曹良足,胡 健,李廣文, 3,殷麗霞
(1. 景德鎮(zhèn)陶瓷大學(xué)機(jī)械與電子工程學(xué)院,江西 景德鎮(zhèn) 333403;2. 南京理工大學(xué)電光學(xué)院,江蘇 南京 210094;3. 景德鎮(zhèn)景光電子有限公司,江西 景德鎮(zhèn) 333405)
介質(zhì)陶瓷諧振器天線的研究進(jìn)展
曹良足1, 2,胡 健1,李廣文1, 3,殷麗霞1
(1. 景德鎮(zhèn)陶瓷大學(xué)機(jī)械與電子工程學(xué)院,江西 景德鎮(zhèn) 333403;2. 南京理工大學(xué)電光學(xué)院,江蘇 南京 210094;3. 景德鎮(zhèn)景光電子有限公司,江西 景德鎮(zhèn) 333405)
介質(zhì)陶瓷諧振器天線廣泛用于衛(wèi)星通信、基站和移動(dòng)通信系統(tǒng)中,本文綜述介質(zhì)陶瓷諧振器天線的饋電結(jié)構(gòu)、小型化、帶寬展寬技術(shù)和頻率可調(diào)方法的最近研究成果,并從理論上解釋其相關(guān)的工作原理,最后提出了介質(zhì)陶瓷諧振器天線的發(fā)展趨勢(shì)。
天線;介質(zhì)陶瓷諧振器;饋電結(jié)構(gòu);帶寬展寬技術(shù);頻率可調(diào)
一直以來(lái),介質(zhì)陶瓷諧振器(DR)主要用于微波電路,如振蕩器和濾波器,它是由高介電常數(shù)(εr大于20)的材料制成的,其無(wú)載品質(zhì)因子(Q值)通常在50至500之間,但也可能高達(dá)10000[1],例如,(Zr0.8Sn0.2)TiO4陶瓷[2]、CaTiO3-LaAlO3陶瓷[3]。因?yàn)樵谶@些傳統(tǒng)的應(yīng)用中,介質(zhì)陶瓷諧振器是作為貯能器件而不是輻射單元。盡管多年前人們發(fā)現(xiàn)開放型的DR能輻射電磁能,直到第一篇關(guān)于圓柱介質(zhì)陶瓷諧振器天線(DRA)的論文發(fā)表于1983年后[4],DR用作天線的想法才廣泛被人們接受。那時(shí)候,人們發(fā)現(xiàn)某些系統(tǒng)的工作頻率范圍擴(kuò)展到毫米波和近毫米波(100-300 GHz),在這個(gè)頻段,金屬天線的導(dǎo)體損耗變得嚴(yán)重,天線的輻射效率大幅度下降。相反,DRA的介電損耗非常小。自從圓柱DRA研究后[4],Long[5, 6]一直致力于研究長(zhǎng)方體DRA和半球DRA。這些工作奠定了DRA未來(lái)研究工作的基礎(chǔ)。其它形狀,如三棱錐DRA[7]、球冠DRA[8]和圓環(huán)DRA[9, 10]也得到了開發(fā)。圖1是常見DRA的照片。
與微帶電天線相比,DRA具有相當(dāng)寬的阻抗帶寬(對(duì)εr≈10的DRA大約10%)。這是因?yàn)槲炀€僅通過(guò)兩條窄的狹縫產(chǎn)生電磁輻射,而DRA除接地面外所有的表面都可以輻射電磁波。DRA還具有另一個(gè)明顯的優(yōu)點(diǎn),就是介質(zhì)表面能夠避免表面波的產(chǎn)生。
圖1 各種形狀的介質(zhì)諧振器天線Fig.1 DRAs of various shapes
下面從饋電方式、低背及小型化、帶寬展寬技術(shù)和頻率可調(diào)方法四個(gè)方面進(jìn)行綜述。
介質(zhì)陶瓷諧振器天線(DRA)由介質(zhì)陶瓷制成,所有表面都沒(méi)有電極,要將電磁信號(hào)通過(guò)DRA輻射到周圍空間,必需采用合適的饋電方式。常見的饋電方式有以下幾種:同軸探針[11],窗口耦合的微帶線[12],窗口耦合的同軸線[13],直微帶線[14],共面波導(dǎo)[15],焊接在微帶線上的探針[10],狹縫線[16],帶狀線[17],共形帶狀線[18],介質(zhì)鏡像波導(dǎo)[19]。圖2示出兩種常見的饋電結(jié)構(gòu)。
饋電的本質(zhì)就是將信號(hào)源的能量耦合給DRA,耦合的方式不外乎電耦合和磁耦合以及電磁混合耦合。圖3是微帶線耦合DRA的等效電路圖和反射系數(shù)圖。圖中L1、C1和R1構(gòu)成并聯(lián)諧振為DRA的等效電路,L2、C2和R2為微帶線的分布參數(shù),L1和L2之間形成磁耦合(圖中用M表示)為微帶線饋電機(jī)制,微帶線與DRA距離近耦合強(qiáng),反射系數(shù)更小,反之,則耦合弱,反射系數(shù)大于-10 dB。
