化工科技有限公司;2,4-二叔丁基苯酚(AR),天津市興復(fù)精細(xì)化工研究所;水楊醛(AR),上海凌峰化學(xué)試劑有限公司;乙酸鋅(AR),天津市百世化工有限公司;乙胺、三乙胺、異丙胺、正丁胺、叔丁胺、環(huán)己胺、芐胺均購(gòu)自Aladdin公司(AR);ε-己內(nèi)酯(AR),Johnson Mattey 公司。
核磁共振檢測(cè)是在Bruker 300 MHz上進(jìn)行的,TMS為內(nèi)標(biāo),CDCl3為溶劑。
聚合物的分子量和分子量分布由Waters 1515 型凝膠滲透色譜儀分析確定:溫度 30 ℃,HR-1,HR-2,HR-4柱子串聯(lián),四氫呋喃作淋洗劑,淋洗液流速 1.0 mL/min,采用聚苯乙烯標(biāo)樣對(duì)分子量進(jìn)行校正。
1.23,5-二叔丁基水楊醛的合成
以2,4-二叔丁基酚和六亞甲基四胺為原料合成3,5-二叔丁基水楊醛的方法是一種成本低廉,生產(chǎn)工藝也比較成熟的方法。往帶有攪拌回流裝置的250 mL的三口圓底燒瓶中加入2,4-二叔丁基酚(20.5 g, 0.10 mol),六亞甲基四胺(24.5 g, 0.175 mol)和50 mL冰乙酸,升溫至110 ℃,在加熱攪拌下使其在溶劑中溶解,反應(yīng)至出現(xiàn)大量白色粉末(大約1 h)。再加入6 g的助催化劑多聚甲醛,升溫至130~140 ℃,反應(yīng)2 h后,停止加熱。等溫度降到80 ℃后加入82 mL質(zhì)量分?jǐn)?shù)為15%的稀硫酸,升溫至125 ℃,攪拌回流30 min。停止加熱攪拌,冷卻到75 ℃,將混合液倒到一個(gè)加熱到75 ℃的分液漏斗里面,在該溫度下靜置分層,將有機(jī)層轉(zhuǎn)移到新的燒杯中,再往燒杯中加入15 mL的甲醇不斷地?cái)嚢?,放置冰箱靜置過(guò)夜,待粗產(chǎn)品過(guò)濾真空干燥,然后再次使用甲醇重結(jié)晶,最終得到黃色固體產(chǎn)物3,5-二叔丁基水楊醛。
1.3水楊醛亞胺鋅配位催化劑的合成
將水楊醛或者3,5-二叔丁基水楊醛在燒瓶中用無(wú)水甲醇溶解,加入烷基胺、醋酸鋅和少許三乙胺,68 ℃回流反應(yīng)24 h,抽濾并用正己烷-二氯甲烷加熱回流重結(jié)晶,即得水楊醛亞胺鋅配位催化劑。
1.4ε-己內(nèi)酯的開(kāi)環(huán)聚合
由于ε-己內(nèi)酯開(kāi)環(huán)本體聚合反應(yīng)要求在無(wú)水無(wú)氧的環(huán)境下進(jìn)行開(kāi)環(huán)聚合,各反應(yīng)試劑需要進(jìn)行前處理:ε-己內(nèi)酯加入氫化鈣常溫?cái)嚢?4 h,后150 ℃減壓蒸餾收集ε-己內(nèi)酯并密封氮?dú)獗Wo(hù),待用;芐醇在135 ℃減壓蒸餾除水;甲苯常壓蒸餾除水。
在氮?dú)獾谋Wo(hù)下稱取充分干燥的鋅配位催化劑和芐醇的甲苯溶液一次性加入到反應(yīng)瓶中,裝有原料的反應(yīng)瓶在常溫下用真空泵抽真空1 h后,將反應(yīng)瓶充滿充N2(反應(yīng)瓶密閉),用注射器量取前處理過(guò)的ε-己內(nèi)酯并通過(guò)軟膠管快速注射到反應(yīng)瓶中,在60 ℃反應(yīng)24 h。反應(yīng)結(jié)束后,加入少量的乙醇進(jìn)行淬滅,再加入適量的二氯甲烷溶解,再加入95%的乙醇攪拌,直至沉淀析出后減壓抽濾得到聚己內(nèi)酯,重復(fù)用二氯甲烷溶解再用水沉淀析出兩次,得到的聚合物在45 ℃真空干燥24 h,計(jì)算產(chǎn)率。
2.1水楊醛亞胺鋅配位催化劑的合成
如圖1所示,水楊醛亞胺鋅配位催化劑是通過(guò)水楊醛一步法合成的。我們首先利用水楊醛和烷基胺反應(yīng)合成水楊醛亞胺配體,同時(shí)醋酸鋅加入配位獲得水楊醛亞胺鋅配位催化劑。乙胺、異丙胺、正丁胺、芐胺與水楊醛反應(yīng)獲得4種不同位阻的配體,隨之獲得了4個(gè)配位催化劑(化合物C1、C2、C3、C4)。乙胺、異丙胺、正丁胺、叔丁胺、環(huán)己胺、芐胺與3,5-二叔丁基水楊醛反應(yīng)獲得6種不同位阻的配體,隨之獲得了6個(gè)配位催化劑(化合物C5、C6、C7、C8、C9、C10)。各配位催化劑產(chǎn)物的核磁數(shù)據(jù)如下:
圖1 水楊醛一步法設(shè)計(jì)合成水楊醛亞胺鋅配位催化劑
