侯沐朗
(北京市第四中學(xué),北京 100120)
?
【基礎(chǔ)理論與應(yīng)用研究】
模塊化多級(jí)水火箭設(shè)計(jì)與模擬
侯沐朗
(北京市第四中學(xué),北京100120)
研究了利用現(xiàn)有容器實(shí)現(xiàn)多級(jí)水火箭的設(shè)計(jì)方案,分析了捆綁式二級(jí)水火箭的設(shè)計(jì)思路。第一級(jí)由三個(gè)耐壓儲(chǔ)水罐組成,第二級(jí)有一個(gè)耐壓儲(chǔ)水罐;重點(diǎn)分析了火箭噴水推進(jìn)階段的數(shù)學(xué)物理模型,空氣阻力對(duì)系統(tǒng)的影響,最優(yōu)儲(chǔ)水量,多罐壓力平衡等關(guān)鍵問(wèn)題。利用計(jì)算機(jī)對(duì)火箭整個(gè)飛行過(guò)程進(jìn)行了理論計(jì)算和描述,為在簡(jiǎn)陋條件下自行研制各種結(jié)構(gòu)的水火箭提供了思路。
多級(jí)水火箭;多罐壓力平衡;火箭分離;最優(yōu)水量
水火箭結(jié)構(gòu)簡(jiǎn)單,原材料普通且廉價(jià),并且在制作過(guò)程中能夠應(yīng)用現(xiàn)代火箭的一些基本理論知識(shí),宜于廣大中小學(xué)生實(shí)踐制作。簡(jiǎn)單的水火箭結(jié)構(gòu)以單級(jí)為主,上升高度受到了水量、容積等多方面限制。
捆綁式多級(jí)水火箭的第一級(jí)由三個(gè)儲(chǔ)水罐組成,第二級(jí)為單獨(dú)的儲(chǔ)水罐。本文分析了水火箭飛行過(guò)程數(shù)學(xué)模型,以及一定容積的最優(yōu)儲(chǔ)水量,提出了一種簡(jiǎn)單易行的多罐壓力平衡解決方案。文章用具體的實(shí)驗(yàn)數(shù)據(jù)與理論計(jì)算值進(jìn)行比較,優(yōu)化了整體設(shè)計(jì),制作了實(shí)體水火箭并進(jìn)行實(shí)驗(yàn)。
多級(jí)水火箭的第一級(jí)選取三個(gè)容量為2.13L的廢舊飲料瓶。其材質(zhì)為PC(聚碳酸酯),瓶壁厚度為0.22mm,實(shí)測(cè)耐壓強(qiáng)度約為9個(gè)大氣壓。三個(gè)一級(jí)儲(chǔ)水容器通過(guò)橡膠繃帶捆綁固定。為了防止火箭飛行過(guò)程中由于三個(gè)儲(chǔ)水容器的推力不一致導(dǎo)致飛行姿態(tài)紊亂,要保證水火箭第一級(jí)三個(gè)儲(chǔ)水容器內(nèi)壓一致。設(shè)計(jì)了一種簡(jiǎn)單的連通器,如圖1所示。連通器的三個(gè)端口分別置于三個(gè)容器的頂部,與各個(gè)瓶?jī)?nèi)空氣容腔相連通,保證其壓力平衡。并且,由連通器的總端口負(fù)責(zé)火箭初始階段的加壓操作。
第二級(jí)水火箭的結(jié)構(gòu)與材料與第一級(jí)水火箭完全一致,這樣做的目的是減少工作量,使水火箭模塊化。將第二級(jí)火箭的結(jié)構(gòu)放置在第一級(jí)上部,由分離裝置固定,分離裝置由電磁繼電器等元器件組成。多級(jí)水火箭的整體結(jié)構(gòu)如圖2所示。在第二級(jí)火箭的結(jié)構(gòu)的瓶臂上,固定著水火箭控制系統(tǒng),系統(tǒng)電路示意圖見(jiàn)圖3。電路的核心由AT89C52單片機(jī)構(gòu)成,板上集成了多種傳感器負(fù)責(zé)采集實(shí)際飛行過(guò)程中的物理參數(shù),如:氣壓傳感器(型號(hào):BMP085)、加速度傳感器(型號(hào):ADXL345)和磁場(chǎng)傳感器(型號(hào):HMC5883L)??刂齐娐愤€負(fù)責(zé)水火箭點(diǎn)火以及水火箭分離的操作,是整個(gè)水火箭的核心部件。
