包先明,晁建穎,尹洪斌
(1:淮北師范大學(xué)生命科學(xué)學(xué)院, 淮北 235000) (2:環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所, 南京 210042) (3:中國(guó)科學(xué)院南京地理與湖泊研究所,南京 210008)
?
太湖流域滆湖底泥重金屬賦存特征及其生物有效性*
包先明1,晁建穎2**,尹洪斌3
(1:淮北師范大學(xué)生命科學(xué)學(xué)院, 淮北 235000) (2:環(huán)境保護(hù)部南京環(huán)境科學(xué)研究所, 南京 210042) (3:中國(guó)科學(xué)院南京地理與湖泊研究所,南京 210008)
為了探討太湖流域滆湖底泥重金屬(Cd、Cr、Cu、Zn、Ni和Pb)的賦存特征及其生物有效性,對(duì)底泥重金屬總量、形態(tài)以及生物富集量進(jìn)行了分析. 結(jié)果表明,6種重金屬含量的空間分布表現(xiàn)為北部湖區(qū)最高, 其次為南部湖區(qū),中部湖區(qū)最低, 重金屬Ni、Cu、Zn和Pb含量顯著高于沉積物背景值,分別是背景值的4.77、3.89、2.96和2.76倍,重金屬總量與沉積物中的黏土成分含量具有顯著相關(guān)性. 采用三級(jí)四部提取法對(duì)重金屬形態(tài)進(jìn)行分析表明,6種重金屬的生物有效態(tài)(弱酸結(jié)合態(tài)、可還原態(tài)和可氧化態(tài)之和)含量順序?yàn)镃d>Cu>Zn>Pb>Ni>Cr,其中Cd、Cu、Zn和Pb的生物有效態(tài)含量分別占總量的84.15%、78.47%、76.50%和64.29%. Cu和Zn在銅銹環(huán)棱螺中富集含量要顯著高于其他金屬元素. 相關(guān)性分析表明,6種重金屬中僅Cr和Pb的生物富集量與有效態(tài)含量具有顯著相關(guān)性,這表明,重金屬在生物體內(nèi)的富集不僅與有效態(tài)含量有關(guān),還與底泥重金屬總量有關(guān). 因此,評(píng)價(jià)滆湖重金屬的生態(tài)風(fēng)險(xiǎn)時(shí)需要綜合考慮重金屬的總量及生物有效態(tài)含量.
沉積物;重金屬;賦存特征;生物有效性;滆湖;太湖流域;銅銹環(huán)棱螺
重金屬元素由于在環(huán)境中具有毒性大、易富集和難降解等特性而受到高度關(guān)注[1-2]. 重金屬可通過(guò)地表徑流遷移、沉降,逐步轉(zhuǎn)移至湖泊沉積物中,并可能在一定的環(huán)境條件下重新釋放到上覆水體中,直接或間接地對(duì)水生生物產(chǎn)生致毒致害作用,并通過(guò)生物富集、食物鏈放大等過(guò)程進(jìn)一步影響人類健康[3-4]. 因此,有必要了解湖泊沉積物重金屬的污染程度和特性. 研究表明,不同形態(tài)的重金屬具有不同的生物有效性和毒性[5],因此對(duì)沉積物重金屬形態(tài)提取和分析對(duì)于辨識(shí)沉積物中重金屬的污染狀況和釋放潛力具有重要的作用. 底棲動(dòng)物作為湖泊生態(tài)系統(tǒng)的重要組成部分,長(zhǎng)期生活于沉積物表層,生活環(huán)境相對(duì)固定,并且具有生命周期長(zhǎng)、遷移能力差、區(qū)域性強(qiáng)等特點(diǎn),對(duì)表層沉積物毒性及污染狀況具有直接的指示作用[6-7]. 因此,研究重金屬在湖泊不同介質(zhì)(沉積物和底棲生物)中的賦存特征對(duì)于全面掌握了解重金屬遷移規(guī)律以及對(duì)生物的毒害作用等十分必要.