C1:1H NMR (300 M, CDCl3, ppm) (Isomer ratio isca3)。 Major isomer, δ: 8.206 (s, 2H, CH=N), 7.306 (m, 2H, Ar-H), 7.117 (m, 2H, Ar-H), 6.863 (m, 2H, Ar-H), 6.626 (m, 2H, Ar-H), 3.756~3.611 (m, 4H, =NCH2CH3), 1.296~1.238 (m, 6H, =NCH2CH3)。13C NMR (75 M, CDCl3, ppm) δ: 170.603, 163.920, 135.513, 131.894, 123.071, 118.307, 114.363, 55.549, 16.310。 Minor isomer, δ: 8.350 (s, 2H, CH=N), 7.325 (m, 2H, Ar-H), 7.095 (m, 2H, Ar-H), 6.835 (m, 2H, Ar-H), 6.600 (m, 2H, Ar-H), 3.756~3.611 (m, 4H, =NCH2CH3), 1.296~1.238 (m, 6H, =NCH2CH3)。13C NMR (75 M, CDCl3, ppm) δ: 170.603, 163.920, 134.795, 130.939, 124.522, 116.967, 114.363, 53.826, 16.310。
C2:1H NMR (CDCl3, ppm) (Isomer ratio isca4)。 Major isomer, δ: 8.215 (s, 2H, CH=N), 7.260 (d,J=8.1 Hz, 2H, Ar-H), 7.106 (d,J=7.2 Hz, 2H, Ar-H), 6.859 (d,J=7.2 Hz, 2H, Ar-H), 6.608 (d,J=7.2 Hz, 2H, Ar-H), 3.630 (m, 2H, CH(CH3)2) 1.318 (d,J=6.6 Hz, 12H, CH(CH3)2)。13C NMR (CDCl3, ppm) δ: 170.070 (C=N), 168.832, 135.565, 134.691, 122.988, 117.773, 114.170, 62.591, 24.519。 Minor isomer, δ: 8.345 (s, 2H, CH=N), 7.260 (d,J=8.1 Hz, 2H, Ar-H), 6.883 (d,J=7.2 Hz, 2H, Ar-H), 6.859 (d,J=7.2 Hz, 2H, Ar-H), 6.608 (d,J=7.2 Hz, 2H, Ar-H), 3.561 (m, 2H, CH(CH3)2), 1.220 (d,J=6.6 Hz, 12H, CH(CH3)2)。13C NMR (CDCl3, ppm) δ: 170.070 (C=N), 168.832, 135.565, 134.691, 122.988, 117.773, 114.170, 62.591, 23.945。
C3:1H NMR (300 M, CDCl3, ppm) (Isomer ratio isca2)。 Major isomer, δ: 8.330 (s, 2H, CH=N), 7.317~6.594 (m, 8H, Ar-H), 3.607 (t,J=6.9 Hz, 4H, CH=NCH2CH2CH2CH3), 1.726~1.599(m,4H,CH=NCH2CH2CH2CH3),1.473~1.399(m,4H,CH=NCH2CH2CH2CH3), 0.972 (t,J=7.2 Hz, 6H, CH3)。 Minor isomer, δ: 8.165 (s, 2H, CH=N), 7.317~6.594 (m, 8H, Ar-H), 3.562 (t,J=6.9 Hz, 4H, CH=NCH2CH2CH2CH3), 1.473~1.399(m,4H,CH=NCH2CH2CH2CH3), 1.372~1.275(m,4H,CH=NCH2CH2CH2CH3), 0.854 (t,J=7.2 Hz, 6H, CH3)。13C NMR (75M, CDCl3, ppm) δ: 170.833(C=N), 135.414, 134.624, 122.966, 117.815, 114.231, 109.522, 60.884, 32.554, 19.962, 13.618。
