彭凡馬慶鎮(zhèn)肖健韋冰峰劉杰
(1.湖南大學(xué)機(jī)械與運(yùn)載工程學(xué)院,長(zhǎng)沙 100190)(2.北京強(qiáng)度與環(huán)境研究所,北京 100076)
自由運(yùn)行結(jié)構(gòu)動(dòng)態(tài)載荷識(shí)別的格林函數(shù)法
彭凡1馬慶鎮(zhèn)1肖健2韋冰峰2劉杰1
(1.湖南大學(xué)機(jī)械與運(yùn)載工程學(xué)院,長(zhǎng)沙 100190)(2.北京強(qiáng)度與環(huán)境研究所,北京 100076)
將Green函數(shù)法應(yīng)用于平動(dòng)自由結(jié)構(gòu)的載荷識(shí)別問題.不計(jì)剛-柔耦合效應(yīng),建立測(cè)點(diǎn)的絕對(duì)運(yùn)動(dòng)加速度和動(dòng)態(tài)激勵(lì)的卷積關(guān)系,Green核函數(shù)由整體剛體運(yùn)動(dòng)與彈性振動(dòng)的脈沖響應(yīng)迭加而成,采用正則化方法求解反卷積問題.對(duì)自由梁和組合薄壁結(jié)構(gòu)給出兩個(gè)算例,以數(shù)值仿真結(jié)果疊加20%噪聲水平的隨機(jī)噪聲模擬實(shí)測(cè)響應(yīng),結(jié)果表明,Green函數(shù)法能有效地反演復(fù)雜平動(dòng)自由結(jié)構(gòu)的動(dòng)載荷,正則化方法求解此類問題的穩(wěn)健性和耐噪性強(qiáng).文中得到的Green函數(shù)法對(duì)復(fù)雜自由結(jié)構(gòu)體系的動(dòng)載荷反演具有應(yīng)用潛力.
整體平動(dòng),自由結(jié)構(gòu),載荷識(shí)別,格林函數(shù),正則化
自由結(jié)構(gòu)載荷的時(shí)域識(shí)別技術(shù)在航空航天工程領(lǐng)域有重要的應(yīng)用價(jià)值,如通過(guò)飛行試驗(yàn)所積累的有關(guān)力學(xué)環(huán)境的遙測(cè)數(shù)據(jù)估計(jì)飛行器飛行過(guò)程中所承受的外載荷,或者基于少量實(shí)測(cè)數(shù)據(jù)預(yù)示整個(gè)飛行器的動(dòng)力學(xué)響應(yīng),這對(duì)運(yùn)載工具和飛行器結(jié)構(gòu)的優(yōu)化設(shè)計(jì)是極其必要的.目前,人們已發(fā)展了較多的載荷時(shí)域識(shí)別方法.其中一類是通過(guò)模態(tài)疊加將問題變換到模態(tài)空間中反求模態(tài)力[1-5];另一類應(yīng)用較廣泛的方法是基于線性疊加原理將響應(yīng)與動(dòng)態(tài)力的關(guān)系通過(guò)卷積表示[6],求解卷積方程得到動(dòng)載荷的時(shí)間歷程,Doyle[7]結(jié)合小波變換與傅里葉變換的反卷積方法實(shí)現(xiàn)載荷重構(gòu).Liu與Han[8]對(duì)復(fù)合材料層合板施加Green脈沖載荷函數(shù)與Heaviside階躍載荷函數(shù),由動(dòng)力學(xué)響應(yīng)確定卷積中的核函數(shù);韓旭和劉杰等[9,10]基于正則化方法求解數(shù)值離散后的反卷積方程,分析多源動(dòng)態(tài)載荷反求問題;王曉軍、楊海峰和邱志平等[11]基于Green函數(shù)方法研究動(dòng)態(tài)載荷的區(qū)間識(shí)別方法.對(duì)自由結(jié)構(gòu),其運(yùn)動(dòng)耦合了整體剛體運(yùn)動(dòng),人們也發(fā)展了一些特殊的方法來(lái)識(shí)別動(dòng)載荷,Kreitinger和Luo[12]提出了計(jì)權(quán)加速度法(SWAT),利用測(cè)量的加速度值乘以計(jì)權(quán)系數(shù)得到動(dòng)態(tài)載荷的等效合力,關(guān)鍵是難以確定計(jì)權(quán)系數(shù);朱斯巖與朱禮文[13]將模態(tài)矢量按測(cè)點(diǎn)自由度歸一化,構(gòu)造運(yùn)載火箭動(dòng)態(tài)載荷的識(shí)別方法;毛玉明和郭杏林等[14]通過(guò)模態(tài)疊加法,將彈性模態(tài)與整體剛體運(yùn)動(dòng)分離,在彈性振動(dòng)的狀態(tài)空間中建立反求模型,得到自由-自由運(yùn)行結(jié)構(gòu)體系的載荷.本文將Green函數(shù)法應(yīng)用于具有整體剛體平動(dòng)的自由結(jié)構(gòu)載荷識(shí)別問題,考慮到加速度是容易測(cè)到的響應(yīng)信號(hào),為此,本文的工作側(cè)重于基于測(cè)點(diǎn)的絕對(duì)運(yùn)動(dòng)加速度反求動(dòng)載荷,為自由運(yùn)行的復(fù)雜結(jié)構(gòu)體系發(fā)展不同的載荷反演途徑.
