陳文利,史艷維,魚 翔
(西安培華學院通識教育中心,陜西 西安 710125)
?
·基礎學科·
改良的Manning-Rosen勢Schr?dinger方程散射態(tài)解
陳文利,史艷維,魚翔
(西安培華學院通識教育中心,陜西 西安710125)
對改良的Manning-Rosen勢的徑向薛定諤方程任意l波散射態(tài)進行解析求解,得到按“K/2π標度”的相移公式和歸一化的超幾何函數(shù)表示的徑向波函數(shù)。通過對散射振幅在極點解析性質(zhì)的研究得到束縛態(tài)能級, 而特征值的數(shù)值結(jié)果與先前結(jié)果的比較進一步驗證了本文結(jié)果的精確性。
改良 Manning-Rosen勢場 ;散射態(tài); 近似解析解
隨著量子理論的發(fā)展,對于不同勢場含有離心項l(l+1)/r2的徑向薛定諤方程的求解一直是研究的熱點,然而,能夠解析求解的勢場大多被約束在s(l=0)態(tài)。近年來,研究者提出了近似求解方法在大多可解勢場中得以應用, 諸如指數(shù)近似辦法[1]、 Pekeris近似辦法[2]和改良的指數(shù)近似辦法[3]等近似表示離心項。有些近似辦法被應用到超幾何函數(shù)方法[4]中,有些學者利用超對稱[5]、形狀不變形方法[6]求解薛定諤方程解析解,這些方法進一步地豐富了求解的計算方法。在Manning-Rosen 勢基礎上,有顯著改良 Manning-Rosen 勢場被提出來[7],它的表達式為
(1)
其中:De是離解能;re是勢函數(shù)的最小值點; α是可調(diào)節(jié)的勢參數(shù)。該勢場被廣泛的應用于分子物理和化學物理。對于改良Manning-Rosen 勢場,Jia等計算了Klein-Gordon方程束縛態(tài)解析解[8]、自旋對稱的狄拉克方程[9-10],Oluwadare等計算了魔自旋對稱Klein-Gordon和狄拉克[11],Dong等利用近似辦法求解了束縛態(tài)解析解,推導出了近似特征值方程[12];然而散射態(tài)的求解一直很少被涉及。在我們先前工作的基礎上,本文利用更合適的近似公式求解改良Manning-Rosen 勢場散射態(tài)波函數(shù)解析解,同時,利用散射態(tài)波函數(shù)漸進行為求出歸一化常數(shù)N和相移θl的解析表達式。 最后,給定不同的勢參數(shù)和量子數(shù),數(shù)值求解特征值,并和先前求解數(shù)據(jù)及MATHEMAITC 程序包所得數(shù)據(jù)進行對比。
含改良Manning-Rosen勢的徑向薛定諤方程可表示為
(2)
由于離心項l(l+1)/r2的存在,方程(2)的求解大都被要求在s波(l=0)條件下求解。 像我們先前工作一樣[1-2,13],大多作者提出對離心項做合適的近似,繼而將薛定諤方程的求解推廣到任意l波。對于改良的Manning-Rosen勢本文應用文獻[8]中的Greene-Aldrich近似表達式
(3)
近似表示離心項,當c0=0時,近似表達式就變成慣用的Greene-Aldrich 近似。將方程(3)代入方程(2)可得
(4)
對上式自變量作指數(shù)變換,即引入新變量x=1-e-αr(r∈(0,),x∈(0,1)),并代入方程(4)化簡得到量綱一方程
(5)
滿足邊界條件方程(5)的徑向波函數(shù)可按“K/2π標度”歸一化的超幾何函數(shù)表示[14-16]。設波函數(shù)的形式為
u(x)=(1-x)-ikxδF(x),
(6)
其中
(7)
把方程(6)代入方程(5)可得
(8)
方程(8)為超幾何微分方程,其解可表示為
F(x)=C12F1(a;b;c;x)+C2x1-c2F1(a-c+1;b-c+1;2-c;x),
(9)
其中參數(shù)
c=2δ。
(10)
u(r)=N[1-e-αr]δeikαr2F1(a;b;c;1-e-αr),
(11)
其中,N是歸一化常數(shù)。
下面利用散射態(tài)波函數(shù)漸進行為確定歸一化常數(shù)N 和相移θl的解析表達式, 從方程(10)可以得到參數(shù)a,b,c滿足
(12)
利用超幾何函數(shù)的變換公式
(13)
(14)
令
(15)
其中θ為常數(shù)。把方程(15)代入方程(14)可得
(16)
(17)
(18)
(19)
對于s波(l=0),離心項l(l+1)/r2等于零;因此,對于改良的Manning-Rosen勢s波的歸一化常數(shù)N0和相移近似解析解θ0,只需取方程(18)、(19)公式中l(wèi)=0即可得。
根據(jù)散射態(tài)和束縛態(tài)的關系,結(jié)合方程(18)中伽馬函數(shù)的性質(zhì),可得
(20)
結(jié)合方程(7),解析求解方程(20),即得到特征值表達式
(21)
本文求解出的特征值方程(21)和文獻[12]中特征值方程(20)化簡相應的參數(shù)所得的特征值方程本質(zhì)是相同的。
為了說明本文結(jié)果的精度,把公式(21)計算所得特征值和先前文獻[13]中的數(shù)值及公認最接近精確值的Lucha,et al程序包所得數(shù)據(jù)作對比(見表1)。對所得數(shù)據(jù)進行對比分析可知,本文所得的特征值比先前計算所得數(shù)據(jù)更好地逼近精確值。
表1 2p, 3p, 3d, 4p, 4d, 4f, 5p, 5d, 5f, 5g, 6d和6f態(tài)特征值數(shù)值表, 其中勢參數(shù)取為De=15
表1(續(xù))
對短勢場改良的Manning-Rosen勢利用合適的近似辦法近似表示離心項,求解了任意l波薛定諤方程散射態(tài)解析解,得到了相應的相移公式和按“K/2π標度”歸一化的超幾何函數(shù)表示的徑向波函數(shù),印證我們所計算出的特征值方程和先前計算出的表達式本質(zhì)是相同的。為了進一步說明近似精度,我們數(shù)值計算了特征值方程,所得的特征值數(shù)據(jù)較先前數(shù)據(jù)更好地逼近了MATHEMATICA程序包所得數(shù)據(jù)。
[1]Wei Gao-Feng, Chen Wen-Li, Wang Hong-Ying, et al. The Scattering States of The Generalized Hulthén Potential with an Improved New Approximate Scheme for The Centrifugal Term[J].Chinese Physics B,2009,18(09):1674.