C4:1H NMR (CDCl3, ppm) (Isomer ratio isca1)。 Isomer 1, δ: 8.443 (s, 2H, CH=N), 7.362~7.290 (m, 9H, Ar-H), 7.169~6.575 (m, 9H, Ar-H), 4.822 (s, 2H, CH2Ph)。13C NMR (CDCl3, ppm) δ: 170.333 (C=N), 170.005, 135.741, 135.462, 134.698, 129.104, 128.461, 127.865, 123.085, 117.832, 114.176, 64.386。 Isomer 2, δ: 8.022 (s, 2H, CH=N), 7.362~7.290 (m, 9H, Ar-H), 7.169~6.575 (m, 9H, Ar-H), 4.281 (s, 2H, CH2Ph)。13C NMR (CDCl3, ppm) δ: 170.333 (C=N), 170.005, 135.741, 135.462, 134.698, 129.104, 128.461, 127.865, 123.085, 117.832, 114.176, 64.386。
C5:1H NMR (300 M, CDCl3, ppm) (Isomer ratio isca1.8)。 Major isomer, δ: 8.354 (s, 2H, CH=N), 7.434 (s, 2H, Ar-H), 7.367 (s, 2H, Ar-H), 7.078 (s, 2H, Ar-H), 6.941 (s, 2H, Ar-H), 3.755~3.527 (m, 4H, =NCH2CH3), 1.461 (s, 18H, C(CH3)3), 1.321 (s, 18H, C(CH3)3), 1.263 (t,J=4.5 Hz, 6H, =NCH2CH3)。13C NMR (75 M, CDCl3, ppm) δ: 171.041, 168.318, 155.741, 141.357, 134.785, 129.360, 116.694, 55.608, 35.607, 33.907, 31.496, 29.398, 16.710。 Minor isomer, δ: 8.217 (s, 2H, CH=N), 7.425 (s, 2H, Ar-H), 7.358 (s, 2H, Ar-H), 7.070 (s, 2H, Ar-H), 6.932 (s, 2H, Ar-H), 3.755~3.527 (m, 4H, =NCH2CH3), 1.403 (s, 18H, C(CH3)3), 1.321 (s, 18H, C(CH3)3), 1.232 (t,J=4.5 Hz, 6H, =NCH2CH3)。13C NMR (75 M, CDCl3, ppm) δ: 171.041, 168.318, 155.741, 141.357, 134.785, 129.198, 116.694, 55.608, 35.607, 33.907, 31.496, 29.398, 16.710。
C6:1H NMR (CDCl3, ppm) (Isomer ratio isca6.3)。 Major isomer: δ: 8.243 (s, 2H, CH=N), 7.433 (s, 2H, Ar-H), 6.927 (s, 2H, Ar-H), 3.667 (m, 2H, CH(CH3)2), 1.393 (s, 18H, C(CH3)3), 1.320 (s, 18H, C(CH3)3), 1.302 (t,J=6.6 Hz, 12H, CH(CH3)2)。13C NMR (CDCl3, ppm) δ: 169.814, 168.237, 141.289, 134.485, 129.514, 129.453, 116.689, 61.954, 35.540, 33.817, 31.526, 29.457, 24.993。 Minor isomer: δ: 8.243 (s, 2H, CH=N), 7.425 (s, 2H, Ar-H), 6.918 (s, 2H, Ar-H), 3.667 (m, 2H, CH(CH3)2), 1.459 (s, 18H, C(CH3)3), 1.320 (s, 18H, C(CH3)3), 1.302 (t,J=6.6 Hz, CH(CH3)2)。13C NMR (CDCl3, ppm) δ: 169.814, 168.237, 141.289, 134.485, 129.514, 129.453, 116.689, 61.954, 35.540, 33.817, 31.526, 29.457, 24.386。