圖2 介質(zhì)諧振器天線的兩種饋電結(jié)構(gòu)Fig.2 Two excitation methods for DRA
圖3 微帶線耦合介質(zhì)諧振器天線的等效電路圖和反射系數(shù)曲線Fig.3 Equivalent circuit and reflection of DRA coupled to microstrip line
許多現(xiàn)代通信系統(tǒng)要求使用低背介質(zhì)陶瓷諧振器天線,例如可以連接到無(wú)線網(wǎng)絡(luò)的筆記本電腦,低背介質(zhì)陶瓷諧振器天線本身還可以直接連接到PCMCIA格式的無(wú)線網(wǎng)卡上。為了增大輻射,采用低介電常數(shù)(εr)的介質(zhì)材料制作DRA,但是,DRA的高度與εr成反比,即介電常數(shù)越高,DRA的高度越低(通常所說(shuō)的‘低背’), 因此,采用高εr的介質(zhì)材料可以使DRA低背,從而實(shí)現(xiàn)DRA的小型化。 1994年,Mongia[20]采用εr=100的介質(zhì)材料制作了長(zhǎng)方體DRA,阻抗帶寬為3%,隨后,也研制出低背的圓柱DRA和三棱錐DRA[21-22]。Essele[23]研究了低介電常數(shù)(εr=10)DRA的小型化,當(dāng)DRA的長(zhǎng)與高之比等于6(長(zhǎng)、寬和高分別為15.2 mm,7.0 mm和2.6 mm)時(shí),諧振頻率為11.6 GHz,反射損耗高達(dá)38 dB。除了采用高介電常數(shù)外, 在圓柱DRA的軸心插入一根短路金屬小圓柱,與常規(guī)DRA相比,體積可以減小一半以上[24]。最吸引人的方法是將圓柱或長(zhǎng)方體沿軸線對(duì)半剖開,將剖面緊靠一塊垂直的金屬板并接地,根據(jù)鏡像理論,則DRA的體積減小近一半[25-27],如圖4所示。
低背DRA的10 dB反射損耗帶寬和軸比帶寬大于微帶介質(zhì)天線。雖然DRA的高度比微帶介質(zhì)天線高,但DRA能提供令人滿意的帶寬與安裝面積之比,而且其高度也是可以接受的,表1列出兩種天線的性能。
圖4 小型化介質(zhì)諧振器天線Fig. 4 Miniaturized DRA
表1 矩形微帶介質(zhì)天線和圓盤介質(zhì)陶瓷諧振器天線的性能比較[28]Tab.1 Comparison of rectangular patch and circular disc DRA
天線的帶寬展寬技術(shù)已成為研究熱點(diǎn)。展寬帶寬的方法大致可分為三大類[28],包括降低諧振器的固有品質(zhì)因素(Q值); 采用外部匹配網(wǎng)絡(luò)和組合多個(gè)諧振器。1989年由Kishk[29]首次堆疊兩個(gè)不同的DRA來(lái)展寬天線的帶寬,這是因?yàn)樗鼈兊闹C振頻率不同,相當(dāng)于雙通帶。Sangiovanni[30]堆疊三個(gè)DRA進(jìn)一步增加帶寬,如圖5(a)所示。Leung[31]在兩個(gè)堆疊的DRA之間引入空氣間隙,并且用高εr制作低背DRA, 帶寬展寬效果很好。Simon[32]采用另一種方法,即將兩個(gè)額外的DRA放在主DRA旁邊來(lái)展寬天線的阻抗帶寬,如圖5(b)所示。其原理相當(dāng)于主DRA與兩個(gè)副DRA耦合形成較寬的通帶,圖6示出兩個(gè)DRA的等效圖和反射系數(shù)圖,圖中L1與L2之間存在磁耦合(圖中用M表示)[28],兩個(gè)DRA與單個(gè)DRA相比,-10 dB帶寬明顯變寬。Leung[33]采用雙圓盤的方法展寬高εr低背DRA的帶寬。
圖5 三個(gè)介質(zhì)諧振器組合的天線Fig.5 3-DRA (a) stacked DRA, (b) co-planar
圖6 兩個(gè)DRA的等效電路圖與反射系數(shù)曲線Fig.6 Equivalent circuit and reflection of 2-DRA
