胡曉斌, 李文霞, 劉 坤, 陳 璐
(1.武漢大學(xué) 土木建筑工程學(xué)院,湖北 武漢 430072; 2.山東電力工程咨詢?cè)河邢薰?,山東 濟(jì)南 250013)
?
外置金屬阻尼器的新型自復(fù)位約束砌體墻抗震性能研究*
胡曉斌1?, 李文霞2, 劉坤1, 陳璐1
(1.武漢大學(xué) 土木建筑工程學(xué)院,湖北 武漢430072; 2.山東電力工程咨詢?cè)河邢薰?,山東 濟(jì)南250013)
研制了一種同時(shí)布置體內(nèi)無(wú)黏結(jié)預(yù)應(yīng)力筋和外置金屬阻尼器的新型自復(fù)位約束砌體墻,通過(guò)擬靜力試驗(yàn)研究了該自復(fù)位墻在低周反復(fù)荷載作用下的滯回性能,重點(diǎn)探明了預(yù)應(yīng)力筋初始預(yù)應(yīng)力、金屬阻尼器屈服荷載大小對(duì)其耗能性能的影響,最后基于試驗(yàn)結(jié)果建立了數(shù)值分析模型.研究表明:該自復(fù)位約束砌體墻滯回曲線呈“旗形”,在較大位移下未出現(xiàn)明顯的損傷,且在加載及卸載過(guò)程中沒(méi)有明顯的強(qiáng)度和剛度退化;隨著預(yù)應(yīng)力筋初始預(yù)應(yīng)力的增加,墻體的自復(fù)位性能增強(qiáng),但其耗能能力會(huì)降低;隨著金屬阻尼器屈服荷載的增大,墻體的耗能能力增強(qiáng),但會(huì)產(chǎn)生少量的殘余變形;數(shù)值模擬結(jié)果與試驗(yàn)結(jié)果吻合較好,表明本文所提出的分析模型能較好地模擬該自復(fù)位約束砌體墻的力學(xué)行為.
新型自復(fù)位約束砌體墻;外置金屬阻尼器;擬靜力試驗(yàn);抗震性能;數(shù)值分析
自復(fù)位結(jié)構(gòu)是一種新型的抗震結(jié)構(gòu)形式,近年來(lái)得到了研究者和工程技術(shù)人員的高度重視.和傳統(tǒng)的抗震結(jié)構(gòu)相比,自復(fù)位結(jié)構(gòu)最為突出的特點(diǎn)在于卸載后變形能完全或基本恢復(fù).在強(qiáng)震作用下,自復(fù)位結(jié)構(gòu)基本不產(chǎn)生殘余變形,震后不需或經(jīng)少量的維修即可恢復(fù)正常使用,從而大大地降低了震后修復(fù)成本[1-3].自復(fù)位結(jié)構(gòu)體系可分為3種類型:自復(fù)位框架結(jié)構(gòu)、自復(fù)位墻結(jié)構(gòu)和自復(fù)位支撐框架結(jié)構(gòu),其中自復(fù)位墻主要由3部分組成:墻體、后張拉無(wú)黏結(jié)預(yù)應(yīng)力筋和阻尼器.與普通的抗震墻不同,自復(fù)位墻在墻底(或沿墻高)設(shè)置水平縫,在水平荷載作用下,墻體能繞墻底兩端產(chǎn)生微小的轉(zhuǎn)動(dòng),即所謂的搖擺響應(yīng).
