余麗燕,楊 浩,黃昌春,黃 濤,余艷紅,姜泉良,劉大慶,李帥東
(1:南京師范大學(xué),南京210023) (2:云南省環(huán)境科學(xué)研究院,昆明650032)
?
夏季滇池和入滇河流氮、磷污染特征*
余麗燕1,楊浩1,黃昌春1**,黃濤1**,余艷紅2,姜泉良1,劉大慶1,李帥東1
(1:南京師范大學(xué),南京210023) (2:云南省環(huán)境科學(xué)研究院,昆明650032)
為探討滇池入湖河流水體營養(yǎng)鹽空間分布特征及其對滇池水體富營養(yǎng)化的影響,2014年7月采集了入滇4類典型河流(城市納污型河流、城鄉(xiāng)結(jié)合型河流、農(nóng)田型河流、村鎮(zhèn)型河流)及滇池水樣,分析其氮、磷濃度. 結(jié)果表明:4條入湖河流總氮(TN)、總磷(TP)、硝態(tài)氮和氨氮污染均較嚴(yán)重;河流水體中TN、TP平均濃度大小為:農(nóng)田型河流(大河)>村鎮(zhèn)型河流(柴河)>城鄉(xiāng)結(jié)合型河流(寶象河)>城市納污型河流(盤龍江),其中農(nóng)田型河流(大河)水體TN、TP污染最為嚴(yán)重;在夏季,4條入湖河流水體中TN、TP濃度從上游向下游增加趨勢比較明顯,表明氮、磷沿河流不斷富集;氮磷比分析表明,夏季河流輸入氮、磷營養(yǎng)鹽有利于藻類的生長,并且滇池浮游植物生長主要受TN濃度限制;夏季滇池南部入湖河流水體的TN、TP濃度高于北部入湖河流,該特征與滇池水體中TN、TP污染分布狀況相反,推測滇池北部富營養(yǎng)化的主要影響因素是內(nèi)源釋放. 因此,在今后的滇池水體富營養(yǎng)化研究中,應(yīng)對滇池內(nèi)源釋放進(jìn)行深入研究.
滇池;入湖河流;營養(yǎng)狀況;氮;磷;污染
水體富營養(yǎng)化是國際社會共同關(guān)注的水環(huán)境污染問題[1-2],如何有效地治理水體富營養(yǎng)化已成為世界性難題[3]. 眾所周知,氮、磷是水體富營養(yǎng)化最為主要的限制性因子[4]. 湖泊營養(yǎng)化的控制與機制[5], 尤其是匈牙利的Balaton湖[6]等淺水湖泊富營養(yǎng)化的成功治理,為湖泊水體的富營養(yǎng)化治理提供了寶貴的參考經(jīng)驗. 湖泊營養(yǎng)鹽的富集,包括外源輸入 (人類活動和干、濕沉降) 和內(nèi)源釋放 (物理、化學(xué)、生物等過程),是湖泊富營養(yǎng)化發(fā)生的根本要素[7]. 因此,外源輸入和內(nèi)源釋放都受到了研究者的廣泛關(guān)注. 目前,相關(guān)研究主要集中在湖泊水體本身內(nèi)源污染負(fù)荷方面[8],而對湖泊富營養(yǎng)化程度的外部影響因素,尤其是入湖河流水質(zhì)營養(yǎng)狀況對湖水富營養(yǎng)化的影響研究較少. 入湖河流作為氮和磷轉(zhuǎn)移到湖泊中的主要路徑,集中了所在流域的各種點源污染(工業(yè)污染、生活污水等)和面源污染(農(nóng)業(yè)生產(chǎn)污水)[9]. 為此,全面了解入湖河流氮、磷營養(yǎng)鹽空間分布及滇池污染狀況,將有助于制定合理的水污染治理措施.
滇池流域是云南省人口最密集、經(jīng)濟最發(fā)達(dá)的地區(qū),由于毗鄰昆明主城區(qū),滇池水質(zhì)一直受到人類活動的嚴(yán)重影響. 隨著污染物產(chǎn)生量的迅速增加,富營養(yǎng)化已經(jīng)成為滇池主要的環(huán)境問題[10]. 滇池位于整個滇池流域的下部,主要有寶象河、馬料河等20多條河流匯入湖體. 已有研究表明,大量氮、磷等營養(yǎng)物質(zhì)通過流域的地表徑流進(jìn)入滇池,進(jìn)一步加重了水體富營養(yǎng)化[11]. 自1980s以來,有關(guān)滇池及其流域的富營養(yǎng)化研究逐漸深入[12-16],王紅梅等[17]從時間尺度分析了滇池水體富營養(yǎng)化狀況,結(jié)果表明滇池水體富營養(yǎng)化程度在逐年加重;劉勇等[18]從沉積物角度研究了滇池富營養(yǎng)化,表明自 1950s以后滇池開始由中營養(yǎng)化向富營養(yǎng)化過渡;王佳音等[19]研究了入滇河流大河周邊地下水氮污染的變化,揭示了大河周邊農(nóng)田地下水3種不同氮組分主要以硝酸鹽形態(tài)存在,地下水中及滇池大河流域地下水3種形態(tài)氮濃度在空間和時間上遵循一定的變化規(guī)律. 目前的相關(guān)研究主要集中于入湖河流時間尺度上營養(yǎng)現(xiàn)狀的變化特征,或者局限于湖體水質(zhì)分析,而缺乏多條入滇池河流營養(yǎng)鹽的空間變化、入湖河流外源污染和湖體氮、磷污染特征的對比研究. 為此,有必要綜合分析滇池湖泊水體氮、磷空間污染特征和入滇池河流水質(zhì)營養(yǎng)狀況的空間分布特征.