上述方法需要額外的DRA單元。下面介紹的帶寬展寬技術(shù)基于單個(gè)DRA結(jié)構(gòu),通過(guò)引入一些結(jié)構(gòu)上的改變, 例如在介質(zhì)陶瓷諧振器天線上挖一個(gè)凹槽或增加空氣間隙,降低諧振器的固有品質(zhì)因素(Q值)。Wong[34]在半球DRA內(nèi)部引入空氣間隙來(lái)增加阻抗帶寬。Ittipiboon[35]對(duì)長(zhǎng)方體DRA開展了類似的工作,當(dāng)空氣間隙高度為1.5 mm, 雖然諧振頻率增加17%,但是阻抗帶寬增加84%,如圖7所示。Shum[36]在DRA和地平面之間引入空氣間隙增加阻抗帶寬。Leung[37]研究了導(dǎo)體取代空氣間隙的帶寬展寬技術(shù)。 Chen[38-39]在DRA上加蓋介質(zhì)帽來(lái)增加阻抗帶寬。還可以引入額外的導(dǎo)體塊增加DRA的阻抗帶寬[40-41]。在介質(zhì)陶瓷諧振器底部和地面之間引入一層低介電常數(shù)介質(zhì)板,增加有效輻射的同時(shí),也能提高帶寬[28]。
圖7 引入空氣間隙的介質(zhì)諧振器天線Fig.7 DRA with air gap
對(duì)微帶線直接饋電的DRA,可以采用微帶線支節(jié)進(jìn)行阻抗匹配,從而達(dá)到帶寬展寬的目的[28]。
介質(zhì)陶瓷諧振器天線的頻率由其尺寸和介電常數(shù)決定,可是,特殊頻率的DRA很難在市場(chǎng)上購(gòu)買到,即使能買到,但是存在組裝偏差,測(cè)量值和計(jì)算的諧振頻率不一定相一致,因此誕生了許多調(diào)諧頻率的方法,例如,頂面加載金屬圓盤、多根帶狀線、狹縫、長(zhǎng)方體側(cè)壁上的短路支節(jié)、集總電容、變?nèi)荻O管器等。Z. Li[42]在圓柱體和圓環(huán)DRA的頂面加載導(dǎo)電金屬盤調(diào)諧天線頻率,調(diào)諧頻率范圍可達(dá)300-500 MHz。H. K. Ng[43]用多對(duì)帶狀線調(diào)諧半球體DRA的頻率,兩對(duì)帶狀線使天線的諧振頻率范圍擴(kuò)展到3.1-3.8 GHz。K. K. So[44]采用接地平面上的狹縫調(diào)諧半球體DRA帶寬和諧振頻率,當(dāng)狹縫長(zhǎng)度從14 mm增加至22 mm時(shí),諧振頻率從4.35 GHz減小至3.75 GHz。M.I .Sulaiman[45]通過(guò)改變長(zhǎng)方體側(cè)壁上螺旋線饋線的位置改變天線的頻率,從中心位置移至右邊,頻率變化從 4.1 GHz 至3.1 GHz。B. Wu[46]在DRA下面加入表面金屬化的介質(zhì)片改變天線的諧振頻率,前面所采用的調(diào)諧頻率的方法是靜態(tài)的,一旦結(jié)構(gòu)和尺寸確定后,頻率就固定不變,而電調(diào)諧和光調(diào)諧能實(shí)現(xiàn)動(dòng)態(tài)調(diào)頻。A. Petosa[47]在長(zhǎng)方體側(cè)壁的金屬帶與接地面之間焊上三個(gè)PIN二極管,由高低電平(即數(shù)字信號(hào)0和1)控制PIN的導(dǎo)通和斷開,從而調(diào)諧DRA的頻率,當(dāng)數(shù)字信號(hào)從000變化到111時(shí),頻率從4.50 GHz降到3.45 GHz。C. X. Hao[48]在長(zhǎng)方體的側(cè)壁焊上貼片電容器或變?nèi)荻O管,電容從0 pF增到10 pF,頻率2.87 GHz 降至 2.12 GHz,如圖8所示。其原理很容易從介質(zhì)陶瓷諧振器天線的等效電路圖(圖3)中加以理解,加載的電容并聯(lián)在電路中,滿足下列公式,
式中f0、Lr、Cr和CL分別為諧振頻率,等效電感,等效電容和加載電容。從公式可知,CL越大,f0越低,與圖8相一致。
圖8 加載電容器/變?nèi)莨艿慕橘|(zhì)諧振器天線的結(jié)構(gòu)圖與反射響應(yīng)Fig.8 Structure and Reflection of DRA loaded with capacitor/varactor
介質(zhì)陶瓷諧振器天線的性能參數(shù)與其形狀、尺寸、介質(zhì)材料的參數(shù)和饋電方式等因素有關(guān)。在追求某一項(xiàng)參數(shù)高指標(biāo)時(shí),要適當(dāng)兼顧其它參數(shù),例如,為了小型化采用高介電常數(shù)的介質(zhì)陶瓷,但天線的帶寬變窄,增益減少;再例如,為了擴(kuò)展天線的調(diào)諧范圍,采用電容比較大的變?nèi)莨?,但天線在低頻端的駐波比小于2,不能滿足整機(jī)對(duì)天線的要求。介質(zhì)陶瓷諧振器天線的研究課題很多,如圓極化、雙極化、多通帶和天線陣列等,由于篇幅限制,在此不再綜述。介質(zhì)陶瓷諧振器天線的發(fā)展趨勢(shì)是小型化、高增益、寬頻帶、易調(diào)諧和能夠低成本批量生產(chǎn)。