假設(shè)結(jié)構(gòu)的動(dòng)力學(xué)特性是線性時(shí)不變的,忽略剛-柔耦合效應(yīng),整體剛體平動(dòng)自由結(jié)構(gòu)的動(dòng)力學(xué)方程表示為
式中M、C和K分別為質(zhì)量、阻尼與剛度矩陣.將系統(tǒng)的絕對(duì)運(yùn)動(dòng)分解為整體剛體運(yùn)動(dòng)和彈性振動(dòng)運(yùn)動(dòng)之和,即
式中下標(biāo)“R”和“E”分別表示剛體運(yùn)動(dòng)和彈性振動(dòng).由模態(tài)疊加法求解式(1),令
式中ΦR是整體剛體運(yùn)動(dòng)模態(tài)矩陣;ΦE是彈性振動(dòng)模態(tài)矩陣;qR和qE分別是整體剛體運(yùn)動(dòng)和彈性運(yùn)動(dòng)的模態(tài)坐標(biāo).結(jié)合式(3)和式(1),得到式中ωi和ξi分別為彈性振動(dòng)的各階頻率和模態(tài)阻尼比;QE和QR分別為彈性振動(dòng)模態(tài)力與整體剛體運(yùn)動(dòng)模態(tài)力,且有QE=(ΦE)TP,QR=(ΦR)TP.
將結(jié)構(gòu)所受任意動(dòng)態(tài)載荷歷程在時(shí)域內(nèi)表示為
式中Dirac函數(shù)Δ表示作用于結(jié)構(gòu)的單位沖激載荷.由式(4)可直接導(dǎo)出單位沖激函數(shù)產(chǎn)生的彈性振動(dòng)和整體運(yùn)動(dòng)的模態(tài)加速度脈沖響應(yīng),即載荷作用點(diǎn)到加速度響應(yīng)測(cè)點(diǎn)的Green函數(shù).考慮零初始條件,且設(shè)初瞬時(shí),載荷值等于零,則依線性疊加原理得到測(cè)點(diǎn)的絕對(duì)加速度響應(yīng)與激勵(lì)的卷積關(guān)系
式中x表示載荷作用點(diǎn);gE(x,t)和gR(x,t)分別是彈性振動(dòng)和整體剛體運(yùn)動(dòng)的Green核函數(shù).
在時(shí)間域內(nèi)用m個(gè)等間隔的采樣點(diǎn)進(jìn)行離散,令Δt為離散的采樣時(shí)間間隔,i和Fi是t=iΔt時(shí)的加速度和待反求的載荷值,式(6)可離散為如下形式
式中G為Green核函數(shù)矩陣.
當(dāng)結(jié)構(gòu)受到多個(gè)載荷作用時(shí),系統(tǒng)總的絕對(duì)加速度響應(yīng)是各載荷引起的加速度響應(yīng)的線性疊加,故可將多源載荷問題表示為式(8)所示形式[9].