滆湖(31°29′~31°42′N,119°44′~119°53′E)俗稱西太湖,是蘇南地區(qū)的第二大湖. 位于長(zhǎng)江三角洲太湖流域西部,常州市武進(jìn)區(qū)西南部. 湖泊總面積為164 km2. 滆湖是典型的淺水湖泊,具有飲用水后備水源、旅游休閑、水產(chǎn)養(yǎng)殖和蓄洪灌溉等多種使用功能[8]. 近幾年來(lái)隨著滆湖周圍地區(qū)經(jīng)濟(jì)的迅速發(fā)展和城市化進(jìn)程的加快,滆湖流域污染負(fù)荷不斷增加,滆湖水體污染程度也日益加劇,已經(jīng)嚴(yán)重影響到水生生態(tài)環(huán)境,長(zhǎng)期生活在滆湖底泥表層的底棲生物也難免受到湖泊污染的影響. 在滆湖底棲生物中,銅銹環(huán)棱螺(Bellamyaaeruginosa)的分布較為廣泛[9],其作為以攝食沉積物中有機(jī)碎屑、細(xì)菌和藻類為生的底棲軟體動(dòng)物,具備分布廣、個(gè)體大小適中、移動(dòng)性差、適應(yīng)性強(qiáng)等特點(diǎn)[10],同時(shí)也被人類食用,在食物鏈中具有重要作用,能夠反映所在水生生態(tài)系統(tǒng)的重金屬污染特征.
目前,針對(duì)滆湖沉積物的研究主要集中在營(yíng)養(yǎng)鹽以及水生生物方面[11-12],而對(duì)沉積物重金屬的研究較少[13],尤其缺乏重金屬的生物有效性以及在底棲生物中的富集特征的研究. 本文以滆湖為研究對(duì)象,測(cè)定表層沉積物中Cd、Cr、Cu、Zn、Pb和Ni 6種重金屬元素的總量、形態(tài)以及在銅銹環(huán)棱螺中的富集含量,并通過(guò)相關(guān)性分析,對(duì)滆湖表層沉積物重金屬的生物有效性進(jìn)行探討,以期為探明滆湖沉積物中重金屬污染狀況及污染特征提供基礎(chǔ)數(shù)據(jù).
圖1 滆湖采樣點(diǎn)分布Fig.1 Location of sampling sites in Lake Gehu
1.1 樣品采集
于2014年10月在滆湖采集底泥和底棲生物樣品,全湖共布設(shè)9個(gè)采樣點(diǎn)(圖1),分別為北部湖區(qū)(G1、G2、G3)、中部湖區(qū)(G4、G5、G6)和南部湖區(qū)(G7、G8、G9). 其中,湖區(qū)劃分主要依據(jù)湖泊水質(zhì)狀況,北部湖區(qū)和中部湖區(qū)因入湖河流污染物輸入以及湖區(qū)水產(chǎn)養(yǎng)殖等問(wèn)題導(dǎo)致水質(zhì)相對(duì)較差[8],而南部狹長(zhǎng)湖區(qū)水生植被覆蓋率較高,水質(zhì)相對(duì)較好. 采用彼得森采泥器采集表層10 cm的沉積物樣品,將采集的表層沉積物樣品混合均勻后裝入聚乙烯自封袋中密封,低溫保存送回實(shí)驗(yàn)室進(jìn)行預(yù)處理及分析. 同樣采用彼得森采泥器采集底棲動(dòng)物(銅銹環(huán)棱螺),每個(gè)樣點(diǎn)采集6次混合成一個(gè)樣品,然后經(jīng)過(guò)60目尼龍篩網(wǎng)現(xiàn)場(chǎng)篩洗,剩余物帶回實(shí)驗(yàn)室進(jìn)行分揀.
