余奇勁 黃錦秀 胡霽
[摘要] 血-脊髓屏障(BSCB)是血液循環(huán)和脊髓組織之間的生理和代謝物質(zhì)擴(kuò)散的屏障。BSCB的破壞是脊髓缺血再灌注損傷(SCIRI)的重要病理改變之一,在SCIRI的發(fā)生發(fā)展中起關(guān)鍵作用。藥物、缺血預(yù)處理等可通過保護(hù)BSCB完整性減輕SCIRI。遠(yuǎn)端缺血預(yù)處理(RIPC)可對(duì)SCIRI產(chǎn)生保護(hù)作用,但其內(nèi)在機(jī)制仍有待闡明。本文就BSCB的形態(tài)結(jié)構(gòu)與功能、SCIRI后BSCB損傷的機(jī)制及RIPC對(duì)SCIRI的保護(hù)作用作一綜述。
[關(guān)鍵詞] 脊髓缺血;再灌注損傷;缺血預(yù)處理;血-脊髓屏障
[中圖分類號(hào)] R651.2 [文獻(xiàn)標(biāo)識(shí)碼] A [文章編號(hào)] 1673-7210(2016)03(c)-0068-05
[Abstract] The blood-spinal cord barrier (BSCB) is the physiological and metabolic substance diffusion barrier between blood circulation and spinal cord tissues. The disruption of the BSCB is one of the important pathological changes in the course of spinal cord ischemia reperfusion injury (SCIRI), which plays a pivotal role in the development and progression of SCIRI. Some interventions, such as drugs and ischemic preconditioning, can prevent the SCIRI by keeping BSCB intact. Remote ischemic preconditioning (RIPC) can prevent the SCIRI, but the internal mechanism remains to be elucidated. This paper reviews the morphological structure and function of the BSCB, the injury mechanism of BSCB resulting from SCIRI, and the effect of RIPC on it.
[Key words] Spinal cord ischemia; Reperfusion injury; Ischemic preconditioning; Blood-spinal cord barrier
胸腹主動(dòng)脈瘤修復(fù)術(shù)可導(dǎo)致脊髓缺血再灌注損傷(spinal cord ischemic reperfusion injury,SCIRI),據(jù)報(bào)道其發(fā)生率為1%~32%,而脊髓損傷后一個(gè)災(zāi)難性的、不可預(yù)知的并發(fā)癥是截癱[1-2]。SCIRI的發(fā)生機(jī)制主要包括氧自由基介導(dǎo)的脂質(zhì)過氧化作用、細(xì)胞內(nèi)鈣超載、白細(xì)胞活化、炎性反應(yīng)及細(xì)胞凋亡等。其中,血-脊髓屏障(blood-spinal cord barrier,BSCB)的破壞是SCIRI的一個(gè)重要病理改變,它可加劇脊髓水腫,增加白細(xì)胞浸潤,放大炎性反應(yīng)及氧化應(yīng)激,因而在SCIRI的演變及神經(jīng)元的進(jìn)一步損害中起重要作用[3-5]。BSCB是血液循環(huán)和脊髓組織之間的生理和代謝物質(zhì)擴(kuò)散的屏障,嚴(yán)格地調(diào)控著脊髓微環(huán)境的穩(wěn)態(tài),因此早期修復(fù)BSCB對(duì)于防治脊髓損傷具有十分重要的意義。