湖泊富營養(yǎng)化將有可能導(dǎo)致水體藻類大量生長,從而形成“水華”. 夏季,藻類開始大量繁殖,而氮、磷是其生長最重要的控制因素,了解水體氮、磷營養(yǎng)鹽空間分布特征,將有助于評估“水華”暴發(fā)風(fēng)險. 本研究擬對滇池入湖4類典型河流(城市納污河流、城鄉(xiāng)結(jié)合部河流、農(nóng)田河流、村鎮(zhèn)河流)氮、磷營養(yǎng)鹽的空間分布規(guī)律以及滇池污染來源進(jìn)行分析,利用氮磷比(TN/TP)解析4條河流夏季水質(zhì)的營養(yǎng)現(xiàn)狀,探討滇池流域入湖河流的富營養(yǎng)化污染的空間分布特征及其對滇池水體富營養(yǎng)化的影響,為該流域規(guī)劃以及水質(zhì)保護方案的制定提供科學(xué)依據(jù).
圖1 滇池流域采樣點分布Fig.1 Sampling sites in Dianchi watershed
1.1 研究區(qū)域
滇池(24°40′~25°2′N,102°36′~102°47′E)位于第二級階梯云貴高原中部,是云南高原最大的淡水湖,流域面積2920 km2,滇池湖體呈南北分布,略呈弓形,面積309.5 km2,南北向長40 km,平均深度5.3 m[20]. 滇池大小入湖河流共120多條,多發(fā)源于流域北部、東部和南部山地[21],大部分入湖河流流經(jīng)人口密集的城鎮(zhèn)、鄉(xiāng)村以及磷礦區(qū),最后呈向心狀注入滇池.
選擇滇池入湖4類典型河流(城市納污河流、城鄉(xiāng)結(jié)合部河流、農(nóng)田河流和村鎮(zhèn)河流),分別代表不同入滇河流的營養(yǎng)物含量和污染源類型. 其中,盤龍江是一條城市納污河流,自北向南縱穿昆明城而過,從而成為昆明四城區(qū)的分界線,該河流主要接納昆明城區(qū)點源生活污水;寶象河匯水區(qū)處于城鄉(xiāng)結(jié)合部,接受城市點源與農(nóng)業(yè)面源污染;大河位于連片農(nóng)田區(qū)域的中間部位,周圍基本無居住區(qū)、鄉(xiāng)鎮(zhèn)企業(yè)或規(guī)模化畜禽養(yǎng)殖基地;柴河屬于村鎮(zhèn)河流,其村鎮(zhèn)居民集中居住區(qū)周邊無集中污水處理系統(tǒng)[22].
1.2 樣品采集
通過對4條典型河流盤龍江(PLJ)、寶象河(BXH)、大河(DH)和柴河(CH)及滇池(DC)湖體進(jìn)行實地考察、調(diào)研,并嚴(yán)格按照地表水和污水監(jiān)測技術(shù)規(guī)范(HJ/T 91-2002)及文獻(xiàn)[23]確定每條河流的采樣點(圖1). 盤龍江采樣點編號為PLJ1~PLJ12,寶象河采樣點編號為BXH1~BXH13,大河采樣點編號為DH1~DH12,柴河采樣點編號為CH1~CH9,各斷面采樣點均自上游到下游依次編號. 滇池采樣點編號為DC1~DC28. 采樣時間為2014年7月9日-7月16日,所采集的水樣送云南省環(huán)境科學(xué)研究院,24 h內(nèi)完成分析檢測工作.
1.3 測試分析與數(shù)據(jù)處理
2.1 入滇河流和滇池污染總體特征
表1 地表水總氮、總磷和氨氮標(biāo)準(zhǔn)Tab.1 Criteria of total nitrogen, total phosphorus and ammonia in surface water
表2 滇池及其4類不同入湖河流水體中的氮、磷濃度Tab.2 Nitrogen and phosphorus concentrations in water of Lake Dianchi and four different kinds of inflow rivers
2.2 入滇河流和滇池水體TN濃度的空間變化特征及污染狀況
圖2 滇池4類不同入湖河流水體中總氮、氨氮及硝態(tài)氮濃度Fig.2 Total nitrogen, ammonia nitrogen and nitrate nitrogen concentrations in the water of four different kinds of inflow rivers from Lake Dianchi
圖3 滇池水體中TN濃度的空間分布Fig.3 Spatial distribution of total nitrogen concentration in the water of Lake Dianchi
使用ArcGIS 10.1對滇池水體TN濃度進(jìn)行空間插值分析,獲得滇池水體氮、磷濃度空間變化趨勢. 滇池水體TN均值濃度空間分布具有差異性,滇池水體TN濃度由北部向南部呈衰減趨勢(圖3). 滇池北部水體TN濃度在1.32~5.55 mg/L之間,平均濃度為3.02 mg/L. 滇池南部水體TN濃度在1.14~1.71 mg/L之間,平均濃度為1.36 mg/L.