計(jì)入響應(yīng)數(shù)據(jù)中的誤差或噪聲,式(8)改寫成如下形式
對(duì)核函數(shù)矩陣G作奇異值分解,有
式中σi(i=1,2,…,m)為奇異值,U=(u1,u2,…,um)和V=(v1,v2,…,vm)分別是左奇異值和右奇異值向量矩陣,并滿足UTU=VTV=I,其中I是單位矩陣.設(shè)矩陣G可逆,由式(7)得估計(jì)的動(dòng)態(tài)外載荷Fδ為
式(11)表明,動(dòng)態(tài)外載荷的估計(jì)值 Fδ與真實(shí)值之間的誤差主要是由于兩個(gè)因素導(dǎo)致的,一是測(cè)量響應(yīng)數(shù)據(jù)中不可避免的噪聲,二是系統(tǒng)固有的核函數(shù)矩陣的小奇異值.
本文采用正則化方法反求式(8),引入正則化算子f(α,σi),當(dāng)小奇異值σi趨于零,f(α,σi)/σi也趨于零,由此可得到實(shí)際載荷的一個(gè)穩(wěn)定的近似估計(jì)
式中α是正則化參數(shù).若取正則化算子
得到截?cái)嗥娈愔捣纸猓═SVD)算法[15].采用廣義交叉驗(yàn)證準(zhǔn)則(GCV)[16]得到α,構(gòu)造如下函數(shù)
首先考慮一自由梁,取自文獻(xiàn)[13]給出的飛行器簡(jiǎn)化模型,由一個(gè)長(zhǎng)50 m、直徑為3 m、壁厚為0. 005 m的鋁質(zhì)圓筒構(gòu)成.如圖1所示,其有限元模型共有101個(gè)節(jié)點(diǎn),100個(gè)單元,在各個(gè)節(jié)點(diǎn)上加1600 kg的等效集中質(zhì)量.在底部節(jié)點(diǎn)1作用軸向載荷F (t)=1.7×106(1-e-5t)+5×104sin(10πt).
圖1 自由運(yùn)行飛行器簡(jiǎn)化模型Fig.1 Simplified model of space vehicle in unconstrained state
以節(jié)點(diǎn)40的響應(yīng)作為反求輸入,首先在載荷作用點(diǎn)1施加單位沖激脈沖力,計(jì)算40節(jié)點(diǎn)的絕對(duì)加速度響應(yīng),由此確定Green函數(shù).然后,進(jìn)行F(t)作用下的正問題計(jì)算,得到40節(jié)點(diǎn)的絕對(duì)加速度響應(yīng),將其迭加噪聲水平為20%的隨機(jī)噪聲來(lái)模擬實(shí)驗(yàn)測(cè)量的響應(yīng),帶噪的加速度響應(yīng)可用下式表示
圖2 節(jié)點(diǎn)40的絕對(duì)加速度響應(yīng)歷程Fig.2 The response history of absolute acceleration for node 40
圖3 自由梁的實(shí)際載荷與識(shí)別出的載荷Fig.3 The actual load and identified load on free beam
從圖中可見,反演出的載荷與實(shí)際載荷吻合較好.再考慮圖4(a)所示某復(fù)雜組合結(jié)構(gòu),由聯(lián)接于底部的內(nèi)外加筋薄壁構(gòu)件組成,其中,內(nèi)部結(jié)構(gòu)包含薄壁圓筒、縱向和橫向隔板.在底圈受軸向力作用,結(jié)構(gòu)發(fā)生沿z向的整體平動(dòng)和較強(qiáng)烈的結(jié)構(gòu)振動(dòng).對(duì)組合結(jié)構(gòu)用板殼單元和梁?jiǎn)卧獎(jiǎng)澐钟邢拊W(wǎng)格,如圖4(b)所示,其中,底圈上的節(jié)點(diǎn)均勻分布.在底圈各節(jié)點(diǎn)上施加均勻的半正弦沖擊力F (t),沖擊時(shí)間為50 ms,幅值為1000 N.以圖4(a)所示的內(nèi)部結(jié)構(gòu)縱向板中部的節(jié)點(diǎn)A為反求的輸入點(diǎn).統(tǒng)一取0.03的模態(tài)阻尼比,與前面算例的過(guò)程類似,模擬實(shí)驗(yàn)測(cè)量的加速度響應(yīng)示于圖5.反演出的載荷由圖6給出.可見,反求結(jié)果與實(shí)際載荷吻合較好.