對(duì)于自復(fù)位墻結(jié)構(gòu),國(guó)內(nèi)外少數(shù)學(xué)者開(kāi)展了相關(guān)的理論分析、試驗(yàn)研究和數(shù)值模擬工作.在理論分析方面,Armouti[4]首先建立了自復(fù)位混凝土墻的理論分析模型,其中混凝土墻簡(jiǎn)化成一個(gè)剛體,預(yù)應(yīng)力筋采用彈簧來(lái)模擬,墻底與基礎(chǔ)的接觸采用位于兩端的只受壓連接模擬.在試驗(yàn)研究方面,Perez等[5-7]設(shè)計(jì)了5個(gè)6層自復(fù)位混凝土墻進(jìn)行擬靜力試驗(yàn),結(jié)果表明自復(fù)位混凝土墻能承受很大的非線性側(cè)向變形而不發(fā)生顯著的破壞,并且能保持自復(fù)位性能,不產(chǎn)生殘余變形.Toranzo等[8-11]對(duì)未布置預(yù)應(yīng)力筋的自復(fù)位約束砌體墻,提出了直接基于位移的抗震設(shè)計(jì)方法,并對(duì)一縮比為40%的3層自復(fù)位約束砌體墻模型進(jìn)行了振動(dòng)臺(tái)試驗(yàn),試驗(yàn)?zāi)P涂紤]了樓板和邊柱的作用.試驗(yàn)結(jié)果表明自復(fù)位約束砌體墻能極大地減小結(jié)構(gòu)的損傷,提高傳統(tǒng)砌體結(jié)構(gòu)的抗震性能.在數(shù)值模擬方面,Kurama[12]針對(duì)自復(fù)位混凝土墻,建立了基于DRAIN-2DX纖維模型梁柱單元的分析模型,并進(jìn)行了非線性地震反應(yīng)分析.Toranzo[9]針對(duì)未布置預(yù)應(yīng)力筋的自復(fù)位約束砌體墻,提出了用于有限元分析的數(shù)值分析模型,其中墻體采用桁架模擬,墻底設(shè)置一組只受壓的彈簧來(lái)模擬墻和基礎(chǔ)間的接觸,阻尼器通過(guò)彈簧模擬.
從以上可看出,目前的研究主要針對(duì)自復(fù)位混凝土墻,對(duì)于自復(fù)位約束砌體墻的研究很少,且已有的研究中并未布置預(yù)應(yīng)力筋,而預(yù)應(yīng)力筋對(duì)于提高墻體的自復(fù)位能力具有重要意義[13-14].基于此,本文提出一種同時(shí)布置體內(nèi)無(wú)黏結(jié)預(yù)應(yīng)力筋和外置金屬阻尼器的新型自復(fù)位約束砌體墻,首先通過(guò)擬靜力試驗(yàn)研究該新型自復(fù)位墻在低周反復(fù)荷載作用下的滯回性能,然后基于試驗(yàn)結(jié)果,提出適用于該新型自復(fù)位約束砌體墻的數(shù)值分析模型.
1.1墻體構(gòu)造
如圖1所示,墻體采用砌體砌筑而成,周邊設(shè)置混凝土構(gòu)造柱和圈梁以提供約束,構(gòu)造柱下部預(yù)埋雙頭螺栓以連接金屬阻尼器.為防止墻體發(fā)生平面外傾覆,約束砌體墻置于凹槽型基礎(chǔ)梁中.基礎(chǔ)梁肩部預(yù)埋螺栓,通過(guò)連接件(圖1(c))連接金屬阻尼器.墻底及基礎(chǔ)梁間設(shè)置水平縫,在水平荷載作用下,約束砌體墻可繞墻底兩端產(chǎn)生微小的轉(zhuǎn)動(dòng).預(yù)應(yīng)力筋穿過(guò)豎向貫穿約束砌體墻及基礎(chǔ)梁的預(yù)留管道,上下兩端通過(guò)錨具錨固.