1.2 樣品處理及分析方法
采集的沉積物樣品經(jīng)冷凍干燥機(jī)冷凍干燥后,去掉雜物及石塊,經(jīng)瑪瑙研缽研磨處理,過(guò)200目尼龍篩,貯存?zhèn)溆? 采集的底棲樣品置入白色盤中,將銅銹環(huán)棱螺活體挑出,置于冷凍干燥機(jī)內(nèi)冷凍干燥,之后在無(wú)菌操作臺(tái)上進(jìn)行解剖,用剪刀將銅銹環(huán)棱螺組織剪碎,然后采用瑪瑙研缽研磨至粉末狀,貯存?zhèn)溆? 沉積物重金屬形態(tài)提取是采用歐共體標(biāo)準(zhǔn)物質(zhì)局提出的三級(jí)四步提取法[14],簡(jiǎn)稱BCR法,將重金屬形態(tài)分為弱酸提取態(tài)、可還原態(tài)、可氧化態(tài)和殘?jiān)鼞B(tài),前3種形態(tài)由于其生物可利用性統(tǒng)稱為生物有效態(tài)[15-16]. 沉積物樣品、生物樣品和各形態(tài)提取液中重金屬元素含量利用電感耦合等離子體質(zhì)譜儀(ICP-MS,Agilent 7700cx型)測(cè)定[17]. 為保證分析的準(zhǔn)確性,同步分析了由國(guó)家地質(zhì)實(shí)驗(yàn)測(cè)試中心生產(chǎn)的湖底沉積物順序提取微量元素標(biāo)準(zhǔn)物質(zhì)(GBW07436),各重金屬元素不同形態(tài)回收率在94.1%~119.9%范圍內(nèi),符合美國(guó)EPA 標(biāo)準(zhǔn)要求的80%~120%的范圍.
沉積物總有機(jī)碳(TOC)含量采用重鉻酸鉀容量法測(cè)定[18];沉積物粒度使用英國(guó)Malvern公司的Mastersizer 2000型激光粒度分析儀進(jìn)行測(cè)定[19],其中粒度<2.00 μm為黏土,粒度在2.00~63.00 μm之間為粉砂,粒度>63.00 μm為砂礫.
2.1 表層沉積物理化性質(zhì)及重金屬分布
沉積物是重金屬等環(huán)境污染物的源和匯,沉積物粒度和總有機(jī)碳含量在一定程度上能夠影響對(duì)重金屬的吸附、解吸以及重金屬在環(huán)境中的遷移[20]. 滆湖表層沉積物中黏土含量范圍為10.11%~14.82%,粉砂含量范圍為80.98%~88.11%,砂礫含量范圍為1.57%~6.62%,從黏土含量的空間分布來(lái)看,北部湖區(qū)>中部湖區(qū)>南部湖區(qū),平均含量分別為13.57%、11.31%和11.09%. TOC含量范圍為4.31%~15.43%,南部湖區(qū)最高,平均含量為13.59%,其次為北部湖區(qū),平均含量為7.68%,中部湖區(qū)最低,平均含量為5.28% mg/kg(表1). 6種重金屬(Cu、Zn、Pb、Cd、Ni和Cr)的含量范圍分別為31.02~82.03、90.24~185.73、25.50~63.36、0.25~0.75、38.29~84.05和71.99~168.32 mg/kg(表1),6種重金屬均表現(xiàn)為北部湖區(qū)重金屬含量最高,分別是沉積物背景值的3.89、2.76、2.96、2.44、4.77和1.91倍,中部湖區(qū)和南部湖區(qū)差異較小,南部湖區(qū)的Cu、Zn、Pb、Cd 4種金屬含量略高于中部湖區(qū),中部湖區(qū)的Ni和Cr略高于南部湖區(qū). 從金屬污染程度來(lái)看,3個(gè)湖區(qū)均呈現(xiàn)出Ni的超標(biāo)倍數(shù)最高,其次是Cu. 滆湖北部上游及周圍地區(qū)城鎮(zhèn)化進(jìn)程的加快和工業(yè)企業(yè)的快速發(fā)展,生活污水和工業(yè)廢水大量進(jìn)入湖內(nèi)是導(dǎo)致滆湖北部重金屬污染的重要原因.
