李寧 套格圖桑
(內(nèi)蒙古師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 呼和浩特 010022)
?
廣義BBM方程的無(wú)窮序列新解*
李寧?套格圖桑
(內(nèi)蒙古師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院, 呼和浩特010022)
利用第二種橢圓方程的已知解與解的非線性疊加公式,構(gòu)造了廣義BBM方程的由Jacobi橢圓函數(shù)解、雙曲函數(shù)和三角函數(shù)組成的無(wú)窮序列新解.
第二種橢圓方程,解的非線性疊加公式,無(wú)窮序列新解
引言
眾所周知非線性波動(dòng)問(wèn)題是有許多物理背景的.非線性發(fā)展方程是研究此類物理問(wèn)題的重要數(shù)學(xué)模型,而非線性發(fā)展方程的求解等相關(guān)問(wèn)題是孤立子理論的重要研究?jī)?nèi)容之一.所以研究非線性發(fā)展方程的求解方法等問(wèn)題具有重要的研究意義.人們?yōu)榱藢ふ曳蔷€性發(fā)展方程的精確解,提出了許多有效的直接方法,也已取得了很多的成果[1-6].
文獻(xiàn)[7]構(gòu)造了廣義BBM方程(1)的由雙曲函數(shù)解、三角函數(shù)解、指數(shù)函數(shù)解和有理解構(gòu)成的有限多個(gè)新精確解.本文利用第二種橢圓方程的已知解與解的非線性疊加公式,構(gòu)造了廣義BBM方程(1)的由Jacobi橢圓函數(shù)解、雙曲函數(shù)和三角函數(shù)組成的無(wú)窮序列新解.
下面給出的第二種橢圓方程解的非線性疊加公式等結(jié)論,構(gòu)造廣義BBM方程(1)的無(wú)窮序列新解.
ut+αupux+βu2pux-δuxxt=0 (p>0,δ≠0)
(1)
1.1第二種橢圓方程的已知解
根據(jù)文獻(xiàn)[7]的相關(guān)結(jié)論,我們得到第二種橢圓方程
(2)
的如下解.
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
b=H,c=-C2(1-k)2
(22)
(23)
(24)
b=2(1+k2),c=B2(1-k2)2
(25)
z(ξ)=J7(ξ),a=B2(1-k2)2,
(26)
b=F,c=?16A2kP2
(27)
(28)
b=E,c=4Φ
(29)
(30)
(31)
z(ξ)=L2(ξ),a=?16B2k2P2,
(32)
b=E,c=?16A2K
(33)
z(ξ)=L3(ξ),a=?16A2K,
(34)
(35)
(36)
b=E,c=?16C3K
(37)
z(ξ)=L5(ξ),a=?16C3K,
(38)
(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)
(47)
(48)
(49)
(50)
其中,J1(ξ)=C2[nd(ξ,k)±ksd(ξ,k)]2,
J5(ξ)=B2[dc(ξ,k)±Ksc(ξ,k)]2,
J6(ξ)=B2[dn(ξ,k)±cn(ξ,k)]2,
J7(ξ)=B2[ds(ξ,k)±cs(ξ,k)]2,
J8(ξ)=A2[ns(ξ,k)?ksn(ξ,k)]2,
J9(ξ)=B2[kcn2(ξ,k)±(1?k)]2,
F1(ξ)=A2[-(1?K)sn2(ξ,k)+1]2,
F2(ξ)=B2[k2cn2(ξ,k)+Θ]2,
S1(ξ)=C2[dn(ξ,k)?Nsn(ξ,k)]2,
S2(ξ)=C2[dn(ξ,k)?Nsn(ξ,k)]2,
S5(ξ)=C2[?kcn(ξ,k)+dn(ξ,k)]2,
S6(ξ)=[Dcn(ξ,k)+Cdn(ξ,k)]2,
L2(ξ)=B2[dn2(ξ,k)-P]2ns2(ξ,k),
L3(ξ)=A2[-(1?K)sn2(ξ,k)+1]2nd2(ξ,k),
Φ=?4B2(±2(1-k2)+(k2-2)K),P=1?k,
E=4(2-k2?6K),
F=4(-1±6k-k2),H=2(1+6k+k2),
1.2第二種橢圓方程解的非線性疊加公式
若zn-1(ξ)是第二種橢圓方程(2)的非常數(shù)解,則下列zn(ξ)也是方程(2)的解.
(51)
(52)
(53)
這里a,b,c是第二種橢圓方程(2)的系數(shù).
對(duì)方程(1)進(jìn)行行波變換u(x,t)=u(ξ),ξ=x+ωt,并對(duì)ξ積分一次后得到下列常微分方程(積分常數(shù)取為零)
δωu″(ξ)=0
(54)
假設(shè)方程(54)的形式解為如下:
(55)
將(55)式代入(54),整理后得到如下常微分方程:
(p-1)δω[v′(ξ)]2-pδωv(ξ)v″(ξ)=0
(56)
令
v(ξ)=g0z(ξ)+g1z2(ξ)
(57)
其中z(ξ)滿足第二種橢圓方程(2).