[1] KAJFEZ D, GUILLON P. Dielectric resonators (2nd ed.) [M].Mississippi: Noble Publishing Corporation, 1998: 431, 473.
[2] 吳堅(jiān)強(qiáng), 郭慧鋒, 黃萬(wàn)波. ZST微波陶瓷在貼片天線制作中的應(yīng)用[J]. 陶瓷學(xué)報(bào), 2014, 35 (6): 625-628.
WU Jianqiang, et al. Journal of Ceramics, 2014, 35 (6): 625-628.
[3] 趙小玻, 高勇, 侯立紅, 等.( 1-x)CaTiO3-xLaAlO3陶瓷的微波介電性能研究[J]. 人工晶體學(xué)報(bào), 2014, 43(10): 2625-2628.
ZHAO Xiaobo, et al. Journal of Artificial Crystal, 2014, 43(10): 2625-2628.
[4] LONG S A, MCALLISTER M W, SHEN L C. The resonant cylindrical dielectric cavity antenna [J]. IEEE Trans. Antennas Propagat., 1983, 31: 406-412.
[5] MCALLISTER M W, LONG S A, CONWAY G L. Rectangular dielectric resonator antenna [J], Electron. Lett., 1983, 19: 218-219.
[6] MCALLISTER M W, LONG S A. Resonant hemispherical dielectric antenna [J]. Electron. Lett., 1984, 20: 657-659.
[7] ITTIPIBOON A, MONGIA R K, ANTAR Y M M, et al. Aperture-fed rectangular and triangular dielectric resonators for use as magnetic dipole antennas [J]. Electron. Lett., 1993, 29: 2001-2002.
[8] LEUNG K W, LUK K M, YUNG E K N. Spherical cap dielectric resonator antenna using aperture coupling [J]. Electron. Lett., 1994, 30(17): 1366-1367.
[9] MONGIA R K, ITTIPIBOON A, BHARTIA P, et al. Electric monopole antenna using a dielectric ring resonator [J]. Electron. Lett., 1993, 29: 1530-1531.
[10] LEUNG K W, CHOW K Y, LUK K M, et al. Excitation of dielectric resonator antenna using a soldered-through probe [J]. Electron. Lett., 1997, 33: 349 - 350.
[11] SHUM S M, LUK K M. FDTD analysis of probe-fed cylindrical dielectric resonator antenna [J]. IEEE Trans. Antennas Propagat., 1998, 46: 325-333.
[12] LEUNG K W. Analysis of aperture-coupled hemispherical dielectric resonator antenna with a perpendicular feed [J]. IEEE Trans. Antennas Propagat., 2000, 48(6): 1005-1007.