表1 滆湖沉積物理化性質(zhì)及重金屬含量Tab.1 Sediment properties and heavy metal contents in sediments of Lake Gehu
2.2 沉積物中重金屬與有機(jī)質(zhì)和各顆粒含量的相關(guān)性
滆湖沉積物中的黏土含量與Zn含量呈極顯著相關(guān)(P<0.01),與Cu、Pb、Cd、Ni和Cr呈顯著相關(guān)(P<0.05),這表明,重金屬易于被沉積物中的黏土成分吸附,該分析結(jié)果與以往研究發(fā)現(xiàn)的沉積物中重金屬與黏土成分具有相關(guān)性[21]一致. 相關(guān)性分析(表2)發(fā)現(xiàn),沉積物中重金屬含量與總有機(jī)碳含量之間的相關(guān)性較差,其原因可能是由于人類活動(dòng)比較頻繁,導(dǎo)致入湖污染物較為復(fù)雜,影響了相關(guān)性.
2.3 表層沉積物中重金屬各形態(tài)的分布
滆湖不同湖區(qū)表層沉積物中重金屬各形態(tài)的分布如圖2所示. 重金屬Cr和Ni主要以殘?jiān)鼞B(tài)存在,平均含量占總量的比值分別為59.04%和40.53%. 有研究認(rèn)為殘?jiān)鼞B(tài)的重金屬離子易結(jié)合在土壤硅鋁酸鹽礦物晶格中,性質(zhì)較為穩(wěn)定,一般情況下難以釋放,對(duì)沉積物中重金屬的遷移和生物可利用性貢獻(xiàn)小[22],因此,Cr和Ni對(duì)環(huán)境和生物是比較安全的. Cd元素以弱酸結(jié)合態(tài)為主,平均含量為58.84%,其次為可還原態(tài),平均含量為20.61%,研究表明,Cd元素在沉積物中易吸附在細(xì)顆粒表面,在碳酸鹽礦物形成的過(guò)程中,Cd易與Ca2+發(fā)生替代反應(yīng)[23],因而對(duì)pH值的敏感度較高,在酸性條件下容易釋放,進(jìn)而對(duì)環(huán)境和生物可能產(chǎn)生危害和毒性,這表明,Cd和Zn均具有較高的潛在釋放風(fēng)險(xiǎn). 與Cd類似,Zn元素的主要形態(tài)為弱酸結(jié)合態(tài),平均含量為33.70%,其次為可還原態(tài),平均含量為28.60%. Cu和Pb以可還原態(tài)為主,含量分別達(dá)到53.63%和53.60%, 可還原態(tài)屬于較強(qiáng)的離子鍵結(jié)合的化學(xué)形態(tài),通常不易釋放,但當(dāng)水體中氧化還原電位降低或水體嚴(yán)重缺氧情況下,這種結(jié)合形態(tài)的重金屬鍵被還原,可能對(duì)水體造成二次污染.
表2 滆湖沉積物理化性質(zhì)與重金屬含量之間的相關(guān)性Tab.2 Pearson’s correlation between sediment properties and metal concentrations in Lake Gehu
**表示相關(guān)系數(shù)在0.01水平上顯著,*表示相關(guān)系數(shù)在0.05水平上顯著.
重金屬生物有效態(tài)比例越高,表明沉積物中重金屬越易釋放并造成二次污染,其生物有效性也就越大[24]. 6種重金屬的生物有效態(tài)含量順序?yàn)镃d>Cu>Zn>Pb>Ni>Cr,其中Cd、Cu、Zn和Pb的生物有效態(tài)含量均大于60%,分別占總量的84.15%、78.47%、76.50%和64.29%. 這表明,沉積物中Cd、Cu、Zn和Pb有較高的生物有效性,因而在環(huán)境中具有較高的釋放風(fēng)險(xiǎn).