遠(yuǎn)端缺血預(yù)處理(remote ischemic preconditioning,RIPC)是指對(duì)非靶組織或器官進(jìn)行短暫的幾個(gè)循環(huán)的缺血再灌注后可對(duì)隨后遠(yuǎn)隔組織或器官長時(shí)間持續(xù)性的缺血產(chǎn)生保護(hù)作用。已有研究表明,RIPC可對(duì)SCIRI產(chǎn)生保護(hù)作用[6-8],但其內(nèi)在機(jī)制仍不十分清楚。本文就BSCB的形態(tài)結(jié)構(gòu)與功能、SCIRI后BSCB損傷的機(jī)制及遠(yuǎn)端缺血預(yù)處理對(duì)SCIRI的保護(hù)作用作一綜述。
1 BSCB的形態(tài)結(jié)構(gòu)與功能
1.1 BSCB的形態(tài)結(jié)構(gòu)
與血-腦屏障(blood-brain barrier,BBB)相似,BSCB的基本結(jié)構(gòu)包括毛細(xì)血管內(nèi)皮細(xì)胞及其間的緊密連接(tight junctions,TJ)、基膜、周細(xì)胞和星形膠質(zhì)細(xì)胞終足[9]。BSCB的毛細(xì)血管內(nèi)皮細(xì)胞與外周血循環(huán)的內(nèi)皮細(xì)胞不同,其細(xì)胞膜無窗孔,胞漿中有含量十分豐富的線粒體,缺乏胞飲小泡,胞飲活性十分微弱[10]。內(nèi)皮細(xì)胞間的緊密連接結(jié)構(gòu)由一些特定跨膜蛋白組成,包括claudins(比如claudin-1、claudin-3、claudin-5)、occludin以及連接黏附分子(junction adherence molecular,JAM)。這些跨膜蛋白通過錨定于其上的胞質(zhì)附著蛋白(如ZO-1、ZO-2、ZO-3)而與胞漿中的細(xì)胞骨架蛋白相互作用[11]。基膜環(huán)繞毛細(xì)血管內(nèi)皮細(xì)胞及周細(xì)胞,其主要組成成分包括膠原蛋白、彈性蛋白、纖粘連蛋白、層粘連蛋白以及蛋白多糖等[12]。星形膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)主要的膠質(zhì)細(xì)胞,它發(fā)出足突包繞神經(jīng)元突起及血管。
1.2 BSCB各個(gè)組成元素的功能
毛細(xì)血管內(nèi)皮細(xì)胞是BSCB結(jié)構(gòu)中最重要的組成部分,它嚴(yán)格地控制血源性物質(zhì)的跨細(xì)胞自由轉(zhuǎn)運(yùn),細(xì)胞內(nèi)豐富的線粒體可為選擇性主動(dòng)轉(zhuǎn)運(yùn)提供能量并維持鈣離子穩(wěn)態(tài)[13]。此外,內(nèi)皮細(xì)胞還可表達(dá)抗氧化劑血紅素氧合酶-1(heme oxygenase,HO-1)及腦源性神經(jīng)營養(yǎng)因子(brain derived neurotrophic factor,BDNF),HO-1、BDNF表達(dá)含量的增加有助于神經(jīng)功能的修復(fù)[14-15]。內(nèi)皮細(xì)胞間的緊密連接嚴(yán)格限制細(xì)胞旁轉(zhuǎn)運(yùn)途徑。周細(xì)胞是小的血管壁細(xì)胞,與內(nèi)皮細(xì)胞有共同的基膜,并對(duì)內(nèi)皮細(xì)胞的增殖、遷移、分化起重要的調(diào)節(jié)作用[9]。星形膠質(zhì)細(xì)胞足突可表達(dá)水通道蛋白4(aquaporin 4,AQP-4),AQP-4在中樞神經(jīng)系統(tǒng)水平衡中發(fā)揮重要的調(diào)控作用[16]。