C7:1H NMR (CDCl3, ppm) δ: 8.334 (s, 2H, CH=N), 7.367 (s, 2H, Ar-H), 7.074 (s, 2H, Ar-H), 3.588 (t,J=6.6 Hz, 4H, =NCH2CH2CH2CH3), 1.699(m, 4H, =NCH2CH2CH2CH3), 1.463 (s, 18H, C(CH3)3), 1.424 (m, 4H, =NCH2CH2CH2CH3), 1.324 (s, 18H, C(CH3)3), 0.970 (t,J=7.5 Hz, 6H, =NCH2CH2CH2CH3)。13C NMR (CDCl3, ppm) δ: 171.465 (C=N), 168.445, 141.337, 134.736, 129.330, 129.191, 116.738, 61.003, 35.609, 33.916, 32.903, 31.519, 29.487, 20.063, 13.643。
C8:1H NMR (CDCl3, ppm) (Isomer ratio isca3)。 Major isomer, δ: 8.345 (s, 2H, CH=N), 7.424 (s, 2H, Ar-H), 7.095 (s, 2H, Ar-H), 1.469 (s, 18H, C(CH3)3), 1.361 (s, 18H, C(CH3)3), 1.332 (s, 18H, C(CH3)3)。13C NMR (CDCl3, ppm) δ: 168.802 (C=N), 160.474, 141.367, 136.618, 129.844, 126.385, 117.794, 58.791, 35.536, 34.188, 31.619, 30.834, 29.792。 Minor isomer, δ: 8.284 (s, 2H, CH=N), 7.426 (s, 2H, Ar-H), 6.929 (s, 2H, Ar-H), 1.398 (s, 18H, C(CH3)3), 1.361 (s, 18H, C(CH3)3), 1.332 (s, 18H, C(CH3)3)。13C NMR (CDCl3, ppm) δ: 167.866 (C=N), 158.565, 139.438, 134.411, 129.385, 125.749, 116.845, 56.756, 35.090, 33.921, 31.549, 30.834, 29.546。
C9:1H NMR (CDCl3, ppm) (Isomer ratio isca9)。 Major isomer: δ: 8.234 (s, 2H, CH=N), 7.404 (s, 2H, Ar-H), 6.908 (s, 2H, Ar-H), 3.215 (m, 2H, CH), 1.933~1.670 (m, 12H, Cy-H), 1.387 (s, 18H, C(CH3)3), 1.322 (s, 18H, C(CH3)3), 1.264~0.924 (m, 8H, Cy-H).13C NMR (CDCl3, ppm) δ: 169.982, 168.246, 141.249, 134.381, 129.376, 129.261, 116.836, 70.161, 35.506, 34.555, 33.893, 31.514, 29.537, 25.342, 25.018. Minor isomer: δ: 8.359 (s, 2H, CH=N), 7.352 (s, 2H, Ar-H), 7.063 (s, 2H, Ar-H), 3.215 (m, 2H, CH), 1.933~1.670 (m, 12H, Cy-H), 1.460 (s, 18H, C(CH3)3), 1.322 (s, 18H, C(CH3)3), 1.264~0.924 (m, 8H, Cy-H)。13C NMR (CDCl3, ppm) δ: 169.982, 168.246, 141.249, 134.381, 129.376, 129.261, 116.836, 70.161, 35.144, 34.555, 34.175, 31.514, 29.537, 25.260, 24.584。