[13] CHOW K Y, LEUNG K W, LUK K M, et al. Input impedance of the slot-fed dielectric resonator antenna with/without a backing cavity [J]. IEEE Trans. Antennas Propagat., 2001, 49(2): 307-309.
[14] LEUNG K W, CHOW K Y, LUK K M, et al. Low-profile circular disk DR antenna of very high permittivity excited by a microstrip line [J]. Electron. Lett., 1997, 33(12): 1004-1005.
[15] KRANENBURG R A, LONG S A, WILLIAMS J T. Coplanar waveguide excitation of dielectric resonator antennas [J]. IEEE Trans. Antennas Propagat. 1991, 39: 119-122.
[16] LO H Y, LEUNG K W, LUK K M. Slotline excited equilateral triangular dielectric resonator antenna of very high permittivity [J]. Microw. and Opt. Techn. Lett., 2001, 29(4): 230-231.
[17] LEUNG K W, POON M L, WONG W C, et al. Aperturecoupled dielectric resonator antenna using a stripline feed [J]. Microw. and Opt. Techn. Lett., 2000, 24(2): 120-121.
[18] LO H Y, LEUNG K W. Excitation of low-profile equilateral triangular dielectric resonator antenna using a conducting conformal strip [J]. Microw. and Opt. Techn. Lett., 2001, 29(5): 317-319.
[19] Birand M T, Gelsthorpe R V. Experimental millimetric array using dielectric radiators fed by means of dielectric waveguide [J]. Electron. Lett., 1981, 17: 633-635.
[20] MONGIA R K, ITTIPIBOON A, CUHACI M. Low-profile dielectric resonator antennas using a very high permittivity material [J]. Electron. Lett., 1994, 30: 1362-1363.
[21] LEUNG K W, LUK K M, YUNG E K N, et al. Characteristics of a low-profile circular disk DR antenna with very high permittivity [J]. Electron. Lett., 1995, 31( 6): 417-418.
[22] LO H Y, LEUNG K W, LUK K M, et al. Low profile equilateral-triangular dielectric resonator antenna of very high permittivity [J]. Electron. Lett., 1999, 35(25): 2164-2166.
[23] ESSELLE K P. A low-profile rectangular dielectric-resonator antenna [J]. IEEE Trans. Antennas Propagat., 1996, 44: 1296-1297.
[24] MONGIA R K. Small electric monopole mode dielectric resonator antenna [J], Electron. Lett., 1996, 32: 947-949.
[25] TAM M T K, MURCH R D. Half volume dielectric resonator antenna [J]. Electron. Lett., 1997, 33: 1914-1916.
[26] PETOSA A, ITTIPIBOON A, ANTAR Y M M, et al. Recent advances in dielectric resonator antenna technology [J]. IEEE Antennas Propagat., 1998, 40: 35-48.
[28] GE Y H, ESSELLE K P, BIRD T S. Compact dielectric resonator antennas with ultrawide 60-110% bandwidth [J]. IEEE Trans. Antennas Propag., 2011, 59(9): 3445-3448.
[28] LUK K M, LEUNG K W. Dielectric Resonator Antennas [M]. Hertfordshire: Research Studies Press Ltd., 2003: 177, 201, 203.
[29] KISHK A A, AHN B, KAJFEZ D. Broadband stacked dielectric resonator antennas [J]. Electron. Lett., 1989, 25: 1232-1233.
[30] SANGIOVANNI A, DAUVIGNAC J Y, PICHOT C. Stacked dielectric resonator antenna for multifrequency operation [J]. Microw. and Opt. Techn. Lett., 1998, 18: 303-306.
[31] LEUNG K W, LUK K M, CHOW K Y, et al. Bandwidth enhancement of dielectric resonator antenna by loading a lowprofile dielectric disk of very high permittivity [J]. Electron.Lett., 1997, 33: 725-726.
[32] SIMONS R N, LEE R Q. Effect of parasitic dielectric resonators on CPW/aperture-coupled dielectric resonator antennas [J]. IEE Proc.-H, 1993, 140: 336-338.
[33] LEUNG K W, CHOW K Y, LUK K M, et al. Offset dual disk dielectric resonator antenna of very high permittivity [J]. Electron. Lett., 1996, 32: 2038-2039.
[34] WONG K L, CHEN N C, CHEN H T. Analysis of a hemispherical dielectric resonator antenna with an airgap [J]. IEEE Microwave and Guided Wave Lett., 1993, 3: 355-357.