圖1 外置金屬阻尼器的新型自復(fù) 位約束砌體墻示意圖Fig.1 Schematic drawing of the new type of self-centering confined masonry wall with external steel dampers1-砌體墻; 2-構(gòu)造柱及圈梁; 3-基礎(chǔ)梁; 4-預(yù)應(yīng)力筋;5-金屬阻尼器; 6-預(yù)埋雙頭螺栓; 7-預(yù)埋螺栓; 8-連接件; 9-錨具
1.2金屬阻尼器設(shè)計(jì)
約束砌體墻底部?jī)啥藢?duì)稱布置4個(gè)金屬阻尼器,如圖1(d)所示,其前端通過(guò)預(yù)埋螺栓與構(gòu)造柱連接,后端通過(guò)螺栓與連接件相連.金屬阻尼器采用Q235鋼材加工制作.隨著墻體的轉(zhuǎn)動(dòng),該阻尼器繞后端發(fā)生轉(zhuǎn)動(dòng),當(dāng)受彎屈服后會(huì)產(chǎn)生較大的塑性變形,從而達(dá)到耗能減震的目的.為避免塑性變形集中,將金屬阻尼器的耗能部位限制在一定長(zhǎng)度的區(qū)域內(nèi),如圖1(d)中陰影區(qū)域所示.此外,在容易發(fā)生應(yīng)力集中的部位使用圓弧過(guò)渡.
金屬阻尼器可簡(jiǎn)化為一變截面懸臂梁進(jìn)行受力分析,如圖1(d)所示,其中F表示阻尼器前端所受的荷載.設(shè)任一截面高度為h,此截面到作用點(diǎn)的距離為l,當(dāng)全截面屈服時(shí),設(shè)相應(yīng)的屈服荷載為Fy,則有:
(1)
式中:fy為鋼材屈服強(qiáng)度;Wp為計(jì)算截面的塑性截面模量;t為阻尼器的厚度.假設(shè)耗能區(qū)域各截面同時(shí)屈服,則由式(1)可得
(2)
由式(2)可知,金屬阻尼器耗能區(qū)域兩側(cè)輪廓線應(yīng)為拋物線,但為方便起見(jiàn),實(shí)際加工時(shí)取為直線.
2.1試件設(shè)計(jì)
考慮到加載條件,墻體尺寸取為1 350 mm×1 000 mm× 240 mm(高×寬×厚),混凝土構(gòu)造柱及圈梁截面尺寸均為200 mm×240 mm(高×寬),基礎(chǔ)梁截面尺寸為400 mm×600 mm(高×寬),其中凹槽深100 mm.此外,為便于施加預(yù)應(yīng)力,在基礎(chǔ)梁底部設(shè)置混凝土支墩,其尺寸為800 mm×600 mm×600 mm(長(zhǎng)×寬×高).砌體墻采用MU10蒸壓灰砂磚砌筑,施工時(shí)預(yù)留管道周圍的砌體需要進(jìn)行切角處理.除支墩采用素混凝土外,其他混凝土構(gòu)件均按照構(gòu)造要求進(jìn)行配筋,混凝土強(qiáng)度等級(jí)均為C20,縱筋采用HRB 335.預(yù)應(yīng)力筋采用鋼鉸線1φs1×7(公稱直徑d=15.2 mm).
為研究金屬阻尼器對(duì)該新型自復(fù)位約束砌體墻抗震性能的影響,設(shè)計(jì)了2種不同尺寸的阻尼器,其厚度為10 mm,分別記做SD-1和SD-2,如圖2所示.由式(1)可知,2種阻尼器的屈服荷載存在如下關(guān)系:
Fy2=4Fy1.
(3)
式中:Fy1,Fy2分別表示SD-1和SD-2的屈服荷載.
圖2 金屬阻尼器尺寸Fig.2 Dimensions of the steel dampers
2.2加載裝置與測(cè)點(diǎn)布置
擬靜力試驗(yàn)加載裝置與測(cè)點(diǎn)布置如圖3所示,水平荷載由60 t液壓千斤頂施加,其加載端與連接支架連接.基礎(chǔ)梁通過(guò)4個(gè)地錨栓錨固于試驗(yàn)室臺(tái)座.共布置3個(gè)位移計(jì),2個(gè)力傳感器.其中,位移計(jì)1和2于墻頂左右兩側(cè)對(duì)稱布置,用于測(cè)量墻頂?shù)乃轿灰?,位移?jì)3用于測(cè)量自復(fù)位墻墻底的水平滑移;力傳感器分別測(cè)量墻頂水平力及預(yù)應(yīng)力筋在加載過(guò)程中的拉力.