2.4 重金屬在銅銹環(huán)棱螺體內(nèi)的富集
6種重金屬在滆湖不同湖區(qū)銅銹環(huán)棱螺體內(nèi)的含量呈現(xiàn)不同分布特征,北部湖區(qū)為Zn>Cu>Cr>Ni>Pb>Cd,中部湖區(qū)為Zn>Cu>Ni>Cr>Pb>Cd,南部湖區(qū)為Zn>Cu>Pb>Ni>Cr>Cd. 總體而言,滆湖3個(gè)湖區(qū)均呈現(xiàn)出Zn在銅銹環(huán)棱螺體內(nèi)富集的含量最高,其次是Cu(圖3).
為了比較水生生物對(duì)沉積物中不同污染物的積累能力,一般用生物-沉積物積累因子(biota-sediment accumulation factor, BSAF)來(lái)表示[25]. 表3結(jié)果顯示,銅銹環(huán)棱螺對(duì)沉積物中6種重金屬的積累水平存在較大差異,其中Cu和Zn的積累量明顯高于其他元素,這與Liang等[26]和李麗娜等[27]的研究結(jié)果基本一致.
滆湖中Cr的生物積累量及沉積物中Cr的總量及有效態(tài)含量均呈極顯著正相關(guān)(P<0.01);Pb的生物積累量與Pb的有效態(tài)含量呈極顯著正相關(guān)(P<0.01),而且也與Pb總量顯著相關(guān)(P<0.05);Cd和Ni的生物積累量與其在沉積物中的總量及有效態(tài)含量相關(guān)性不顯著;Cu和Zn的生物積累與其形態(tài)和總量均沒(méi)有顯著相關(guān)性,這表明Cr和Pb的有效態(tài)含量可以較好地指示重金屬的生物可利用性(圖4).
表3 銅銹環(huán)棱螺對(duì)滆湖污染沉積物中重金屬的生物-沉積物積累因子*Tab.3 Biota-sediment accumulation factors of Bellamya aeruginosa to heavy metals in the sediments of Lake Gehu
*生物-沉積物積累因子為處理組生物體中重金屬含量與沉積物中重金屬含量之比.
圖4 滆湖重金屬在銅銹環(huán)棱螺體內(nèi)的富集量與沉積物中重金屬總量、有效態(tài)含量的相關(guān)性Fig.4 Correlation between total and metal concentrations in sediment and metal concentrations in tissue of Bellamya aeruginosa in Lake Gehu
盡管Cu的有效態(tài)含量與在銅銹環(huán)棱螺體內(nèi)的富集含量沒(méi)有顯著相關(guān)性,但其在生物體內(nèi)具有較高的生物積累量,應(yīng)給予足夠的重視. 同時(shí),研究發(fā)現(xiàn)6種重金屬中Cd的生物有效態(tài)含量最高,但在銅銹環(huán)棱螺中的富集量較低,這是由于生物對(duì)重金屬的富集不僅與重金屬的生物有效性有關(guān),還與環(huán)境中金屬元素的總量以及生物的生理特征有關(guān).
[1]Akcay H, Oguz A, Karapire C. Study of heavy metal pollution and speciation in Buyak Menderes and Gediz river sediments.WaterResearch, 2003, 37: 813-822.
[2]Fujita M, Ide Y, Sato Detal. Heavy metal contamination of coastal lagoon sediments: Fongafale Islet, Funafuti Atoll, Tuvalu.Chemosphere, 2014, 95: 628-634.
[3]Zhu HN, Yuan XZ, Zeng GMetal. Ecological risk assessment of heavy metals in sediments of xiawan port based on modified potential ecological risk index.TransactionsofNonferrousMetalsSocietyofChina, 2012, 22(6): 1470-1477.
[4]Yu RL, Yuan X, Zhao YHetal. Heavy metal pollution in intertidal sediments from Quanzhou Bay, China.JournalofEnvironmentalSciences, 2008, 20(6): 664-669.