圖4 組合薄壁結(jié)構(gòu)與分析模型Fig.4 Composite thin-walled structure and its analysismodel
圖5 節(jié)點(diǎn)A的絕對(duì)加速度響應(yīng)歷程Fig.5 The response history of absolute acceleration for node A
圖6 組合薄壁結(jié)構(gòu)的實(shí)際載荷與識(shí)別出的載荷Fig.6 The actual load and identified load on composite thin-walled structure
綜合兩個(gè)算例的分析結(jié)果可見,雖然計(jì)入了較高水平的隨機(jī)噪聲,載荷反演仍然保持了良好的精度.進(jìn)一步的數(shù)值實(shí)驗(yàn)表明,將反求輸入測(cè)點(diǎn)選在沿z向局部剛度較大的部位,有望提高動(dòng)載荷反演的穩(wěn)健性.這些特征提示,由于耦合了整體運(yùn)動(dòng),核函數(shù)矩陣的病態(tài)性得到了一定改善,在局部剛度較大的部位,整體運(yùn)動(dòng)的加速度占絕對(duì)運(yùn)動(dòng)加速度的比例高,由此使得正則化方法的穩(wěn)健性和耐噪性得到提高.
將Green核函數(shù)耦合整體剛體運(yùn)動(dòng)與彈性振動(dòng)的脈沖響應(yīng),結(jié)合正則化求解,以測(cè)點(diǎn)的絕對(duì)運(yùn)動(dòng)加速度響應(yīng)為輸入反演整體平動(dòng)自由結(jié)構(gòu)的動(dòng)載荷,數(shù)值仿真算例驗(yàn)證了方法的有效性,反求結(jié)果的精度較高.數(shù)值試驗(yàn)結(jié)果也提示,整體剛體運(yùn)動(dòng)的引入降低了反求問題的病態(tài)性.選取局部剛性較大的測(cè)點(diǎn)位置,有望提高正則化方法的穩(wěn)健性和耐噪性,以克服實(shí)際應(yīng)用中加速度信號(hào)易受噪聲污染這一問題.總之,基于絕對(duì)加速度反求的Green函數(shù)法對(duì)復(fù)雜的自由運(yùn)行結(jié)構(gòu)體系的動(dòng)載荷反求問題具有明顯的應(yīng)用潛力.
1 朱繼梅,呂忠達(dá).連續(xù)系統(tǒng)動(dòng)態(tài)載荷識(shí)別的時(shí)域方法.振動(dòng)工程學(xué)報(bào),1989,2(3):10~19(Zhu JM,Lu Z D. Time domain identification method of dynamical loads on a continous system.Journal of Vibration Engineering,1989,2(3):10~19(in Chinese))
2 時(shí)戰(zhàn),許士斌,初良成,等.利用脈沖響應(yīng)函數(shù)識(shí)別載荷的時(shí)序法.振動(dòng)工程學(xué)報(bào),1995,8(3):235~242(Shi Z,Xu SB,Chu LC,etal.Time series analysis for load identification by using impulse response function.Journal of Vibration Engineering,1995,8(3):235~242(in Chinese))
3 張運(yùn)良,林皋,王永學(xué),等.一種改進(jìn)的動(dòng)態(tài)載荷時(shí)域識(shí)別方法.計(jì)算力學(xué)學(xué)報(bào),2004,21(2):209~215(Zhang Y L,Lin G,Wang Y X,etal.An improvedmethod of dynamic load identification in time domain.Chinese Journal of Computational Mechanics,2004,21(2):209~215(in Chinese))
4 蔡元奇,朱以文.基于逆向?yàn)V波器的動(dòng)態(tài)載荷識(shí)別方法.振動(dòng)工程學(xué)報(bào),2006,19(2):200~205(Cai Y Q,Zhu Y W.Time domain identification method for dynamic loads based on inverse direction filter.Journal of Vibration Engineering,2006,19(2):200~205(in Chinese))
5 張方,朱德懋,張福祥.動(dòng)載荷識(shí)別的時(shí)間有限元模型理論及其應(yīng)用.振動(dòng)與沖擊,1998,17(12):1~5(Zhang F,Zhu D M,Zhang F X.The theory and application of time elementmodel for dynamic load identification.Journal of Vibration and Shock,1998,17(2):1~5(in Chinese))
6 Inoue H,Harrigan JJ,Reid SR.Review of inverse analysis for indirectmeasurement of impact force.Applied Mechanics Review,2001,54(6):503~525
7 Doyle JF.A wavelet deconcolutionmethod for impact force identification.Experimental Mechanics,1997,37(4):404 ~408
8 Liu G R,MaW B,Han X.An inverse procedure for identification of loads on composite laminates.Composites Part B:Engineering,2002,33(6):425~432
9 韓旭,劉杰,李偉杰,趙卓群.時(shí)域內(nèi)多源動(dòng)態(tài)載荷的一種計(jì)算反求技術(shù).力學(xué)學(xué)報(bào),2009,41(4):595~602 (Han X,Liu J,LiW J,Zhao Z Q.A computational inverse technique for reconstruction of multisource loads in time domain.Chinese Journal of Theoretical and Applied Mechanics,2009,41(4):595~602(in Chinese))