圖3 試件設(shè)計(jì)及加載裝置Fig.3 Specimen design and loading device1-約束砌體墻; 2-基礎(chǔ)梁; 3-支墩; 4-預(yù)應(yīng)力筋;5-金屬阻尼器; 6-連接件; 7-反力墻; 8-千斤頂;9-連接支架; 10-地錨栓
2.3加載制度及工況
采用位移控制分級(jí)加載,如圖4所示.第一級(jí)位移幅值為4 mm,隨后以4 mm遞增加載幅值,直到水平位移幅值達(dá)到20 mm(墻高的1.5%左右),每級(jí)加載循環(huán)1次.規(guī)定千斤頂對(duì)自復(fù)位約束砌體墻施加推力時(shí),水平力及位移為正,反之為負(fù).
循環(huán)次數(shù)圖4 加載制度Fig.4 Loading rule
為考察預(yù)應(yīng)力筋初始預(yù)應(yīng)力的影響,考慮了3種情況: 未布置預(yù)應(yīng)力筋, 初始預(yù)應(yīng)力為0, 初始預(yù)應(yīng)力為0.1fptk,其中fptk表示預(yù)應(yīng)力筋強(qiáng)度標(biāo)準(zhǔn)值,其值為1 860 MPa.對(duì)于金屬阻尼器,如前所述,也考慮了3種情況: 未布置金屬阻尼器,布置SD-1阻尼器及布置SD-2阻尼器.由以上可得9種工況,如表1所示,其中fp0表示初始預(yù)應(yīng)力.圖5所示為試驗(yàn)現(xiàn)場(chǎng)照片.
表1 加載工況
3.1金屬阻尼器試驗(yàn)
為考察本文設(shè)計(jì)的金屬阻尼器的耗能能力,使用30 t油壓千斤頂對(duì)其進(jìn)行了重復(fù)加載試驗(yàn).采用位移控制加載,加載制度如圖6(a)所示.試驗(yàn)中,金屬阻尼器發(fā)生了明顯的變形,如圖6(b)所示.該金屬阻尼器的力F-位移d滯回曲線如圖6(c)所示,其形狀飽滿,表明本文設(shè)計(jì)的金屬阻尼器具有良好的耗能性能.
圖6 金屬阻尼器試驗(yàn)Fig.6 Test of the steel damper
3.2新型自復(fù)位墻擬靜力試驗(yàn)
3.2.1試驗(yàn)現(xiàn)象
在加載過(guò)程中,構(gòu)造柱及圈梁均完好,墻體未出現(xiàn)明顯的破壞,且繞墻底兩端發(fā)生轉(zhuǎn)動(dòng),如圖7(a)所示.實(shí)測(cè)結(jié)果表明,在加載過(guò)程中水平滑移很小,其最大值不超過(guò)1 mm,表明所采取的墻底構(gòu)造措施是可靠的,能滿足預(yù)定要求.加載過(guò)程中,金屬阻尼器耗能區(qū)域發(fā)生了明顯的變形,如圖7(b)所示.
圖7 典型試驗(yàn)現(xiàn)象Fig.7 Typical phenomena observed in the test
3.2.2預(yù)應(yīng)力筋拉力
考察加載過(guò)程中預(yù)應(yīng)力筋拉力最大的工況6.預(yù)應(yīng)力筋拉力P-墻頂水平位移d曲線、拉力P隨時(shí)間t變化的曲線分別如圖8(a)(b)所示.可以看出:1)隨著墻體水平位移變大,預(yù)應(yīng)力筋的拉力也逐漸增大.當(dāng)卸載后,預(yù)應(yīng)力筋的拉力基本回到初始值;2)預(yù)應(yīng)力筋所受的最大拉力為77.7 kN,相應(yīng)的最大應(yīng)力為558.9 MPa,遠(yuǎn)小于其強(qiáng)度標(biāo)準(zhǔn)值1 860 MPa,表明預(yù)應(yīng)力筋在加載過(guò)程中始終處于彈性狀態(tài).