[5]Yang ZF, Wang Y, Shen ZYetal. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River Catchment of Wuhan, China.JournalofHazardousMaterials, 2009, 166(2): 1186-1194.
[6]Lu Qiang, Chen Huili, Shao Xiaoyangetal. Ecological characteristics of macrobenthic communities and its relationships with environmental factors in Hangzhou Xixi Wetland.ActaEcologicaSinica, 2013, 33(9): 2803-2815(in Chinese with English abstract).[陸強(qiáng), 陳慧麗, 邵曉陽(yáng)等. 杭州西溪濕地大型底棲動(dòng)物群落特征及與環(huán)境因子的關(guān)系. 生態(tài)學(xué)報(bào), 2013, 33(9): 2804-2815.]
[7]Pedersen ML,Friberg N, Skriver Jetal. Restoration of Skjern Riverand its valley-short-term effects on river habitats, macrophytes and macroinvertebrates.EcologicalEngineering, 2007, 30(2): 145-156.
[8]Tao Hua, Pan Jizheng, Shen Yaoliangetal. Overview and degradation reasons of submerged macrophytes of Gehu Lake.EnvironmentalScienceandTechnology, 2010, 23(5): 64-68(in Chinese with English abstract).[陶花, 潘繼征, 沈耀良等. 滆湖沉水植物概況及退化原因分析. 環(huán)境科技, 2010, 23(5): 64-68.]
[9]Wang Liqing, Wu Liang, Zhang Ruileietal. Spatiotemporal variation of zoobenthos community and bio-assessment of water quality in Gehu Lake.ChineseJournalofEcology, 2012, 31(8): 1990-1996(in Chinese with English abstract).[王麗卿, 吳亮, 張瑞雷等. 滆湖底棲動(dòng)物群落的時(shí)空變化及水質(zhì)生物學(xué)評(píng)價(jià). 生態(tài)學(xué)雜志, 2012, 31(8): 1990-1996.]
[10]Ma Taowu, Zhu Cheng, Wang Guiyanetal. Bioaccumulation of sediment heavy metals inBellamyaaeruginosaand its relations with the metals geochemical fractions.ChineseJournalofAppliedEcology, 2010, 21(3): 734-742(in Chinese with English abstract).[馬陶武, 朱程, 王桂巖等. 銅銹環(huán)棱螺對(duì)沉積物中重金屬的生物積累及其與重金屬賦存形態(tài)的關(guān)系. 應(yīng)用生態(tài)學(xué)報(bào), 2010, 21(3): 734-742.]
[11]Tao Hua, Pan Jizheng, Shen Yaoliangetal. Effects of substrate character of Lake Gehu on the growth ofPotamogetoncrispusandEbdeanatalii.JLakeSci, 2011, 23(3): 383-388(in Chinese with English abstract). DOI: 10.18307/2011.0310.[陶花, 潘繼征, 沈耀良等. 滆湖底質(zhì)特性對(duì)菹草(Potamogetoncrispus)和伊樂(lè)藻(Elodeanattalii)生長(zhǎng)的影響. 湖泊科學(xué), 2011, 23(3): 383-388.]
[12]Chen Lijing, Peng Ziran, Kong Youjiaetal. Characteristics of community structure of planktonic algae in Gehu Lake of Jiangsu Province.ChineseJournalofEcology, 2008, 27(9): 1549-1556(in Chinese with English abstract).[陳立婧, 彭自然, 孔優(yōu)佳等. 江蘇滆湖浮游藻類群落結(jié)構(gòu)特征. 生態(tài)學(xué)雜志, 2008, 27(9): 1549-1556.]
[13]Yin HB, Cai YJ, Duan HTetal. Use of DGT and conventional methods to predict sediment metal bioavailability to a field inhabitant freshwater snail (Bellamyaaeruginosa) from Chinese eutrophic lakes.JournalofHazardousMaterials, 2014, 264: 184-194.
[14]Ure AM, Quevauviller PH, Muntau Hetal. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the commission of the European Communities.InternationalJournalofEnvironmentalAnalyticalChemistry, 1993, 51(1/2/3/4): 135-151.