10 Sun X S,Liu J,Han X,et al.A new improved regularization method for dynamic load identification.Inverse Problems in Science and Eengineering,2014,22(7):1062 ~1076
11 王曉軍,楊海峰,邱志平,張紅.基于Green核函數(shù)的動(dòng)態(tài)載荷區(qū)間識(shí)別方法研究.固體力學(xué)學(xué)報(bào),2011,32 (1):95~101(Wang X J,Yang H F,Qiu Z P,Zhang H.Research on interval identificationmethod for dynamic loads based on Green′s function.Chinese Journal of Solid Mechanics,2011,32(1):95~101(in Chinese))
12 Kreitinger T,Luo H L.Force identification from structural response.In:Proceedings of the 1987 Sem Spring Conference on Experimental Mechanics,Houston,1987:851~855
13 朱斯巖,朱禮文.運(yùn)載火箭動(dòng)態(tài)載荷識(shí)別研究.振動(dòng)工程學(xué)報(bào),2008,21(2):135~139(Zhu SY,Zhu LW. Dynamic load identification on lunch vehicle.Journal of Vibration Engineering,2008,21(2):135~139(in Chinese))
14 毛玉明,郭杏林,趙巖,朱禮文,潘忠文.自由-自由運(yùn)行體系動(dòng)態(tài)載荷反演問題研究.計(jì)算力學(xué)學(xué)報(bào),2010,27 (1):35~39(Mao Y M,Guo X L,Zhao Y,Zhu LW,Pan ZW.Study of dynamic force identification for freefree structural system.Chinese Journal of ComputationalMechanics,2010,27(1):35~39(in Chinese))
15 Hansen PC.Truncated SVD solutions to discrete ill-posed problemswith ill-determined numerical rank.SIAM Journal on Scientific and Statistical Computing,1990,11(3):503~518
16 Golub G H,Heath M,Wahba G.Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics,1979,21(2):215~223
GREEN KERNEL FUNCTION APPROACH OF LOAD IDENTIFICATION FOR FREE STRUCTURESW ITH OVERALL TRANSLATION
Peng Fan1Ma Qingzhen1Xiao Jian2Wei Bingfeng2Liu Jie1
(1.College of Mechanical and Vehicle Engineering,Hunan University,Changsha 410082,China)(2.Research Institute of Beijing Structure and Environment Engineering,Beijing 100076,China)
Green function method was extended to dealwith the load identification of free structureswith overall translation.The kernel function was obtained by the superposition of impulse response of overall translation and elastic vibration without taking into account rigid-flexible coupling effect,the convolution integral relationship of absolutemotion acceleration atmeasuring point and dynamic loads was constructed,and the regularization algorithm of truncated singular value decomposition(TSVD)was applied to solve the corresponding de-convolution equations.The proposedmethod was used to analyze a beam and a composite thin-walled structure in themotion of overall translation.The numerical simulation data was superimposed with random noise of 20%noise level and taken as the input of inverse problem to identify the given dynamic load.It is shown thatGreen function approach described in the paper can be effectively used to identify the dynamic loads acting on complex structures of overall translation,and regularization algorithms can solve this type of inverse problems with high robustness and noise resistance.
overall translation,free structure,load identification,Green function,regularization
11 April 2014,revised 01 July 2014.
E-mail:fanpeng@hnu.edu.cn
10.6052/1672-6553-2015-057
2014-04-11收到第1稿,2004-07-01收到修改稿.
E-mail:fanpeng@hnu.edu.cn
動(dòng)力學(xué)與控制學(xué)報(bào)2016年1期