[35] ITTIPIBOON A, PETOSA A, ROSCOE D, et al. An investigation of a novel broadband dielectric resonator antenna [C]. IEEE Antennas and Propagation Society International Symposium Digest, Baltimore, USA, 1996: 2038-2041.
[36] SHUM S M, LUK K M. Characteristics of dielectric ring resonator antenna with an air gap [J]. Electron. Lett., 1994, 30: 277-278.
[37] LEUNG K W. Complex resonance and radiation of hemispherical dielectric resonator antenna with a concentric conductor [J]. IEEE Trans. Microwave Theory and Techn., 2001, 49(3): 524-531.
[38] CHEN N C, SU H C, WONG K L, et al. Analysis of a broadband slot-coupled dielectric-coated hemispherical dielectric resonator antenna [J]. Microw. and Opt. Techn. Lett., 1995, 8: 13-16.
[39] SHUM S M, LUK K M. Numerical study of a cylindrical dielectric resonator antenna coated with a dielectric layer [J]. IEE Proc.-Microw. Antennas Propag., 1995, 142: 189-191.
[40] NG H K, LEUNG K W. Conformal-strip-excited dielectric resonator antenna with a parasitic strip [C]. IEEE Antennas and Propagation Society International Symposium Digest, 2000, 4: 2080-2083.
[41] LONG R T, DORRIS R J, LONG S A, et al. Use of parasitic strip to produce circular polarisation and increased bandwidth for cylindrical dielectric resonator antenna [J]. Electron. Lett., 2001, 37: 406-408.
[42] LI Z, WU C, LITVA J. Adjustable frequency dielectric resonator antenna [J]. Electronics letters, 1996, 32(7): 606-607.
[43] NG H K, LEUNG K W. Frequency tuning of the linearly and circularly Polarized dielectric resonator antennas using multiple parasitic strips [J]. IEEE Transaction antenna and propagation, 2006, 54(1): 225-230.
[44] SO K K, LEUNG K W. Bandwidth enhancement and frequency tuning of the dielectric resonator antenna using a parasitic slot in the ground plane [J]. IEEE Transaction Antenna and Propagation, 2005, 53(12): 4169-4172.
[45] SULAIMAN M I, KHAMAS S K. Frequency tunning of a singly-fed rectangular dielectric resonator antenna with a wideband circular polarization [C]. Loughborough Antennas & Propagation Conference, 2011: 1-3
[46] WU B, APPERLEY T, OKONIEWSKI M, et al. Reconfigurable antenna designs using micro-pneumatic control of dielectric slugs [C]. 19th International Conference on Microwave, Radar and Wireless Communications, 2012: 69-72.
[47] PETOSA A, THIRAKOUNE S. Frequency tunable rectangular dielectric resonator antenna[C], Antennas and Propagation Society International Symposium, 2009.
[48] HAO C X, LI B, LEUNG K W, et al. Frequency-tunable differentially fed rectangular dielectric resonator antennas [C]. IEEE Antenna and Wireless Propagation Letters, 2011, 10: 884-887.
Progress in Dielectric Ceramic Resonator Antenna
CAO Liangzu1, 2, HU Jian1, LI Guangwen1 3, YIN Lixia1
(1. School of Mechanical and Electric Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, Jiangxi, China; 2. School of Electric and Optical Engineering, Nanjing University of Science & Technology, Nanjing 210094,
Jiangsu, China; 3. Jingdezhen Jingguang Electronic Co. Ltd. Jingdezhen 333405, Jiangxi, China)
Dielectric ceramic resonator antennas (DRAs) have been widely used in satellite communication, base station and mobile communication systems. This paper summarizes the excitation, miniaturization, bandwidth enhancement techniques and frequency tuning in recent years. The relevant principles were given in theory. Finally, the trends for DRAs were proposed.
antenna; dielectric ceramic resonator; excitation; bandwidth enhancement techniques; frequency tuning
date: 2015-10-10. Revised date: 2015-12-21.
TQ174.75
A
1000-2278(2016)02-0127-06
10.13957/j.cnki.tcxb.2016.02.004
2015-10-10。
2015-12-21。
江西省自然科學(xué)基金項(xiàng)目(20151BAB207014);景德鎮(zhèn)市科技局科研項(xiàng)目(景科字[2013]第55號(hào))。
通信聯(lián)系人:曹良足(1966-),男,教授。
Correspondent author:CAO Liangzu(1966-), male, Professor.
E-mail:clz4233@liyun.com