2.3 入滇河流和滇池水體TP濃度的空間變化特征及污染狀況
夏季各河流水體中TP濃度從上游向下游逐漸升高,變化趨勢與TN濃度類似(圖4a). 逐點分析TP濃度,寶象河和盤龍江TP濃度變化幅度不大,盤龍江上游4個采樣點水體的TP濃度都低于Ⅱ類水質(zhì)濃度限值(0.1 mg/L),下游8個樣點TP濃度大于Ⅱ類水質(zhì)濃度限值. 寶象河13個采樣點水體的TP濃度從上游到下游變化趨勢相對較緩,TP濃度峰值拐點出現(xiàn)在第7個采樣點,其濃度高達(dá)0.41 mg/L. 大河與柴河TP濃度變化較大,其中,大河水體TP濃度最大值出現(xiàn)在第8個樣點;柴河9個采樣點TP濃度變化整體上與大河類似,最大值出現(xiàn)在采樣點7(0.59 mg/L). 農(nóng)田型河流(大河)是入湖磷素的主要貢獻(xiàn)者,進(jìn)入滇池的TP平均濃度排序為:大河>柴河>寶象河>盤龍江(圖4b),表明農(nóng)業(yè)匯水區(qū)河流的平均濃度貢獻(xiàn)率明顯高于城市匯水區(qū)河流.
滇池水體中TP平均濃度的空間分布具有差異性,由北部向南部呈衰減的趨勢(圖5). 滇池北部水體中TP濃度在0.21~0.69 mg/L之間,平均濃度為0.35 mg/L. 滇池南部水體中TP濃度為0.19~0.25 mg/L,平均濃度為0.22 mg/L.
2.4 入滇典型河流以及滇池水體氮、磷比例關(guān)系
TN/TP(質(zhì)量比)是分析河流水體浮游植物的生長態(tài)勢及其營養(yǎng)鹽限值因子和水體浮游植物營養(yǎng)結(jié)構(gòu)特征的重要指標(biāo). 有學(xué)者將富營養(yǎng)化評估的標(biāo)準(zhǔn)劃分3個區(qū)間:(1)當(dāng)TN/TP小于7~10,氮元素成為浮游植物生長的限制因子. (2)TN/TP介于23~30之間,磷元素成為水體植物生長的限制因子. (3)TN/TP介于兩者之間為水體植物合適的生長范圍[28-29]. 不同流域類型的4條河流夏季TN/TP基本上介于7~30之間(圖6),說明夏季各條河流水質(zhì)整體上適合浮游藻類的生長. 而滇池大部分采樣點水體的TN/TP小于7,說明氮元素成為滇池浮游植物生長的限制因子,因此對氮污染進(jìn)行控制更有利于滇池水體富營養(yǎng)化的控制.
圖4 滇池4類入湖河流水體中的總磷濃度Fig.4 Total phosphorus concentrations in water of four different kinds of inflow rivers from Lake Dianchi
圖5 滇池水體TP濃度的空間分布Fig.5 Spatial distributions of total phosphorus concentration in water of Lake Dianchi
3.1 影響入滇河流水體TN、TP濃度空間變化的主要因素
位于北部的寶象河和盤龍江水體氮、磷濃度低于南部的柴河和大河(圖2~5),水體TN、TP濃度差異是由不同類型的河流和每條河流不同河段的區(qū)域異質(zhì)性導(dǎo)致的. 城鄉(xiāng)結(jié)合型河流(寶象河)和城市納污型河流(盤龍江)流經(jīng)地區(qū)多為城鎮(zhèn)居民區(qū),治污力度較大導(dǎo)致營養(yǎng)鹽濃度相對較低[30];而農(nóng)田型河流(大河)和村鎮(zhèn)型河流(柴河)流經(jīng)地區(qū)多為集約化農(nóng)業(yè)區(qū),化肥的大量使用以及禽畜廢棄物的直接排放造成水體中氮、磷等營養(yǎng)鹽濃度較高. 有研究表明,農(nóng)業(yè)上長期施用高量氮肥和畜禽養(yǎng)殖廢棄物的直接排放是造成水中氮污染的重要原因之一[31].
夏季4條河流水體中TN和TP濃度從上游向下游逐漸升高,但各河流在不同河段的變化特征存在差異. 具體差異性和影響因素為:
城市納污型河流(盤龍江)上游4個采樣點水體TN、TP濃度分別低于Ⅴ類和Ⅱ類水質(zhì)標(biāo)準(zhǔn),主要因為上游河段作為昆明市主要飲用水源保護區(qū),實行封閉式管理,污染較??;而其下游8個采樣點水體TN、TP濃度分別超過V類和Ⅱ類水質(zhì)標(biāo)準(zhǔn),符合城市納污河流沿途不斷接受污水排放的實際情況[32].
城鄉(xiāng)結(jié)合型河流(寶象河)13個采樣點水體中TN、TP濃度從上游到下游變化趨勢相對較緩. 寶象河是滇池東部城鄉(xiāng)結(jié)合部入湖河流,沿途接納城市點源與農(nóng)業(yè)面源污染,因此城市污染與農(nóng)業(yè)污染對其均有影響[33]. TP濃度峰值拐點出現(xiàn)在第7個采樣點,結(jié)合采樣時間、天氣狀況以及采樣點地形特征(大面積無植被覆蓋的紅黃壤山坡),主要是因為夏季降雨量較大,容易形成明顯的地表徑流[34],使山坡水土流失嚴(yán)重,進(jìn)而使大量易溶解性磷隨徑流進(jìn)入水體.
村鎮(zhèn)型河流(柴河)9個采樣點水體TN、TP濃度從上游到下游呈先增后減的趨勢,TP濃度最大值出現(xiàn)在采樣點7,主要原因是其位于磷礦分布區(qū)域. 樣點4與樣點7之間河段的TN濃度有所降低,可能是以硝態(tài)氮為主的水體自凈作用的結(jié)果[35].