2 SCIRI后BSCB損傷的機(jī)制
2.1 MMPs介導(dǎo)BSCB的破壞
MMPs是鋅依賴性肽鏈內(nèi)切酶,可降解和重塑包括基膜蛋白、緊密連接蛋白等的細(xì)胞外基質(zhì)。正常情況下,MMPs以無活性的酶原形式分泌,在缺血再灌注損傷中,炎癥細(xì)胞產(chǎn)生的大量活性氧物質(zhì)以及促炎細(xì)胞因子[如腫瘤壞死因子α(TNF-α)、白細(xì)胞介素(IL)-1β]可強(qiáng)烈促進(jìn)MMPs的表達(dá)和活化[17]。其中,MMP-9是研究最為廣泛的酶。Fang等[18]和Li等[19]研究發(fā)現(xiàn),MMP-9表達(dá)的上調(diào)可增加BSCB通透性,MMP-9還參與小膠質(zhì)細(xì)胞的浸潤、遷移,增加促炎細(xì)胞因子和趨化因子的產(chǎn)生,從而放大炎性反應(yīng),進(jìn)一步加重BSCB的破壞和神經(jīng)元凋亡。通過藥物如右美托咪定、七氟烷預(yù)處理或者鞘內(nèi)進(jìn)行骨髓基質(zhì)細(xì)胞移植均可減少SCIRI中MMP-9的表達(dá),從而保護(hù)BSCB完整性,改善神經(jīng)功能[18-20]。以上研究表明,通過一定的干預(yù)措施抑制MMP-9的表達(dá)將有助于穩(wěn)定BSCB結(jié)構(gòu),減輕SCIRI。
2.2 炎性反應(yīng)介導(dǎo)BSCB的破壞
炎癥因子在BSCB損傷中發(fā)揮重要作用,它可使ZO-1從細(xì)胞骨架復(fù)合體中解離,可上調(diào)MMPs及TNF-α的表達(dá)水平,從而引起B(yǎng)SCB通透性增加,而BSCB的破壞又可進(jìn)一步加劇炎性反應(yīng),從而使脊髓發(fā)生嚴(yán)重的不可逆的損害[4]。最近,TLRs(Toll-like receptors),尤其是TLR4,因其在SCIRI后炎癥應(yīng)答中的重要作用而引起廣泛關(guān)注。TLR4是一組調(diào)控固有免疫應(yīng)答的跨膜蛋白,在小膠質(zhì)細(xì)胞膜上表達(dá)量最多,可特異性識(shí)別LPS配體。有研究表明,SCIRI可引起小膠質(zhì)細(xì)胞早期大量持續(xù)的活化,活化的小膠質(zhì)細(xì)胞膜表面表達(dá)TLR4增加,一旦TLR4與配體結(jié)合即可觸發(fā)NF-κB從胞質(zhì)轉(zhuǎn)位到胞核,進(jìn)而調(diào)控其靶基因IL-1β的表達(dá)。TLR4-小膠質(zhì)細(xì)胞-NF-κB/IL-1β信號(hào)通路可形成正反饋加重炎性反應(yīng)及BSCB損害[6]。此外,研究發(fā)現(xiàn)TLR4通過作用于其下游受體MyD88及TRIF激活NF-κB,TLR4/MyD88通路主要在早期炎癥階段起作用,而TLR4/TRIF通路主要在晚期炎癥階段起作用,并可被MyD88信號(hào)通路放大[5]。
炎性反應(yīng)和BSCB的破壞均是SCIRI的重要病理生理機(jī)制,炎性反應(yīng)可破壞BSCB結(jié)構(gòu),而BSCB通透性的增加又反過來增加白細(xì)胞浸潤,放大炎癥應(yīng)答,從而形成惡性循環(huán),進(jìn)一步加重脊髓組織的損傷。