C10:1H NMR (CDCl3, ppm) δ: 8.446 (s, 2H, CH=N), 7.381~7.097 (m, 14H, Ar-H), 6.908 (s, 2H, Ar-H), 4.794 (m, 2H, CH2), 1.445(s, 18H, C(CH3)3), 1.319 (s, 18H, C(CH3)3)。13C NMR (CDCl3, ppm) δ: 171.343, 141.321, 136.608, 134.814, 129.474, 129.289, 128.957, 128.827, 128.572, 128.469, 127.524, 63.954, 35.581, 33.913, 31.542, 29.460。
2.2鋅配合物催化的ε-己內(nèi)酯開(kāi)環(huán)聚合
圖2是以芐醇做引發(fā)劑,考察了鋅配位催化劑的空間位阻和電子效應(yīng)對(duì)ε-己內(nèi)酯開(kāi)環(huán)聚合的影響。表1列出了開(kāi)環(huán)聚合24 h的聚合產(chǎn)物,反應(yīng)物中單體、催化劑、引發(fā)劑的配比為[M]:[C]:[I]=50:1:1,產(chǎn)率由1H-NMR分析得到。從催化劑的結(jié)構(gòu)對(duì)比可以看出,引入大位阻的3,5-二叔丁基顯著提高了催化劑的催化活性,催化劑C5~10開(kāi)環(huán)聚合的產(chǎn)率接近或超過(guò)90%,低位阻的催化劑C1~4催化活性較差。鋅配位催化劑進(jìn)行開(kāi)環(huán)聚合時(shí),產(chǎn)物的分子量分布(PDI)較窄,在1.09~1.24之間。在較低的反應(yīng)溫度條件下(60 ℃),催化劑C1~C4催化ε-己內(nèi)酯開(kāi)環(huán)聚合的效果并不理想,雖然產(chǎn)物的分子量分布較窄,但產(chǎn)率低,理論分子量[Mn(理論)]與實(shí)測(cè)分子量[Mn(GPC)]相差較大,不符合活性聚合設(shè)計(jì)上的要求。增加開(kāi)環(huán)聚合反應(yīng)溫度到80 ℃,各個(gè)催化劑催化聚合產(chǎn)物的理論分子量與實(shí)測(cè)分子量數(shù)值較為接近,可以實(shí)現(xiàn)對(duì)聚己內(nèi)酯開(kāi)環(huán)聚合分子量的調(diào)控。
圖2 ε-己內(nèi)酯的開(kāi)環(huán)聚合
表1 鋅配合物催化的ε-己內(nèi)酯開(kāi)環(huán)聚合Table 1 Polymerization of ε-caprolactone with salen zinc catalysts
續(xù)表1
C680501193.7545552751.12C780501194.3549049641.10C880501195.1553553791.21C980501197.2565555141.17C1080501198.7574150321.24
a反應(yīng)24 h后的1H-NMR產(chǎn)率;b通過(guò)Mε-caprolactone×Yield×[M]/[I]+MI計(jì)算得到。
本論文設(shè)計(jì)并合成了一系列水楊醛亞胺鋅配位催化劑,所有配合物在空氣和水氣中都很穩(wěn)定??疾炝虽\配位催化劑的空間位阻和電子效應(yīng)對(duì)ε-己內(nèi)酯開(kāi)環(huán)聚合的影響,以3,5-二叔丁基水楊醛為母核結(jié)構(gòu)的鋅配位催化劑催化環(huán)酯開(kāi)環(huán)聚合的效果要比水楊醛為母核結(jié)構(gòu)的鋅配位催化劑好。水楊醛亞胺鋅配位催化劑可以實(shí)現(xiàn)對(duì)聚己內(nèi)酯開(kāi)環(huán)聚合分子量的調(diào)控。
[1]Rohner D, Hutmacher DW, See P, et al. Individually CAD-CAM technique designed, bioresorbable 3-dimensional polycaprolactone framework for experimental reconstruction of craniofacial defects in the pig[J]. Mund Kiefer Gesichtschir, 2002, 6(3): 162-167.