農(nóng)田型河流(大河)12個采樣點水體TN、TP濃度變化基本符合農(nóng)田河流營養(yǎng)鹽從上游到下游不斷累積的特征,其中,第8個采樣點水體TN、TP濃度突然增加,這主要是由于該采樣點周圍有農(nóng)田廣布,是農(nóng)業(yè)面源污染導(dǎo)致的[36].
圖6 入滇河流及滇池水體的氮磷比分布Fig.6 The distribution of TN/TP ratios in water of inflow rivers and Lake Dianchi
3.2 影響入滇河流水體氨氮、硝態(tài)氮濃度空間變化的主要因素
對于TN、TP而言,農(nóng)業(yè)匯水區(qū)為主的大河與柴河入湖水體平均濃度明顯高于城市匯水區(qū)為主的盤龍江和寶象河,且總體變化趨勢一致(圖2a、圖4a),但不同形態(tài)的氮總體變化趨勢存在明顯差異,這主要與河流類型特征有關(guān). 4條河流水體的NH3-N濃度總體上呈現(xiàn)從上游到下游波動增加的變化趨勢(圖7a). 有研究表明,河流中NH3-N主要來源于城市生活污水和工業(yè)廢水以及由水土流失和農(nóng)田施肥造成的氮素流失[37],但不同類型河流的變化趨勢各異. 農(nóng)田型河流(大河)水體的氨氮濃度相對較高,說明豐水期的夏季NH3-N濃度主要受農(nóng)業(yè)面源污染影響,夏季強降雨引起的地表徑流將農(nóng)業(yè)生態(tài)系統(tǒng)中未被利用的氮素及其他污染物帶入河流造成氨氮污染[38],其中,第8個采樣點NH3-N濃度達(dá)到最大,說明該樣點區(qū)域水體近期受到污染最為嚴(yán)重[39]. 城鄉(xiāng)結(jié)合型河流(寶象河)和城市納污型河流(盤龍江)的污染主要來自生活污水和工廠的點源排放,排放量常年基本保持穩(wěn)定. 城市納污型河流雖受人類活動影響較大,但污染程度較小,這與盤龍江污染治理措施的加強(河道清淤、水質(zhì)治理)和江河污染防控措施的實施有一定關(guān)系. 農(nóng)業(yè)匯水區(qū)的大河和柴河雖受人為活動干擾小,但該區(qū)域具有傳統(tǒng)農(nóng)作物與養(yǎng)殖區(qū)廣布的地理特征[40],且夏季降雨相對集中造成農(nóng)業(yè)區(qū)暴雨徑流水所占比重增加,導(dǎo)致河流面源污染的影響程度大于城市、工業(yè)聚集等點源污染程度.
圖7 滇池4類入湖河流水體中氨氮和硝態(tài)氮濃度Fig.7 Ammonia nitrogen and nitrate nitrogen concentrations in water of four different kinds of inflow rivers from Lake Dianchi
3.3 入滇河流與滇池湖體氮、磷營養(yǎng)鹽對比分析
北部入滇河流水體中TN平均濃度為8.23 mg/L,TP平均濃度為0.38 mg/L;南部入滇河流水體中TN平均濃度為20.24 mg/L,TP平均濃度為0.84 mg/L. 南部入滇河流水體中TN、TP濃度是北部入滇河流的2倍多. 而滇池北部水體中TN濃度在3.47~5.39 mg/L之間,TP濃度在0.34~0.47 mg/L之間. 滇池南部水體中TN濃度在1.14~3.46 mg/L之間,其TP濃度在0.21~0.32 mg/L之間(圖3、5). 滇池水體TP、TN濃度由北部向南衰減,與盧少勇等[45]的研究結(jié)論一致,但北部入滇河流比南部入滇河流污染小的結(jié)果與其研究不一致,因此,我們推測滇池北部富營養(yǎng)化的主要影響因素是內(nèi)源釋放,水體的富營養(yǎng)化水平很大程度上受底泥向水體釋放的氮、磷營養(yǎng)鹽的影響[46-47]. 結(jié)合湖泊水體沉積學(xué)理論,可能原因有:(1)滇池地區(qū)常年盛行西南風(fēng)[48],南部水體中的TN、TP隨水流和風(fēng)的擾動向北部集聚. (2)與滇池特定的水動力、地形構(gòu)造[49]有關(guān). (3)滇池南部多為磷礦區(qū),如柴河流域周邊磷礦分布廣泛,磷礦石含鈣量較高,而沉積物無機磷主要以鈣磷化合物形式沉積[50]. 滇池西南部磷的吸附性沉積,導(dǎo)致磷濃度降低. 為此,在今后的滇池水體富營養(yǎng)化研究中,應(yīng)對滇池內(nèi)源釋放進(jìn)行深入研究.
2)4類典型入湖河流中,TN、TP平均濃度大小順序為:農(nóng)田型河流(大河)>村鎮(zhèn)型河流(柴河)>城鄉(xiāng)結(jié)合型河流(寶象河)>城市納污型河流(盤龍江).
3)夏季各條河流水質(zhì)整體上適合浮游藻類的生長,氮元素是滇池浮游植物生長的主要限制因子.
4)滇池水體TN、TP平均濃度的空間分布存在差異,總體上呈現(xiàn)出由滇池北部向南部逐漸遞減的趨勢,該特征與外源污染物的輸入狀況相反. 內(nèi)源釋放是滇池北部水體富營養(yǎng)化的主要影響因素,值得進(jìn)一步深入研究.
[1]Zhang H, Huang GH. Assessment of non-point source pollution using a spatial multicriteria analysis approach.EcologicalModelling, 2011, 222: 313-321.