[15]Zhang Fengying, Yan Baixing, Zhu Lilu. Speciation of heavy metals in sediment of the Songhua River, northeast of China.JournalofAgro-EnvironmentScience, 2010, 29(1): 163-167(in Chinese with English abstract).[張鳳英,閻百興,朱立祿. 松花江沉積物重金屬形態(tài)賦存特征研究. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2010, 29(1):162-167.]
[16]Jiao Wei, Lu Shaoyong, Niu Yongetal. Distribution of bio-available heavy metals in river sediments of Lake Taihu.EnvironmentalChemistry, 2013, 32(12): 2315-2320(in Chinese with English abstract).[焦偉, 盧少勇, 牛勇等. 環(huán)太湖河流沉積物中生物有效態(tài)重金屬分布. 環(huán)境化學(xué), 2013, 32(12): 2315-2320.]
[17]Kong Ming, Dong Zenglin, Chao Jianyingetal. Bioavailability and ecological risk assessment of heavy metals in surface sediments of Lake Chaohu.ChinaEnvironmentalScience, 2015, 35(4): 1223-1229(in Chinese with English abstract).[孔明, 董增林, 晁建穎等. 巢湖表層沉積物重金屬生物有效性與生態(tài)風(fēng)險(xiǎn)評(píng)價(jià). 中國(guó)環(huán)境科學(xué), 2015, 35(4): 1223-1229.]
[18]Institute of Soil Science, Chinese Academy of Sciences ed. Soil physical and chemical analyses. Shanghai: Shanghai Scientific and Technical Publishers, 1978: 62-67(in Chinese).[中國(guó)科學(xué)院南京土壤研究所. 土壤理化分析. 上海: 上??茖W(xué)技術(shù)出版社, 1978: 62-67.]
[19]Qiang Mingrui, Chen Fahu, Zhou Aifengetal. Preliminary study on dust storm events documented by grain size component of Sugan Lake sediments, north Qaidam basin.QuaternaryScience, 2006, 26(6): 915-922(in Chinese with English abstract).[強(qiáng)明瑞, 陳發(fā)虎, 周愛(ài)鋒等. 蘇干湖沉積物粒度組成記錄塵暴事件的初步研究. 第四紀(jì)研究, 2006, 26(6): 915-922.]
[20]Zhang LP, Ye X, Feng Hetal. Heavy metal contamination in western Xiamen Bay sediments and its vicinity, China.MarinePollutionBulletin, 2007, 54(7): 974-982.
[21]Zhang Lei, Qin Yanwen, Zheng Binghuietal. Distribution and pollution assessment of heavy metals in sediments from typical areas in the Bohai sea.ActaScientiaeCircumstantiae, 2011, 31(8): 1676-1684(in Chinese with English abstract).[張雷, 秦延文, 鄭丙輝等. 環(huán)渤海典型海域潮間帶沉積物中重金屬分布特征及污染評(píng)價(jià). 環(huán)境科學(xué)學(xué)報(bào), 2011, 31(8): 1676-1684.]
[22]Teasdale PR, Apte SC, Ford PWetal. Geochemical cycling and speciation of copper in waters and sediments of macquarie harbour, Western Tasmania.Estuarine,CoastalandShelfScience, 2003, 57(3): 475-487.
[23]Liu Enfeng, Shen Ji, Zhu Yuxin. Determination of heavy metal chemical forms by BCR method for Taihu Lake sediments.ResearchofEnvironmentalScinece, 2005, 18(2): 57-60(in Chinese with English abstract).[劉恩峰, 沈吉, 朱育新. 重金屬元素BCR提取法及在太湖沉積物研究中的應(yīng)用. 環(huán)境科學(xué)研究, 2005, 18(2): 57-60.]