2.3 氧化應(yīng)激介導(dǎo)BSCB的破壞
在正常生理?xiàng)l件下,機(jī)體的氧化系統(tǒng)和抗氧化系統(tǒng)處于動(dòng)態(tài)平衡狀態(tài),但在缺血再灌注發(fā)生時(shí),大量炎癥細(xì)胞的浸潤使得氧自由基大量產(chǎn)生,從而使這種動(dòng)態(tài)平衡被打破。有研究提示,過多的超氧化物的產(chǎn)生可損害血腦屏障的內(nèi)皮細(xì)胞[21]。超氧化物可與NO結(jié)合形成過氧亞硝基,過氧亞硝基可通過脂質(zhì)過氧化、消耗內(nèi)源性抗氧化酶及誘導(dǎo)線粒體衰竭而引起微血管的嚴(yán)重?fù)p傷[22]。研究提示,氧化應(yīng)激可導(dǎo)致重要緊密連接蛋白如claudin-5、occludin、ZO-1和JAM-1的表達(dá)下調(diào)或重排[21-23],而NO、活性氧物質(zhì)及過氧亞硝基均可激活MMP-9,加劇緊密連接蛋白和基膜蛋白的降解,從而進(jìn)一步增加BBB通透性。因此,通過一定的干預(yù)措施減少SCIRI中的活性氧物質(zhì)的產(chǎn)生,或者增強(qiáng)脊髓組織的抗氧化能力,有助于維持BSCB完整性。
最近有研究提示,一些藥物或化合物可通過上調(diào)抗氧化劑HO-1的表達(dá)使緊密連接蛋白ZO-1、occludin的表達(dá)增加,減輕BBB/BSCB通透性,改善中樞屏障功能[24-25]。另外,遠(yuǎn)端肢體缺血后處理可通過激活Nrf2-ARE通路上調(diào)HO-1的表達(dá)發(fā)揮抗氧化作用,從而減輕腦缺血再灌注損傷[26]。HO-1通路對(duì)于穩(wěn)定BBB/BSCB在氧化應(yīng)激狀態(tài)下的完整性是十分關(guān)鍵的。
2.4 AQP-4的作用
AQPs是一組提供水跨膜轉(zhuǎn)運(yùn)的水通道蛋白。其中,AQP-4在中樞神經(jīng)系統(tǒng)中含量最為豐富,主要表達(dá)于包繞毛細(xì)血管的星形膠質(zhì)細(xì)胞足突。在缺血再灌注損傷中,大腦海馬CA1和皮層區(qū)域的AQP-4表達(dá)明顯增加,AQP-4在缺血導(dǎo)致的腦水腫中起重要作用,而在AQP-4敲除的小鼠,腦缺血后細(xì)胞毒性腦水腫減輕且神經(jīng)功能得到改善[27]。在遠(yuǎn)端缺血后處理對(duì)腦缺血再灌注損傷保護(hù)作用研究中,腦水腫的減輕伴隨著AQP-4表達(dá)的下降[28]。同樣的,AQP-4在脊髓組織的水平衡調(diào)控中也發(fā)揮重要作用。AQP-4的表達(dá)與脊髓水腫呈正相關(guān)[29]。一些藥物預(yù)處理方法可下調(diào)AQP-4的表達(dá)從而減輕SCIRI后的脊髓水腫[30]。
3 RIPC對(duì)SCIRI的保護(hù)作用
RIPC是一種創(chuàng)新。目前,在臨床上應(yīng)用比較廣泛的RIPC方法是使用血壓袖帶綁扎上肢,對(duì)上肢進(jìn)行短暫的幾個(gè)循環(huán)的缺血再灌注處理。大量臨床證據(jù)也已表明RIPC可對(duì)多種器官手術(shù)如心臟冠脈搭橋手術(shù)、經(jīng)皮冠脈介入術(shù)、選擇性頸椎減壓術(shù)、腎移植術(shù)、腹主動(dòng)脈瘤術(shù)等產(chǎn)生器官保護(hù)作用[31]。