[2]Schaffner M, Bader HP, Scheidegger R. Modeling the contribution of point sources and non-point sources to Thachin River water pollution.ScienceoftheTotalEnvironment, 2009, 407: 4902-4915.
[3]Zhang Shaohao, Wu Hongjuan, Cui Boetal. Preliminary study on control of algaeblooms by hyriopsis cumingii lea.ActaHydrobiologicaSinica, 2007, 31(5): 760-762(in Chinese).[張紹浩, 鄔紅娟, 崔博等.利用三角帆蚌控制水華的初步研究. 水生生物學(xué)報, 2007, 31(5): 760-762.]
[4]Cai Qinghua, Hu Zhengyu. Studies on eutrophication problem and control strategy in the three gorges reservoir.ActaHydrobiologicaSinica, 2006, 30(1): 7-11(in Chinese with English abstract).[蔡慶華, 胡征宇. 三峽水庫富營養(yǎng)化問題與對策研究. 水生生物學(xué)報, 2006, 30(1): 7-11.]
[5]Qin BQ, Yang LY, Chen FZetal. Mechanism and control of lake eutrophication.ChineseScienceBulletin, 2006, 51(19): 2401-2412.
[6]Padisak J, Reynolds CS. Selection of phytoplankton associations in Lake Balaton,Hungary, in response to eutrophication and restoration measures,with special reference to cyanoprokaryotes.Hydrobiologia, 1998, 384: 41-53.
[7]Yu Xiaogan, Josef Nipper, Yan Nailingetal. Recommendations of eutrophication control of Taihu Lake from an international view.ActaGeographicaSinica, 2007, 62(9): 889-906(in Chinese with English abstract).[虞孝感, Josef Nipper, 燕乃玲. 從國際治湖經(jīng)驗探討太湖富營養(yǎng)化的治理. 地理學(xué)報, 2007, 62(9): 899-906.]
[8]Guo Huaicheng, Wang Xinyu, Yi Xuan. Study on eutrophication control strategy based on the succession of water ecosystem in the Dianchi Lake.GeographicalResearch, 2013, 32(6): 998-1006(in Chinese with English abstract).[郭懷成, 王心宇, 伊璇. 基于滇池水生態(tài)系統(tǒng)演替的富營養(yǎng)化控制策略. 地理研究, 2013, 32(6): 998-1006.]
[9]Zhu Jun, Dong Hui, Wang Shoubingetal. Sources and quantities of main water pollution loads released into Three-Gorge Reservoir of the Yangtze River.AdvancesinWaterScience, 2006, 17(5): 709-713(in Chinese with English abstract).[朱駿, 董輝, 王壽兵等. 長江三峽庫區(qū)干流水體主要污染負(fù)荷來源及貢獻(xiàn). 水科學(xué)進(jìn)展, 2006, 17(5): 709-713.]
[10]Guo Huaicheng, Sun Yanfeng. Characteristic analysis and control strategies for the eutrophicated problem of the Lake Dianchi.ProgressinGeography, 2002, 21(5): 500-506(in Chinese with English abstract).[郭懷成, 孫延楓. 滇池水體富營養(yǎng)化特征分析及控制對策探討. 地理科學(xué)進(jìn)展, 2002, 21(5): 500-506.]
[11]Gao L, Zhou JM, Yang Hetal. Phosphorus fractions in sediment profiles and their potential contributions to eutrophication in Dianchi Lake.EnvironmentalGeology, 2005, 48: 835-844.
[12]Xiao M, Wu F, Zhang Retal. Temporal and spatial variations of low-molecular-weight organic acids in Dianchi Lake, China.JournalofEnvironmentalSciences, 2011, 23(8): 1249-1256.
[13]Wang Lifang, Xiong Yongqiang, Wu Fengchangetal. The eutrophication process of Lake Dianchi: evidences from the δ13C value of the bound nC16:0fatty acid.JLakeSci, 2009, 21(4): 456-464(in Chinese with English abstract). DOI: 10.18307/2009.0402.[王麗芳, 熊永強, 吳豐昌等. 滇池的富營養(yǎng)化過程:來自結(jié)合態(tài)脂肪酸C16:0δ13C的證據(jù). 湖泊科學(xué), 2009, 21(4): 456-464.]
[14]Wu Deling, Qian Biao, He Linhui. Contributing factor analysis of eutrophication of Dianchi Lake.ResearchofEnvironmentalScience, 1992, 5(5): 26-28(in Chinese with English abstract).[吳德玲, 錢彪, 何琳暉. 滇池富營養(yǎng)化成因分析. 環(huán)境科學(xué)研究, 1992, 5(5): 26-28.]
[15]Kong Yan, He Shuzhuang, Hu Binetal. The settlement and transfer rule of phosphorus in stormwater runoff from phosphorus-rich area in Dianchi Watershed.ActaScientiaeCircumstantiae, 2012, 32(9): 2160-2166(in Chinese with English abstract).[孔燕, 和樹莊, 胡斌等. 滇池流域富磷地區(qū)暴雨徑流中磷素的沉降及輸移規(guī)律. 環(huán)境科學(xué)學(xué)報, 2012, 32(9): 2160-2166.]
[16]Liu Yong, Yang Pingjian, Sheng Huetal. Watershed pollution prevention planning and eutrophication control strategy for Lake Dianchi.ActaScientiaeCircumstantiae, 2012, 32(8): 1962-1972 (in Chinese with English abstract).[劉永, 陽平堅, 盛虎等. 滇池流域水污染防治規(guī)劃與富營養(yǎng)化控制戰(zhàn)略研究. 環(huán)境科學(xué)學(xué)報, 2012, 32(8): 1962-1972.]