圖8 預(yù)應(yīng)力鋼筋拉力Fig.8 The tension force of the prestressed tendons
3.2.3滯回曲線
試驗(yàn)所得典型工況下墻頂水平力F-位移d的滯回曲線如圖9所示.
圖9 典型滯回曲線Fig.9 Typical hysteresis curve
可以看出:1)滯回曲線的形狀均呈“旗形”,因此可用FS(Flag-shaped)模型[15]來(lái)描述其恢復(fù)力特性,如圖9(c)所示,其中fy表示屈服荷載,ke表示彈性剛度,α和β分別表示屈服后的剛度系數(shù)及耗能參數(shù);2)滯回曲線加載及卸載沒(méi)有明顯的剛度退化,且卸載后殘余變形很小或基本沒(méi)有,表明本文所提出的新型自復(fù)位約束砌體墻具有較好的自復(fù)位性能;3)當(dāng)未布置金屬阻尼器時(shí)(即工況1~3),自復(fù)位墻仍具有一定的耗能能力,其原因在于墻體與基礎(chǔ)梁之間可能存在一定的摩擦力而耗能;4)當(dāng)未布置預(yù)應(yīng)力筋時(shí)(即工況1,4,7),墻體卸載后基本上沒(méi)有殘余變形,表明墻體僅通過(guò)自重也可基本上實(shí)現(xiàn)自復(fù)位.
圖10所示為預(yù)應(yīng)力筋不同初始預(yù)應(yīng)力對(duì)應(yīng)的滯回曲線.可以看出:1)布置預(yù)應(yīng)筋后,墻體的強(qiáng)度和剛度得到顯著提高.尤其對(duì)于屈服后剛度,當(dāng)未布置預(yù)應(yīng)力筋時(shí),墻體屈服后剛度趨近于為0或負(fù)值,當(dāng)布置預(yù)應(yīng)力筋后,墻體屈服后剛度變?yōu)檎担?)隨著初始預(yù)應(yīng)力的增加,墻體的強(qiáng)度顯著增加,但屈服后剛度變化不大;3)隨著初始預(yù)應(yīng)力的增加,墻體卸載后殘余變形減小,表明增加初始預(yù)應(yīng)力有利于提高墻體的自復(fù)位性能.
圖10 不同初始預(yù)應(yīng)力下的滯回曲線Fig.10 Hysteresis curves corresponding to various prestress
圖11所示為不同阻尼器對(duì)應(yīng)的滯回曲線.可看出:1)布置金屬阻尼器后,滯回曲線的形狀更飽滿,所圍成的面積顯著增加,表明金屬阻尼器可有效地提高自復(fù)位約束砌體墻的耗能能力;2)隨著阻尼器屈服荷載的增加,滯回曲線所圍成的面積變大,表明自復(fù)位約束砌體墻的耗能能力增強(qiáng);3)隨著阻尼器屈服荷載的增加,墻體卸載后殘余變形變大.
3.2.4等效黏滯阻尼系數(shù)
為量化新型自復(fù)位約束砌體墻的耗能能力,選取各工況中位移幅值最大的滯回環(huán)計(jì)算等效黏滯阻尼系數(shù)ξeq,如下式所示:
(4)
式中:ED,ES分別表示滯回耗能及最大應(yīng)變能.