近幾年,一些動(dòng)物實(shí)驗(yàn)已表明RIPC可對(duì)SCIRI產(chǎn)生保護(hù)作用。Dong等[7]通過對(duì)兔雙側(cè)股動(dòng)脈進(jìn)行缺血預(yù)處理,發(fā)現(xiàn)可明顯改善SCIRI后的神經(jīng)功能并減輕組織損傷。最近,有學(xué)者發(fā)現(xiàn),對(duì)豬左后肢進(jìn)行短暫的缺血預(yù)處理可保護(hù)脊髓免受缺血損傷[7]。在臨床研究中,RIPC對(duì)脊髓缺血的保護(hù)作用也得到了驗(yàn)證。Hu等[32]通過對(duì)要進(jìn)行選擇性頸椎減壓術(shù)患者的右上肢進(jìn)行缺血預(yù)處理,發(fā)現(xiàn)其有助于術(shù)后早期患者神經(jīng)功能的恢復(fù)。
盡管很多研究已提示RIPC對(duì)脊髓缺血的保護(hù)作用,但其內(nèi)在的保護(hù)機(jī)制仍不十分清楚。體液通路可能參與了RIPC的保護(hù)作用機(jī)制,之前的研究表明熱休克蛋白、內(nèi)源性大麻素、活性氧物質(zhì)觸發(fā)的抗氧化通路介導(dǎo)了RIPC對(duì)脊髓缺血的耐受[8-9,33]。近幾年,BSCB在SCIRI中的作用引起了關(guān)注。Fang等[3]發(fā)現(xiàn)缺血預(yù)處理可減輕缺血段脊髓水腫程度,降低BSCB通透性。Ren等[34]研究發(fā)現(xiàn)遠(yuǎn)端缺血后處理可減輕鼠BBB通透性及缺血腦組織水腫程度,從而減少缺血再灌注損傷所致腦梗死面積。最近,Li等[35]發(fā)現(xiàn)遠(yuǎn)端缺血后處理可減輕腦缺血后的水腫程度及BBB通透性,并可下調(diào)星形膠質(zhì)細(xì)胞AQP-4的表達(dá),因而推測(cè)遠(yuǎn)端缺血后處理可通過下調(diào)AQP-4的表達(dá)改善神經(jīng)學(xué)功能。
4 結(jié)語
SCIRI后BSCB的破壞主要是由MMPs、炎性反應(yīng)、氧化應(yīng)激及AQP-4共同作用導(dǎo)致的,但究竟哪種因素占主導(dǎo)、各因素發(fā)生的先后順序以及它們之間的關(guān)聯(lián)性仍然不是很清楚。研究已證實(shí)RIPC可對(duì)SCIRI起到保護(hù)作用,但其內(nèi)在機(jī)制仍不清楚,并且RIPC的實(shí)施方法并不統(tǒng)一,究竟哪種方法更好還未見文獻(xiàn)報(bào)道。此外,關(guān)于RIPC對(duì)SCIRI保護(hù)作用的臨床證據(jù)仍不足,大樣本、多中心的隨機(jī)對(duì)照臨床試驗(yàn)以及最佳的RIPC方式仍然有待于進(jìn)一步開展和驗(yàn)證。
遠(yuǎn)端缺血后處理可通過減輕BBB通透性及腦水腫程度而對(duì)腦缺血再灌注損傷產(chǎn)生保護(hù)作用,BSCB與BBB同屬于中樞神經(jīng)系統(tǒng)屏障,RIPC是否可通過保護(hù)BSCB完整性、減輕脊髓水腫而對(duì)脊髓缺血產(chǎn)生耐受,以及內(nèi)在的保護(hù)機(jī)制,仍然需要進(jìn)一步證實(shí)和探究。
[參考文獻(xiàn)]
[1] Panthee N,Ono M. Spinal cord injury following thoracic and thoracoabdominal aortic repairs [J]. Asian Cardiovasc Thorac Ann,2015,23(2):235-246.
[2] Etz DC,Luehr M,Aspern KV,et al. Spinal cord ischemia in open and endovascular thoracoabdominal aortic aneurysm repair:new concepts [J]. J Cardiovasc Surg:Torino,2014,55(2 Suppl 1):159-168.