[17]Wang Hongmei, Chen Yan. Change trend of eutrophication of Dianch Lake and reason analysis in recent 20 years.EnvironmentalScienceSurvey, 2009, 28(3): 57-60 (in Chinese with English abstract). DOI: 10. 13623/2009. 03012.[王紅梅, 陳燕. 滇池近20a富營養(yǎng)化變化趨勢及原因分析. 環(huán)境科學(xué)導(dǎo)刊, 2009, 28(3): 57-60.]
[18]Liu Yong, Zhu Yuanrong, Gong Xiaofengetal. Sedimentary records of accelerated eutrophication in Dianchi Lake over the recent decades.ResearchofEnvironmentalSciences, 2012, 25: 1236-1242(in Chinese with English abstract).[劉勇, 朱元榮, 弓曉峰等. 滇池近代富營養(yǎng)化加劇過程的沉積記錄. 環(huán)境科學(xué)研究, 2012, 25: 1236-1242.]
[19]Wang Jiayin, Zhang Shitao, Wang Mingyuetal. Temporal and spatial distribution of groundwater nitrogen pollution and influence factors in Dahe river catchment in Dianchi watershed.JournalofGraduateUniversityofChineseAcademyofSciences, 2013, 30 (3): 339-346(in Chinese with English abstract).[王佳音, 張世濤, 王明玉等. 滇池流域大河周邊地下水氮污染的時空分布特征及影響因素分析. 中國科學(xué)院研究生院學(xué)報, 2013, 30(3): 339-346.]
[20]He Zongjian, Xiong Qiang, Jiao Lixinetal. Characteristics and bioavailability of dissolved organic phosphorus from different sources of Lake Dianchi in summer.ChinaEnvironmentalScience, 2014, 34(12): 3189-3198(in Chinese with English abstract).[何宗健, 熊強, 焦立新等. 夏季滇池不同來源溶解性有機磷特征及其生物有效性. 中國環(huán)境科學(xué), 2014, 34(12): 3189-3198.]
[21]Li Yuexun, Xu Xiaomei, He Jiaetal. Point source pollution control and problem in Lake Dianchi basin.JLakeSci, 2010, 22(5): 633-639(in Chinese with English abstract). DOI: 10.18307/2010.0502.[李躍勛, 徐曉梅, 何佳等. 滇池流域點源污染控制與存在問題解析. 湖泊科學(xué), 2010, 22(5): 633-639.]
[22]Jin Shuquan, Zhu Xiaoli, Zhou Jinboetal. Pollution characteristics of nitrogen and phosphorus in typical reaches in rural area of Ningbo.JournalofSoilandWaterConservation, 2010, 24(1): 106-108(in Chinese with English abstract).[金樹權(quán), 朱曉麗, 周金波等. 寧波農(nóng)村地區(qū)典型河流氮磷污染特征分析. 水土保持學(xué)報, 2010, 24(1): 106-108.]
[23]Wang ZJ, Hui LG. Evaluating the effectiveness of routine water quality monitoring in Miyun reservoir based on geostatistical analysis.EnvironmentalMonitoringandAssessment, 2010, 160(1/2/3/4): 465-478.
[24]State Environmental Protection Administration. The surface water environmental quality standard of the People’s Republic of China (GB 3838-2002). Beijing: China Environmental Science Press, 2002(in Chinese).[國家環(huán)境保護總局. 中華人民共和國地表水環(huán)境質(zhì)量標(biāo)準(zhǔn)(GB 3838-2002) 北京: 中國環(huán)境科學(xué)出版社, 2002.]
[25]Quirós R. The relationship between nitrate and ammonia concentrations in the pelagic zone of lakes.Limnetica, 2003, 22(1/2): 37-50.
[26]Luo Guyuan, Bu Faping, Xu Xiaoyietal. Dynamics of TN and TP in the backwater region of the Linjiang River in the Three Gorge Reservoir.JournalofCivil,Architectural&EnvironmentalEngineering, 2009, 31(5): 106-111(in Chinese with English abstract).[羅固源, 卜發(fā)平, 許曉毅等. 三峽庫區(qū)臨江河回水區(qū)總氮和總磷的動態(tài)特征. 土木建筑與環(huán)境工程, 2009, 31(5): 106-111.]
[27]Lei Pei, Zhang Hong, Shan Baoqing. Dynamic characteristics of nitrogen and phosphorus in the representative input tributaries of Danjiangkou Reservoir.EnvironmentalScience, 2012, 33(9): 3038-3045(in Chinese with English abstract).[雷沛, 張洪, 單保慶. 丹江口水庫典型入庫支流氮磷動態(tài)特征研究. 環(huán)境科學(xué), 2012, 33(9): 3038-3045.]
[28]Li Zhe, Guo Jinsong, Fang Fangetal. Potential impact of TN/TP ratio on the cycling of nitrogen in Xiaojiang backwater area, Three Gorges Reservoir.JLakeSci, 2009, 21(4): 509-517(in Chinese with English abstract). DOI: 10.18307/2009.0409.[李哲, 郭勁松, 方芳等. 三峽水庫小江回水區(qū)不同TN/TP水平下氮素形態(tài)分布和循環(huán)特點. 湖泊科學(xué), 2009, 21(4): 509-517.]
[29]Peng Jinxin, Chen Huijun eds. Prevention and control of eutrophication and water quality. Beijing: China Environmental Science Press, 1988: 15-47(in Chinese).[彭近新, 陳慧君. 水質(zhì)富營養(yǎng)化與防治. 北京:中國環(huán)境科學(xué)出版社, 1988: 15-47.]