[2]Hayakawa M, Mitani M, Yamada T, et al. Living ring-opening polymerzation of lactones using cationic zirconocene complex catalysts[J]. Macromolecular Chemistry and Physics, 1997, 198(5): 1305-1317.
[3]Nomura N, Taira A, Tomioka T, et al. A catalytic approach for cationic living polymerization: Sc(Otf)3-catalyzed ring-opening polymerization of lactones[J]. Macromolecules, 2000, 33(5): 1497-1499.
[4]Yoshida E, Osagawa Y. Synthesis of poly(epsilon-caprolactone) with a stable nitroxyl radical as an end-functional group and its application to a counter radical for living radical polymerization[J]. Macromolecules, 1998, 31(5): 1446-1453.
[5]Balsamo V, Gyldenfeldt F V, Stadler R. Synthesis of SBC, SC and BC block copolymers based on polystyrene (S), polybutadiene (B) and a crystallizable poly(e-caprolactone) (C) block[J]. Macromolecular Chemistry and Physics, 2003, 197(3): 1159-1169.
[6]王建明, 陳偉, 祝桂香. 開(kāi)環(huán)聚合制備聚己內(nèi)酯[J]. 石化技術(shù)與應(yīng)用, 2006,24(6): 492-493.
[7]Silvernail C M, Yao L J, Hill L M R, et al. Structural and mechanistic studies of bis (phenolato) amine zinc (II) catalysts for the polymerization of ε-caprolactone[J]. Inorganic chemistry, 2007, 46(16): 6565-6574.
[8]Lian B, Thomas C M, Casagrande O L, et al. Magnesium complexes based on an amido-bis (pyrazolyl) ligand: Synthesis, crystal structures, and use in lactide polymerization[J]. Polyhedron, 2007, 26(14): 3817-3824.
[9]O’ Keefe B J, Breyfogle L E, Hillmyer M A, et al. Mechanistic comparison of cyclic ester polymerizations by novel iron (III)-alkoxide complexes: single vs multiple site catalysis[J]. Journal of the American Chemical Society, 2002, 124(16): 4384-4393.
[10]Chisholm M H, Gallucci J, Phomphrai K. Lactide polymerization by well-defined calcium coordination complexes: comparisons with related magnesium and zinc chemistry[J]. Chemical Communications, 2003 (1): 48-49.
[11]Haiyan Ma, Gianluca Melillo, Leone Oliva, et al. Living polymerization of racemic lactide by aluminum initiators supported by tetradentate OSSO ligands[J]. Dalton Trans, 2005:721-727.
[12]Chamberlain B M, Cheng M, Moore D R, et al. Polymerization of lactide with zinc and magnesium β-diiminate complexes: stereocontrol and mechanism[J]. Journal of the American Chemical Society, 2001, 123(14): 3229-3238.
Salicylaldehyde Imines Zinc Complexes Catalyzed Ring Opening Polymerization of Cyclic Esters*
GUO Peng-feng
(School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University,GuangdongGuangzhou510006,China)
Aliphatic polyester, especially polycaprolactone (PCL), is widely used in medical, pharmaceutical and material field, due to their biodegradability and biocompatibility. The main method for synthesizing PCL is the ring-opening polymerization (ROP) of ε-caprolactone (CL), and the activity of the catalyst is one of the important factors that influence the polymerization. low-toxic and accessible zinc complexes were chose as catalytic system, a series of water-and air-stable salicylaldehyde imines zinc complexes were designed and synthesized, these catalysts showed high catalytic activity and selectivity for the ring opening polymerization of CL.
ε-caprolactone; cyclic ester polymerization; salicylaldehyde imines zinc complexes
廣州市科技計(jì)劃項(xiàng)目(No.1563000282);廣東藥科大學(xué)“創(chuàng)新強(qiáng)校工程”醫(yī)藥化工省級(jí)實(shí)驗(yàn)教學(xué)示范中心資助項(xiàng)目。
郭鵬峰(1979-),男,講師,主要從事功能性材料的制備和應(yīng)用研究。
O624.11
A
1001-9677(2016)014-0059-04