[24]He Jiang, Wang Xinwei, Li Chaoshengetal. Pollution character of heavy metals in eater-sediment system from Baotou section of the Yelloe river.ActaScientiaeCircumstantiae, 2003, 23(1): 53-57(in Chinese with English abstract).[何江, 王新偉, 李朝勝等. 黃河包頭段水-沉積物系統(tǒng)中重金屬的污染特征. 環(huán)境科學(xué)學(xué)報(bào), 2003, 23(1): 53-57.]
[25]Gillis PL, Dixon DG, Borgmann Uetal. Uptake and depuration of cadmium, nickel, and lead in laboratory exposedTubifextubifexand corresponding changes in the concentration of a metallothionein-like protein.EnvironmentalToxicologyandChemistry, 2004, 23: 76-85.
[26]Liang LN, He B, Jiang GBetal. Evaluation of mollusks as biomonitors to investigate heavy metal contaminations along the Chinese Bohai Sea.ScienceoftheTotalEnvironment, 2004, 324: 105-113.
[27]Li Lina, Chen Zhenlou, Xu Shiyuanetal. The environment of Cu, Zn, Pb, Cr and Ni mollusk in the Tidal flat of Yangtze Estuary.JournalofEastChinaNormalUniversity(NaturalScience), 2005, (3): 65-70(in Chinese with English abstract).[李麗娜, 陳振樓, 許世遠(yuǎn)等. 銅鋅鉛鉻鎳重金屬在長(zhǎng)江口濱岸帶軟體動(dòng)物體內(nèi)的富集. 華東師范大學(xué)學(xué)報(bào): 自然科學(xué)版, 2005, (3): 65-70.]
Occurrence characteristics and bioavailability of heavy metals in surface sediments of Lake Gehu, Taihu Basin
BAO Xianming1, CHAO Jianying2**& YIN Hongbin3
(1:CollegeofLifeScience,HuaibeiNormalUniversity,Huaibei235000,P.R.China) (2:NanjingInstituteofEnvironmentalScience,MinistryofEnvironmentalProtection,Nanjing210042,P.R.China) (3:NanjingInstituteofGeographyandLimnology,ChineseAcademyofSciences,Nanjing210008,P.R.China)
To investigate the occurrence characteristics and bioavailability of heavy metals (Cd, Cr, Cu, Zn, Ni and Pb) in the sediments of Lake Gehu, total content, speciation and bioaccumulation of heavy metals were analyzed. Results showed that distribution of six heavy metals in the surface sediments indicated the highest degree of contamination in the north region, followed by the south region, and the lowest in the central region. Ni, Cu, Zn and Pb contents were significantly higher than background values, which were 4.77, 3.89, 2.96 and 2.76 times higher than background values, respectively. Total heavy metal contents were significantly correlated with contents of clay particle. Speciation analysis of heavy metals showed that bioavailability fraction (sum of acid-extractable, reducible and oxidizable fractions) followed a descending order as:Cd>Cu> Zn>Pb>Ni>Cr. Bioavailability fraction contents of Cd, Cu, Zn and Pb were 84.15%, 78.47%, 76.50% and 78.47% of the total contents, respectively, which showed a relatively high potential ecological risk. Cu and Zn contents accumulated inBellamyaaeruginosawere significantly higher than other metal elements contents. Correlation analysis indicated that only Cr and Pb contents accumulated inBellamyaaeruginosahad significant correlation with bioavailability fraction contents; it turned out that the heavy metals contents accumulated in organism were not only related to the bioavailability fraction contents, but also related to total heavy metals contents in sediments. Therefore, it is necessary to consider total contents and bioavailability of heavy metals contents when we evaluate ecological risk of heavy metals in Lake Gehu.
Sediment; heavy metals; occurrence characteristics; bioavailability; Lake Gehu; Taihu Basin;Bellamyaaeruginosa
*國(guó)家水體污染控制與治理科技重大專項(xiàng)(2012ZX07103-005)資助. 2015-08-16收稿; 2015-10-28收修改稿. 包先明(1978~),男,博士,副教授; E-mail:xmbao96@126.com.
**通信作者; E-mail: njauchao@163.com.