[30]Wen Hang, Cai Jialiang, Su Yuetal. Characteristics of periphytic algal community and its relationship with aquatic environmental factors in streams of Lake Dianchi watershed in wet season.JLakeSci, 2011, 23(1): 40-48(in Chinese with English abstract). DOI: 10.18307/2011.0107.[文航, 蔡佳亮, 蘇玉等. 滇池流域入湖河流豐水期著生藻類群落特征及其與水環(huán)境因子的關(guān)系. 湖泊科學(xué), 2011, 23(1): 40-48.]
[31]Li Xing, Yang Yang, Qiao Yongminetal. Temporal-spatial distribution and source of nitrogen in main stream of Dongjiang River.ActaScientiaeCircumstantiae, 2015, 35(7): 2143-2149(in Chinese with English abstract).[李星, 楊楊, 喬永民等. 東江干流水體氮的時空變化特征及來源分析. 環(huán)境科學(xué)學(xué)報中, 2015, 35(7): 2143-2149.]
[32]Liu Zhonghan, He Bin, Wang Yimingetal. Effects of rainfall runoff on total nitrogen and phosphorus flux in different catchments of Dianchi Lake, Yunnan, China.GeographicalResearch, 2004, 23(5): 593-604(in Chinese with English abstract).[劉忠翰, 賀彬, 王宜明等. 滇池不同流域類型降雨徑流對河流氮磷入湖總量的影響. 地理研究, 2004, 23(5): 593-604.]
[33]Li Xiaoming, Yang Shuping, Zhang Yuetal. Planktonic algae diversity and its water quality monitoring in Chai River, Baoxiang River and Panlong River, three inflow river of Dianchi Lake.JournalofYunnanUniversity, 2014, 36(6): 950-958(in Chinese with English abstract).[李曉銘, 楊樹平, 張宇等. 入滇池河流柴河、寶象河與盤龍江浮游藻類多樣性調(diào)查及其水質(zhì)監(jiān)測研究. 云南大學(xué)學(xué)報: 自然科學(xué)版, 2014, 36(6): 950-958.]
[34]Sheng ZY, Liu RM, Ding XWetal. The characteristics of non-point source pollution and its change rules in the upper Yangtze River. Beijing: Science Press, 2008.
[35]Nie Zeyu, Liang Xinqiang, Xing Boetal. The current water trophic status in Tiaoxi River of Taihu Lake watershed and corresponding coping strategy based on N / P ratio analysis.ActaEcologicaSinica, 2012, 32(1): 48-55(in Chinese with English abstract).[聶澤宇, 梁新強, 邢波等. 基于氮磷比解析太湖苕溪水體營養(yǎng)現(xiàn)狀及應(yīng)對策略. 生態(tài)學(xué)報, 2012, 32(1): 48-55.]
[36]Zhang Guoming, Gao Yang, Li Zhaojunetal. Study on non-point resource dynamic transport of Lanhe Watershed located in Fenhe River’s upstream.JournalofSoilandWaterConservation, 2008, 22(2): 102-106(in Chinese with English abstract).[張國明, 高揚, 李兆君等. 汾河上游嵐河流域非點源輸出動態(tài)研究. 水土保持學(xué)報, 2008, 22(2): 102-106.]
[37]Liu Ruixiang, Chang Huili, Zhao Fuqiangetal. Flux dynamics of nitrogen and phosphorus in major input rivers of Zhangze Reservoir.ChineseJournalofEcology, 2010, 29(3): 479-484(in Chinese with English abstract).[劉瑞祥, 常惠麗, 趙富強等. 漳澤水庫主要入庫河流氮、磷營養(yǎng)鹽特征. 生態(tài)學(xué)雜志, 2010, 29(3): 479-484.]
[38]Zhang Ying. Pollution status and characteristics of ammonia nitrogen in the river of Hubei province.EnvironmentalScience&Technology, 2001, 24(supplement): 30-31(in Chinese).[張鶯. 湖北省河流中氨氮的污染狀況與特征. 環(huán)境科學(xué)與技術(shù), 2001, 24(增刊): 30-31.]
[39]Zhai Min, Yue Xitong, Song Aiqin. A research on hygienic status of rural drinking water.JEnvironOccupMed, 2006, 23(1): 64-65(in Chinese with English abstract).[翟敏, 岳喜同, 宋愛芹. 濟寧市農(nóng)村生活飲用水衛(wèi)生狀況調(diào)查. 環(huán)境與職業(yè)醫(yī)學(xué), 2006, 23(1): 64-65.]
[40]Zhu Xiaoqi, Hu Zhengyi, Wang Huihuietal. Comparison of nitrogen loss between controlled release urea and common urea in vegetable soils at Chaihe Catchment of Dianchi Lake.JournalofAgriculturalScienceandTechnology, 2014, 16(6): 109-116(in Chinese with English abstract).[朱曉琦, 胡正義, 王惠惠等. 滇池柴河流域蔬菜地土壤施用控釋尿素與普通尿素的氮損失比較. 中國農(nóng)業(yè)科技導(dǎo)報, 2014, 16(6): 109-116.]
[41]Mc Dowell WH, Asbury CE. Export of carbon, nitrogen, and major ions from three tropical montane watersheds.LimnologyandOceanography, 1994, 9 (1): 111-125.
[42]Williard KWJ, Dewalle DR, Edwards PJ. Influence of bedrock geology and tree species composition on stream nitrate concentrations in mid-Appalachian forested watersheds.WaterAirandSoilPollution, 2005, 160(1/4): 55-76.