[3] Fang B,Li XM,Sun XJ,et al. Ischemic preconditioning protects against spinal cord ischemia-reperfusion injury in rabbits by attenuating blood spinal cord barrier disruption [J]. Int J Mol Sci,2013,14(5):10343-10354.
[4] Li XQ,Lv HW,Tan WF,et al. Role of the TLR4 pathway in blood -spinal cord barrier dysfunction during the bimodal stage after ischemia/reperfusion injury in rats [J]. J Neuroinflammation,2014,11:62.
[5] Li XQ,Wang J,F(xiàn)ang B,et al. Intrathecal antagonism of microglial TLR4 reduces inflammatory damage to blood-spinal cord barrier following ischemia/reperfusion injury in rats [J]. Mol Brain,2014,7:28.
[6] Haapanen H,Herajrvi J,Arvola O,et al. Remote ischemic preconditioning protects the spinal cord against ischemic insult:an experimental study in a pocrin model [J]. J Thorac Cardiovasc Surg,2015. [Epub ahead of print]
[7] Dong HL,Zhang Y,Su BX,et al. Limb remote ischemic preconditioning protects the spinal cord from ischemia-reperfusion injury:a newly identified nonneuronal but reactive oxygrn species-dependent pathway [J]. Anesthesiology,2010, 112(4):881-891.
[8] Su B,Dong H,Ma R,et al. Cannabinoid 1 receptor mediation of spinal cord ischemic tolerance induced by limb remote ischemia preconditioning in rats [J]. J Thorac Cardiovasc Surg,2009,138(6):1409-1416.
[9] Bartanusz V,Jezova D,Alajajian B,et al. The blood-spinal cord barrier:morphology and clinical implications [J]. Ann Neurol,2011,70(2):194-206.
[10] Bernacki J,Dobrowolska A,Nierwińska K,et al. Physiology and pharmacological role of the blood-brain barrier [J]. Pharmacol Rep,2008,60(5):600-622.
[11] Bauer HC,Krizbai IA,Bauer H,et al. "You Shall Not Pass"-tight junctions of the blood brain barrier [J]. Front Neurosci,2014,8:392.
[12] Cardoso FL,Brites D,Brito MA. Looking at the blood-brain barrier:molecular anatomy and possible investigation approaches [J]. Brain Res Rev,2010,64(2):328-363.
[13] Ronaldson PT,Davis TP. Targeting transporters:promoting blood-brain barrier repair in response to oxidative stress injury [J]. Brain Res,2015,1623:39-52.
[14] Lai TH,Shieh JM,Tsou CJ,et al. Gold nanoparticles induce heme oxygenase-1 expression through Nrf2 activation and Bach1 export in human vascular endothelial cells [J]. Int J Nanomedicine,2015,10:5925-5939.
[15] Béjot Y,Prigent-Tessier A,Cachia C,et al. Time-dependent contribution of non neuronal cells to BDNF production after ischemic stroke in rats [J]. Neurochem Int,2011, 58(1):102-111.
[16] Haj-Yasein NN,Vindedal GF,Eilert-Olsen M,et al. Glial-conditional deletion of aquaporin-4(Aqp4)reduces blood-brain water uptake and confers barrier function on perivascular astrocyte endfeet [J]. Proc Natl Acad Sci USA,2011, 108(43):17815-17820.
[17] Dejonckheere E,Vandenbroucke RE,Libert C. Matrix metalloproteinases as drug targets in ischemia/reperfusion injury [J]. Drug Discov Today,2011,16(17-18):762-778.
[18] Fang B,Li XQ,Bi B,et al. Dexmedetomidine attenuates blood-spinal cord barrier disruption induced by spinal cord ischemia reperfusion injury in rats [J]. Cell Physiol Biochem,2015,36(1):373-383.
[19] Li XQ,Cao XZ,Wang J,et al. Sevoflurane preconditioning ameliorates neuronal deficits by inhibiting microglial MMP-9 expression after spinal cord ischemia/reperfusion in rats [J]. Mol Brain,2014,7:69.