圖11 不同金屬阻尼器下的滯回曲線Fig.11 Hysteresis curves corresponding to different steel dampers
由式(4)計(jì)算所得等效黏滯阻尼系數(shù)見(jiàn)表2.可看出:1)隨著預(yù)應(yīng)力筋初始預(yù)應(yīng)力的增大,ξeq減小,表明初始預(yù)應(yīng)力的增加會(huì)降低自復(fù)位約束砌體墻的耗能能力;2)隨著金屬阻尼器屈服荷載的增大,ξeq增大,表明自復(fù)位約束砌體墻的耗能能力增強(qiáng).
表2 等效黏滯阻尼系數(shù)
4.1數(shù)值分析模型的建立
采用OpenSees[16]建立有限元數(shù)值分析模型,如圖12(a)所示.由試驗(yàn)結(jié)果可知,墻體基本上沒(méi)有明顯的損傷,因此采用彈性梁柱單元(elastic Beam Column)進(jìn)行模擬.
預(yù)應(yīng)力筋采用桁架單元(Truss element)來(lái)模擬,其底端固定于基礎(chǔ),頂端與墻體通過(guò)剛性連接件(rigid-link)來(lái)模擬,其材料采用Steel02材料進(jìn)行模擬(即Giuffre-Menegotto-Pinto模型),該材料可以直接施加初始應(yīng)力來(lái)考慮初始預(yù)應(yīng)力.
金屬阻尼器采用零長(zhǎng)度(zeroLength)單元進(jìn)行模擬,即通過(guò)位于同一位置的2個(gè)節(jié)點(diǎn)來(lái)建模,采用Steel01材料模擬其力-位移本構(gòu)關(guān)系,如圖12(b)所示,其中E表示彈性剛度,α表示屈服后剛度系數(shù),fy表示屈服強(qiáng)度.
墻體與基礎(chǔ)之間的水平縫用一組只受壓彈簧來(lái)模擬.與阻尼器相似,采用零長(zhǎng)度單元來(lái)模擬只受壓彈簧,其力-位移本構(gòu)關(guān)系選用彈性不能受拉材料(Elastic-No Tension Material),如圖12(c)所示.墻體與阻尼器及只受壓彈簧間通過(guò)剛性連接件連接.
圖12 基于OpenSees的自復(fù)位 約束砌體墻簡(jiǎn)化分析模型Fig.12 Simplified numerical analysis model of the self-centering confined masonry wall in OpenSees
4.2分析結(jié)果對(duì)比
采用前節(jié)建立的簡(jiǎn)化數(shù)值分析模型,選取2個(gè)代表性的工況進(jìn)行模擬,分別為工況6和9. 前者對(duì)應(yīng)于SD-1 阻尼器,后者對(duì)應(yīng)于SD-2阻尼器.
將數(shù)值分析結(jié)果與試驗(yàn)結(jié)果進(jìn)行對(duì)比,如圖13所示.可以看出:1)從整體上來(lái)說(shuō),數(shù)值模擬結(jié)果與試驗(yàn)結(jié)果吻合較好,表明所建立的模型具有較高的分析精度,且計(jì)算效率很高,可進(jìn)一步用于數(shù)值拓展分析;2)相對(duì)于采用SD-1的工況, 采用SD-2的工況數(shù)值模擬和試驗(yàn)結(jié)果相差較大,其原因可能在于金屬阻尼器SD-2并沒(méi)有充分地發(fā)揮作用,其連接方式、布置位置等還需要進(jìn)一步改進(jìn).
圖13 數(shù)值模擬與試驗(yàn)結(jié)果對(duì)比Fig.13 Comparison between the results from the numerical simulation and the test
本文研制了一種同時(shí)布置體內(nèi)無(wú)黏結(jié)預(yù)應(yīng)力筋和外置金屬阻尼器的新型自復(fù)位約束砌體墻,并通過(guò)擬靜力試驗(yàn)研究了該新型自復(fù)位墻在低周反復(fù)荷載作用下的滯回性能,基于試驗(yàn)結(jié)果提出了簡(jiǎn)化的數(shù)值分析模型.可以得出如下結(jié)論:
1)本文設(shè)計(jì)的新型自復(fù)位約束砌體墻構(gòu)造措施合理、可靠,達(dá)到了預(yù)期的目標(biāo),其外置式彎曲耗能型金屬阻尼器耗能性能穩(wěn)定.