[43]Sharma B, Ahlert RC. Nitrification and nitrogen removal.WaterResearch, 1977, 11(10): 897-925.
[44]Seitzinger SP. Denitrification in freshwater and coastal marine ecosystems: Ecological and geochemical significance.LimnologyandOceanography, 1988, 33 (4): 702-724.
[45]Lu Shaoyong, Cai Minmin, Jin Xiangcanetal. Spatial distribution of nitrogen species in sediment of lakeside zone of Lake Dianchi.EcologyandEnvironmentalSciences, 2009, 18(4): 1351-1357(in Chinese with English abstract).[盧少勇, 蔡珉敏, 金相燦等. 滇池湖濱帶沉積物氮形態(tài)的空間分布. 生態(tài)環(huán)境學(xué)報, 2009, 18(4): 1351-1357.]
[46]Sun Quan, Han Xiuyun, Guo Xiaoning. Study on phosphorus adsorption and application by the major soils of Ningxia.ChineseJournalofSoilScience, 2003, 34(5): 418-421(in Chinese with English abstract).[孫權(quán), 韓秀云, 郭曉寧. 寧夏主要土壤的磷酸吸附特征及影響因素.土壤通報, 2003, 34(5): 418-421.]
[47]He Jia, Xu Xiaomei, Yang Yanetal. Problems and effects of comprehensive management of water environment in Lake Dianchi.JLakeSci, 2015, 27(2): 195-199(in Chinese with English abstract). DOI: 10.18307/2015.0201.[何佳, 徐曉梅, 楊艷等. 滇池水環(huán)境綜合治理成效與存在問題. 湖泊科學(xué), 2015, 27(2): 195-199.]
[48]Yao Ping, Zhao Fuzhu, Xiao Hongyun. Research of climate character over Dianchi Lake Basin.EnvironmentalScienceSurvey, 2009, 28(supplement): 8-10(in Chinese with English abstract). DOI: 10.13623/2009.s1.001.[姚平, 趙付竹, 夏紅云. 滇池流域氣候特征研究. 環(huán)境科學(xué)導(dǎo)刊, 2009, 28(增刊): 8-10.]
[49]Meng Yayuan, Wang Shengrui, Jiao Lixinetal. Characteristics of nitrogen pollution and the potential mineralization in surface sediments of Dianchi Lake.EnvironmentalScience, 2015, 36(2): 471-480(in Chinese with English abstract).[孟亞媛, 王圣瑞, 焦立新等. 滇池表層沉積物氮污染特征及其潛在礦化能力. 環(huán)境科學(xué), 2015, 36(2): 471-480.]
[50]Gao Li, Yang Hao, Zhou Jianminetal. Adsorption of phosphate and mineral characteristic in sediment in Dianchi Lake.JournalofAgro-EnvironmentScience, 2004, 23(2): 259-262(in Chinese with English abstract).[高麗, 楊浩, 周健民等. 滇池沉積物磷酸鹽吸附和礦物學(xué)特征的研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報, 2004, 23(2): 259-262.]
Characteristic of nitrogen and phosphorous pollution in Lake Dianchi and its inflow rivers in summer
YU Liyan1, YANG Hao1, HUANG Changchun1**, HUANG Tao1**, YU Yanhong2, JIANG Quanliang1, LIU Daqing1& LI Shuaidong1
(1:NanjingNormalUniversity,Nanjing210023,P.R.China) (2:EnvironmentalScienceResearchInstituteofYunnanProvince,Kunming650032,P.R.China)
To investigate the spatial distribution of nutrients in the inflow rivers and their influence on the eutrophication of Lake Dianchi, water samples were collected from Lake Dianchi and four different types of the inflow rivers during July of 2014. The four different types of rivers were named as the river in the urban areas, the river in the combination of urban and rural areas, the river dominated by non-point source pollution, and the river dominated by sewage pollution in town and village. The results indicated that, total nitrogen (TN), total phosphorus (TP), nitrate nitrogen, and ammonium nitrogen concentrations from the four inflow rivers were very high. The mean concentrations of TN and TP from these inflow rivers were in the order: rivers dominated by non-point source pollution (Dahe River) > rivers dominated by sewage pollution in town and village (Chaihe River) > rivers in the combination of urban and rural areas (Baoxiang River) > rivers in the urban areas (Panlong River). The TN and TP concentrations from the rivers dominated by non-point source pollution (Dahe River) were the highest. In summer, it is clearly that the TN and TP concentrations increased from the upstream to the downstream in all four inflow rivers, which means that the TN and TP constantly accumulated. The ratio of nitrogen and phosphorus showed that both TN and TP were sufficient for algal growth from all inflow rivers in summer, but the algal growth in Lake Dianchi was limited by TN. The TN and TP concentrations from the southeastern inflow rivers were higher than those from the northwestern rivers, but the law was opposite in Lake Dianchi. Therefore, we speculated that the internal pollutant sources are the major cause of eutrophication of Lake Dianchi. The deeply researches should focus on the internal pollutions for the study on the eutrophication of Lake Dianchi in the future.
Lake Dianchi; inflow rivers; nutrition status; nitrogen; phosphorus; pollution
*國家自然科學(xué)基金項目(41503075,41571324)、中國博士后基金面上項目(2015M581826)和云南省環(huán)境科學(xué)研究院(中國昆明高原湖泊國際研究中心)開放基金項目聯(lián)合資助. 2015-09-14收稿; 2015-12-09收修改稿. 余麗燕(1990~),女,碩士;E-mail:1606695310@qq.com.
**通信作者;E-mail:huangchangchun@njnu.edu.cn, E-mail:09392@njnu.edu.cn.