將(57)和第二種橢圓方程(2)一起代入(56),并令zj(ξ)(j=0,1,2,…)的系數(shù)為零后得到一個(gè)非線性代數(shù)方程組(未列出).用符號(hào)計(jì)算系統(tǒng)Mathematica求出方程組的如下解:
(58)
將(57)和(58)式一起代入,(55)式后得到廣義BBM方程(1)的如下形式的精確解:
(59)
這里p>0,而且δ,a滿足如下限制條件:
(60)
通過(guò)第二種橢圓方程(2)的已知解(3)~(50)和解的疊加公式(51)~(53),獲得第二種橢圓方程(2)的無(wú)窮序列解.再將這些無(wú)窮序列解分別代入(59)式后即可獲得廣義BBM方程(1)的無(wú)窮序列新解.比如:通過(guò)下列疊加公式,獲得由Jacobi橢圓函數(shù)解、雙曲函數(shù)和三角函數(shù)組成的無(wú)窮序列新解.
(61)
當(dāng)n=0時(shí),將公式(61)的第三式代入第一式后獲得如下解.
u0(x,t)=
(62)
當(dāng)k=0時(shí),Jacobi橢圓函數(shù)解(62)轉(zhuǎn)化為如下三角函數(shù)解
u0(x,t)=
(63)
當(dāng)k=1時(shí),Jacobi橢圓函數(shù)解(62)轉(zhuǎn)化為如下雙曲函數(shù)解
u0(x,t)=
(64)
文獻(xiàn)[7]構(gòu)造了廣義BBM方程的由雙曲函數(shù)解、三角函數(shù)解、指數(shù)函數(shù)解和有理解構(gòu)成的有限多個(gè)新精確解.本文利用第二種橢圓方程解的非線性疊加公式等結(jié)論,構(gòu)造了廣義BBM方程(1)的Jacobi橢圓函數(shù)無(wú)窮序列新解.當(dāng)k=0時(shí),Jacobi橢圓函數(shù)無(wú)窮序列解,退化為三角函數(shù)解.當(dāng)k=1時(shí),Jacobi橢圓函數(shù)無(wú)窮序列解退化為雙曲函數(shù)解.
1高翔,化存才. 時(shí)變系數(shù)下耦合KdV和Burgers方程組的孤波解. 動(dòng)力學(xué)與控制學(xué)報(bào),2014,12(4):295~303 (Gao X, Hua C C. Solitary wave solutions for coupled kdv-burgers equations with variable coefficients.JournalofDynamicsandControl,2014,12(4):295~303 (in Chinese))
2Sun Y Z, Wang Z L, Wang G W, Liu X Q. Soliton solutions for generalized fifth-order KdV and BBM equations with variable coefficients.ChineseJournalofQuantumElectronics, 2013,30(4):388~404
3Zhu W T,Ma S H, Fang J P, Ma Z Y, Zhu H P. Fusion, fission, and annihilation of complex waves for the (2+1)-dimensional generalized Calogero-Bogoyavlenskii-Schiff system.ChinesePhysicsB, 2013,23(6):060505(1-5)
4Taogetusang, Sirendaoerji, Li S M. New application to Riccati equation.ChinesePhysicsB, 2010,19(8):080303(1~6)
5Weiss J, Tabor M, Carnevale G. The Painleve property for partial differential equations.JournalofMathematicalPhysics,1983,24(3):522~526
6Cheng X P, Yang Y Q, Li J Y. Solitary and Periodic Waves in Coupled KdV Equations with Different Linear Dispersion Relations.CommunicationsinTheoreticalPhysics, 2014,61(1):1~6
7套格圖桑. 非線性發(fā)展方程求解中輔助方程法的歷史演進(jìn). 北京:中央民族大學(xué)出版社,2012: 168~174,243~247 (Taogetusang. Historical evolution of auxiliary equation method for solving nonlinear evolution equations. Beijing:The Press of the Minzu University of China, 2012:168~174,243~247 (in Chinese))
*The project supported by the Natural Science Foundation of China(11361040), Science Research Foundation of Institution of Higher Education of Inner Mongolia Autonomous Region, China(NJZY16180) and Natural Science Foundation of Inner Mongolia Autonomous Region, China(2015MS0128)
? Corresponding author E-mail: 379338089@qq.com
19 December 2014,revised 22 June 2015.
THE NEWINFINITE SEQUENCE SOLUTIONS OF THE GENERALIZED BBM EQUATION*
Li Ning?Taogetusang
(InstituteofMathematicalSciences,InnerMongolNormalUniversity,Hohhot010022,China)
Based on the known solutions of the second kind of elliptic equation and the nonlinear superposition formula of the solutions, the new infinite sequence solutions are constructed, consisting of Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric function solutions of the generalized BBM equation.
the second kind of elliptic equation,the nonlinear superposition formula of the solutions,the new infinite sequence solutions
E-mail: 379338089@qq.com
10.6052/1672-6553-2015-62
2014-12-19收到第1稿,2015-06-22收到修改稿.
*國(guó)家自然科學(xué)基金資助項(xiàng)目(11361040)、內(nèi)蒙古自治區(qū)高等學(xué)校科學(xué)研究基金(NJZY16180)和內(nèi)蒙古自治區(qū)自然科學(xué)基金(2015MS0128)資助的課題