[20] Fang B,Wang H,Sun XJ,et al. Intrathecal transplantation of bone marrow stromal cells attenuates blood-spinal cord barrier disruption induced by spinal cord ischemia-reperfusion injury in rabbits [J]. J Vasc Surg,2013,58(4):1043-1052.
[21] Lochhead JJ,McCaffrey G,Quigley CE,et al. Oxidative stress increases blood-brain barrier permeability and induces alterations in occludin during hypoxia-reoxygenation [J]. J Cereb Blood Flow Metab,2010,30(9):1625-1636.
[22] Thompson BJ,Ronaldson PT. Drug delivery to the ischemic brain [J]. Adv Pharmacol,2014,71:165-202.
[23] Schreibelt G,Kooij G,Reijerkerk A,et al. Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA,PI3 kinase,and PKB signaling [J]. FASEB J,2007,21(13):3666-3676.
[24] Chen Z,Mao X,Liu A,et al. Osthole,a natural coumarin improves cognitive impairments and BBB dysfunction after transient global brain ischemia in C57 BL/6J mice:involvement of Nrf2 pathway [J]. Neurochem Res,2015,40(1):186-194.
[25] Yu DS,Cao Y,Mei XF,et al. Curcumin improves the integrity of blood-spinal cord barrier after compressive spinal cord injury in rats [J]. J Neurol Sci,2014,346(1-2):51-59.
[26] Li P,Su L,Li X,et al. Remote limb ischemic postconditioning protects mouse brain against cerebral ischemia/reperfusion injury via upregulating expression of Nrf2,HO-1 and NQO-1 in mice [J]. Int J Neurosci,2015,17:1-8.
[27] Akdemir G,Ratelade J,Asavapanumas N,et al. Neuroprotective effect of aquaporin-4 deficiency in a mouse model of severe global cerebral ischemia produced by transient 4-vessel occlusion [J]. Neurosci Lett,2014,574:70-75.
[28] Li S,Hu X,Zhang M,et al. Remote ischemic post-conditioning improves neurological function by AQP4 down-regulation in astrocytes [J]. Behav Brain Res,2015,289:1-8.
[29] Qiang H,Zhang C,Shi Z,et al. Neuroprotective effects of recombinant adeno-associated virus expressing vascular endothelial growth factor on rat traumatic spinal cord injury and its mechanism [J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi,2012,26(6):724-730.
[30] Ning N,Dang X,Bai C,et al. Panax notoginsenoside produces neuroprotective effects in rat model of acute spinal cord ischemia-reperfusion injury [J]. J Ethnopharmacol,2012,139(2):504-512.
[31] Randhawa PK,Bali A,Jaggi AS. RIPC for multiorgan salvage in clinical settings:evolution of concept,evidences and mechanisms [J]. Eur J Phamacol,2015,746:317-332.
[32] Hu S,Dong HL,Li YZ,et al. Effects of remote ischemic preconditioning on biochemical markers and neurologic outcomes in patients undergoing elective cervical decompression surgery:a prospective randomized controlled trial [J]. J Neurosurg Anesthesiol,2010,22(1):46-52.
[33] Selimoglu O,Ugurlucan M,Basaran M,et al. Efficacy of remote ischaemic preconditioning for spinal cord protection against ischaemic injury:association with heat shock protein expression [J]. Folia Neuropathol,2008,46(3):204-212.
[34] Ren C,Gao M,Dornbos D,et al. Remote ischemic post-conditioning reduced brain damage in experimental ischemia/reperfusion injury [J]. Neurol Res,2011,33(5):514-519.
[35] Li S,Hu X,Zhang M,et al. Remote ischemic post-conditioning improves neurological function by AQP4 down-regulation in astrocytes [J]. Behav Brain Res,2015,289:1-8.
(收稿日期:2015-12-05 本文編輯:張瑜杰)