2)該新型自復(fù)位墻在加載過(guò)程中未出現(xiàn)明顯的損傷,且在加載及卸載過(guò)程中沒(méi)有明顯的剛度退化,其滯回曲線呈“旗形”,可用FS模型近似描述其恢復(fù)力特性.
3)布置預(yù)應(yīng)力筋后,墻體的強(qiáng)度和剛度顯著提高.隨著預(yù)應(yīng)力筋初始預(yù)應(yīng)力的增加,墻體的自復(fù)位性能增強(qiáng),但其耗能能力會(huì)降低.
4)布置金屬阻尼器后,墻體的耗能能力顯著提高.隨著金屬阻尼器屈服荷載的增大,墻體的耗能能力增強(qiáng),但會(huì)產(chǎn)生少量的殘余變形.
5)基于OpenSees的新型自復(fù)位約束砌體墻簡(jiǎn)化數(shù)值分析模型具有較高的分析精度,且分析效率很高,可進(jìn)一步用于拓展分析.
[1]潘振華, 潘鵬, 邱法維, 等. 具有自復(fù)位能力的鋼結(jié)構(gòu)體系研究[J]. 土木工程學(xué)報(bào), 2010, 43(S1):403-410.
PAN Zhen-hua, PAN Peng, QIU Fa-wei,etal. Analysis of self-centering steel structures’ development[J]. China Civil Engineering Journal, 2010, 43(S1):403-410.(In Chinese)
[2]周穎, 呂西林. 搖擺結(jié)構(gòu)及自復(fù)位結(jié)構(gòu)研究綜述[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2011, 32(9): 1-10.
ZHOU Ying, LV Xi-lin. State-of-the-art on rocking and self-centering structures[J]. Journal of Building Structures, 2011, 32(9): 1-10. (In Chinese)
[3]易偉建, 尹犟. 基于位移及滯回耗能的結(jié)構(gòu)抗震性能評(píng)估新方法[J]. 湖南大學(xué)學(xué)報(bào): 自然科學(xué)版, 2009, 36(8):1-6.
YI Wei-jian, YIN Jiang. A new method for evaluating seismic performance based on displacement and hysteretic energy[J]. Journal of Hunan University: Natural Sciences, 2009, 36(8):1-6. (In Chinese)
[4]ARMOUTI N. Seismic performance of precast concrete structural walls[D]. Bethlehem, PA: Department of Civil and Environmental Engineering, Lehigh University, 1993:50-61.
[5]PEREZ F J. Experimental and analytical lateral load response of unbonded post-tensioned precast concrete walls[D]. Bethlehem, PA: Department of Civil and Environmental Engineering, Lehigh University, 2004:21-43.
[6]PEREZ F J, PESSIKI S, SAUSE R. Lateral load behavior of unbonded post-tensioned precast concrete walls with vertical joints[J]. PCI Journal, 2004, 49(2): 48-64.
[7]PEREZ F J, PESSIKI S, SAUSE R.Seismic design of unbonded post-tensioned precast concrete walls with vertical joint connectors[J]. PCI Journal, 2004, 49(1):58-79.
[8]TORANZO L A, CARR A J, RESTREPO J I. Improvement of traditional masonry wall construction for use in low-rise/ low-wall-density buildings in seismically prone regions[C]//New Zealand Society for Earthquake Engineering 2001 Conference. Wellington, New Zealand: New Zealand Society for Earthquake Engineering, 2001:81-87.
[9]TORANZO L A. The use of rocking walls in confined masonry structures: a performance-based approach[D]. Christchurch: University of Canterbury, 2002.