[2]Qiang Wen-Chao, Chen Wen-Li, Li Kai, et al. The Scattering States of The l-wave Schr?dinger Equation with The Second P?schl-Teller-like Potential[J].Physica Scripta,2009,79:025005.
[3]You Yuan, Lu Fa-Lin, Sun Dong-Sheng, et al. Improved Analytical Approximation to The Scattering Solutions of The Schr?dinger Equation with a Hyperbolical Potential[J].Communications in Theoretical Physics,2014,62:315.
[4]Wei Gao-Feng, Long Cha-Yun, Dong Shi-Hai. The Scattering of The Manning-Rosen Potential with Centrifugal Term[J].Physics Letters A,2008,372:2592.
[5]Daniel A Morales. Supersymmetric Improvement of The Pekeris Approximation for The Rotating Morse Potential[J].Chemical Physics Letters,2004,394:68.
[6]Jia Chun-Sheng, Wang Jia-Ying, He Su, et al. Shape Invariance and The Supersymmetry WKB Approximation for a Diatomic Molecule Potential[J].Journal of Physics A: Mathematical and Theoretical,2000,33:6993.
[7]Wang Ping-Quan, Zhang Lie-Hui, Jia Chun-Sheng, et al. Equivalence of The Three Empirical Potential Energy Models for Diatomic Molecules[J].Journal of Molecular Spectroscopy,2012,274:5.
[8]Jia Chun-Sheng,Chen Tao, He Su. Bound State Solutions of The Klein-Gordon Equation with The Improved Expression of The Manning-Rosen Potential Energy Model[J].Physics Letters A,2013,377:682.
[9]Jia Chun-Sheng, Zhang Lie-Hui, Liu Jian-Yi. Stability Analysis of The Solution of The Dirac Equation for The Vibrational Energies of The SiF+ Molecule[J].The European Physical Journal Plus,2016,131:2.
[10]Jia Chun-Sheng, Dai Jian-Wei, Zhang Lie-Hui, et al. Relativistic Energies for Diatomic Molecule Nucleus Motions with The Spin Symmetry[J].Physics Letters A,2015,379:137.
[11]Oluwadare O J, Oyewumi K J, Akoshile C O, et al. Approximate Analytical Solutions of The Relativistic Equations with The Deng-Fan Molecular Potential Including a Pekeris-type Approximation to The(pseudo or) Centrifugal Term[J].Physica Scripta,2012,86:035002.
[12]Dong Shi-Hai, Gu Xiao-Yan. Arbitrary l State Solutions of The Schr?dinger Equation with The Deng-Fan Molecular Potential[J].Journal of Physics: Conference Series,2008,96:012109.
[13]Wei Gao-Feng, Chen Wen-Li. Continuum States of Modified Morse Potential[J]. Chinese Physics B,2010,19(9):090308.
[14]曾瑾言.量子力學[M].3版.北京: 科學出版社,2000:547.
[15]陳昌遠,陸法林,孫東升. Hulthén勢散射態(tài)的解析解[J].物理學報, 2007,56(11):6204.
[16]Landau L D,Lifshitz E M .Quantum Mechanics (Non-Relativistic Theory) [M]. 3rd ed. New York: Pergamon Press,1977:122.
(編校:葉超)
The Scattering States of Schr?dinger Equataion with the Improved Manning-Rosen Potential
CHEN Wenli, SHI Yanwei, YU Xiang
(GeneralEducationCenter,Xi’anPeihuaUniversity,Xi’an710125China)
We obtianed the scattering state analytical solutions of the Schr?dinger equation for the improved Manning-Rosen potential. The explicitly calculation formula of phase shift is derived and the normalized radial wave functions of scattering states on the“K/2π scale” are presented. The energy levels of the bound states are also obtained by studying analytical properties of scattering amplitude. All data calculated by the above approximate analytical formulae are compared with those obtained by the previous. Numerical results show the accuracy of our results.
the improved Manning-Rosen potential; scattering states; approximately analytical solutions
2016-02-12
陜西省教育廳科學研究項目(15JK2093)。
陳文利(1981—),男,講師,碩士研究生,主要研究方向為計算物理。
O365
A
1673-159X(2016)04-0039-5
10.3969/j.issn.1673-159X.2016.04.008