[10]TORANZO L A, CARR A J, RESTREPO J I. Displacement based design of rocking walls incorporating hysteretic energy dissipators[C] //Proceedings of the 7th International Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibrations of Structures. Assisi, Italy: Italian Working Group on Seismic Isolation (GLIS) of the Italian National Association for Earthquake Engineering, 2001 :42-46.
[11]TORANZO L A, CARR A J, RESTREPO J I,etal. Rocking confined masonry walls with hysteretic energy disspators and shake-table validation[C]//Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, Canada: Canadian Association for Earthquake Engineering, 2004: 66-71.
[12]KURAMA Y C. Seismic analysis, behavior and design of unbonded post-tensioned precast concrete walls[D]. Bethlehem,PA: Department of Civil and Environmental Engineering, Lehigh University, 1997:66-72.
[13]胡曉斌, 賀慧高. 往復(fù)荷載作用下自復(fù)位墻受力機(jī)理研究[J]. 工程力學(xué), 2013, 30 (11): 202-206.
HU Xiao-bin, HE Hui-gao. Study on the mechanical behavior of self-centering wall under cycle loading[J]. Engineering mechanics, 2013, 30 (11): 202-206. (In Chinese)
[14]胡曉斌, 賀慧高, 彭真, 等. 往復(fù)荷載作用下自復(fù)位墻滯回性能研究[J]. 建筑結(jié)構(gòu)學(xué)報(bào), 2013, 34 (11): 23-28.
HU Xiao-bin, HE Hui-gao, PENG Zhen,etal. Study on hysteretic performance of self-centering wall subjected to cyclic loading[J]. Journal of Building Structures, 2013, 34 (11): 23-28. (In Chinese)
[15]CHRISTOPOULOS C, FILIATRAULT A E, FOLZ B. Seismic response of self-centering hysteretic SDOF systems[J]. Earthquake Engineering and Structural Dynamics, 2002, 31(5):1131-1150.
[16]MAZZONI S, MCKENNA F, SCOTT M H,etal. Open system for earthquake engineering simulation user command—Language manual: OpenSees version 1.7.3[M]. Los Angeles:University of California, 2006:58-61.
Seismic Performance of a New Type of Self-centering Confined Masonry Wall with External Steel Dampers
HU Xiao-bin1?, LI Wen-xia2, LIU Kun1, CHEN Lu1
(1.College of Civil Engineering, Wuhan Univ, Wuhan, Hubei430072, China;2.Shandong Electric Power Engineering Consulting Institute Co, Ltd, Jinan, Shandong250013, China)
A new type of self-centering confined masonry wall equipped with both unbounded tendons and external steel dampers was proposed. Its hysteresis behavior was studied through pseudo-static tests under cyclic loading, which focused on investigating the influence of the initial prestress of the tendon and the yield load of dampers on the energy dissipation capacity of the proposed wall. Based on the test results, a simplified numerical analysis model was established. It is showed that flag shape was a typical hysteresis curve of the wall. During the loading and unloading process, the wall specimen remained intact, and significant degradation of strength and stiffness was not observed. It is also found that the increase of the initial prestress in tendons led to the enhancement of the self-centering ability but the reduction of the energy dissipation capacity of the wall on the other hand, when the yield force of steel dampers increased, the energy dissipation capacity of the wall was improved, but some residual displacement occurred. Moreover, the numerical analysis results matched well with the test results, which indicate that the proposed numerical models can well capture the mechanical behavior of the wall.
a new type of self-centering confined masonry wall; external steel damper; pseudo-static test; seismic performance; numerical analysis
1674-2974(2016)07-0050-07
2015-09-21
國(guó)家自然科學(xué)基金資助項(xiàng)目(51208386, 51578429),National Natural Science Foundation of China(51208386, 51578429)
胡曉斌(1979-),男,湖北鐘祥人,武漢大學(xué)副教授,博士
?通訊聯(lián)系人,E-mail: newhxb@126.com
TU352
A