2.1推進(jìn)階段
水火箭的唯一動(dòng)力是依靠瓶?jī)?nèi)高壓推射出水,根據(jù)牛頓第三定律,推射出的水反作用于水火箭,從而推動(dòng)水火箭上升。由于水火箭儲(chǔ)水瓶?jī)?nèi)壓很高(7~9大氣壓),而且由于結(jié)構(gòu)原因,存儲(chǔ)的水量不多,每個(gè)儲(chǔ)水瓶一般不超過(guò)2L,因此水會(huì)在瞬間噴射完畢。
根據(jù)tsiolkovsky火箭方程[1],對(duì)于單個(gè)火箭儲(chǔ)水容器有:
(1)
其中,F(xiàn)T為噴水過(guò)程中的推力,ve為水噴射的瞬時(shí)速度,m為噴射出水的質(zhì)量,t為時(shí)間。物體的質(zhì)量與其密度與體積有關(guān),因此:
(2)
ρw為液體質(zhì)量,V為液體體積,因此可以得到:
(3)
AN為噴嘴的橫截面積。根據(jù)式(3),將水的質(zhì)量變化率轉(zhuǎn)換成了橫截面與噴速的乘積形式。
水火箭噴嘴的水流速可以用伯努利方程描述[2-3]。伯努利方程假定水不能壓縮并且無(wú)粘性。根據(jù)伯努利方程有:
(4)
其中,P為儲(chǔ)水容器的瞬時(shí)內(nèi)壓(Pa),Patm為標(biāo)準(zhǔn)大氣壓(Pa)[4],vi為容器內(nèi)水相對(duì)與火箭的速度(默認(rèn)為0)(m/s),g為重力加速度(N/kg),y為水在容器內(nèi)的高度(m)。通過(guò)伯努利方程可以求出水噴速與容器內(nèi)壓的瞬時(shí)關(guān)系:
(5)
水火箭在推進(jìn)階段水在不斷的流失,因此空氣的體積也會(huì)隨著水的減少而不斷的增加??諝獾捏w積增大必然導(dǎo)致瓶?jī)?nèi)氣壓變化,這個(gè)變化關(guān)系可以用理想氣體恒溫膨脹方程[5]來(lái)表示。應(yīng)用此公式的前提是氣體的溫度不變。氣體體積與壓強(qiáng)的關(guān)系可以用如下公式表示:
(6)
其中,P0為初始瓶?jī)?nèi)氣壓(Pa),V0為初始?xì)怏w體積(m3),ΔV為體積的變化量,r為絕熱系數(shù)[6](常數(shù)),空氣的絕熱系數(shù)為1.4。
整體上,火箭所受的矢量力為:
(7)
(8)
mr是火箭的質(zhì)量(kg),mw是火箭現(xiàn)有的水質(zhì)量(kg),F(xiàn)為火箭受力之和(N),F(xiàn)g為火箭所受重力(N),重力貫穿整個(gè)飛行過(guò)程。
由于整個(gè)推進(jìn)階段各個(gè)關(guān)鍵量如水量、瓶?jī)?nèi)壓、水的噴射速度都在不斷變化,因此根據(jù)公式得到的結(jié)果誤差較大。在計(jì)算推進(jìn)階段的各項(xiàng)指標(biāo)時(shí),先需要確定火箭的基本參數(shù),如:液體密度、液體重量、瓶?jī)?nèi)壓、瓶質(zhì)量、噴嘴直徑等參數(shù)。然后根據(jù)公式上述公式,求出初始噴速、初始推力等初始量,最后根據(jù)上述初始量一步一步模擬整個(gè)推進(jìn)過(guò)程。
2.2慣性階段
推進(jìn)階段完成后,由于此時(shí)只剩下部分氣體的推進(jìn)動(dòng)力,氣體動(dòng)力較小。為了計(jì)算方便,在此可將其忽略。此時(shí)火箭所受的外力只有重力與空氣阻力[7-8],重力為:
(9)
空氣阻力為:
(10)
空氣阻力的大小與物體速度的平方成正比。Cp為空氣阻力系數(shù)(常數(shù)),與物體外形相關(guān),文中取0.35[9];ρa(bǔ)為空氣密度(kg/m3);Af為迎風(fēng)面積(m2)。
根據(jù)簡(jiǎn)單的力學(xué)公式就能求得飛行過(guò)程中的加速度a與飛行速度vn:
(11)
(12)
根據(jù)上述飛行過(guò)程中的加速度a與飛行速度vn兩個(gè)值與時(shí)間就可以確定飛行高度H。
由于此時(shí)火箭的上升完全是憑借推進(jìn)階段結(jié)束后的速度上升,其上升的最高點(diǎn)即上升速度為零的時(shí)刻。第一級(jí)水火箭體之高度與時(shí)間的曲線呈開(kāi)口向下的拋物線狀。通常情況下,分離在水火箭第一級(jí)產(chǎn)生的初始速度耗盡時(shí)刻,也就是第一級(jí)水火箭達(dá)到的最高處。根據(jù)實(shí)際操作情況,分離發(fā)生在第一級(jí)水火箭推進(jìn)階段完畢的一秒鐘以后。之所以選擇這個(gè)時(shí)間節(jié)點(diǎn),一方面是此時(shí)空氣阻力下降,水火箭的上升速度也下降;另一方面是由于第一級(jí)水火箭儲(chǔ)水容器中剩余的壓縮空氣仍有壓力,能起到助推作用。
第一級(jí)與第二級(jí)水火箭分離后,二級(jí)水火箭的飛行過(guò)程也分為推進(jìn)階段與慣性階段,只是第二級(jí)水火箭的初速度與飛行高度均不為零,分析過(guò)程與對(duì)第一級(jí)水火箭的分析完全一致。
圖1 壓力均衡連通器
1.火箭控制系統(tǒng); 2.一、二級(jí)火箭分離器; 3.二級(jí)火箭發(fā)射裝置; 4.一級(jí)火箭壓力平衡及加壓裝置; 5.水; 6.一級(jí)火箭噴口; 7.一級(jí)火箭同步發(fā)射裝置; 8.空氣容腔
圖2多級(jí)水火箭的整體結(jié)構(gòu)示意圖
2.3最優(yōu)填水量
水火箭第二級(jí)的質(zhì)量與第一級(jí)的水量是影響水火箭飛行高度的關(guān)鍵參數(shù)。水火箭第二級(jí)質(zhì)量越小越好,這樣第一級(jí)的推力能夠使水火箭產(chǎn)生較大的加速度,但是質(zhì)量過(guò)小,制造成本大。另一方面,水火箭儲(chǔ)水容器水量的確定更為重要[10]。若裝載的水過(guò)少,噴射時(shí)間太短,水火箭的推進(jìn)階段時(shí)間過(guò)短,無(wú)法達(dá)到一定的速度,因此后續(xù)階段飛行高度會(huì)下降;若裝載的水過(guò)多,總體質(zhì)量增大,加速度會(huì)變小,也會(huì)影響到飛行高度。因此,需要找到一個(gè)合理的水量與容積的比值。
圖3 控制電路示意框圖
水火箭的整個(gè)飛行過(guò)程在前面已作分析,在優(yōu)化求解參數(shù)時(shí),先將需要的參數(shù)值設(shè)置為一定范圍。設(shè)msi為第二級(jí)水火箭的質(zhì)量,其取值范圍為[0.05 kg,1.45 kg],設(shè)mwi為第一級(jí)水火箭填充的水質(zhì)量,其取值范圍為[0.05,1.45]kg;由于有兩個(gè)變量,采用網(wǎng)格搜索法[11],求出水火箭的最終高度,取最高點(diǎn)。對(duì)應(yīng)于水火箭最高點(diǎn)的第二級(jí)水火箭的質(zhì)量和第一級(jí)水火箭填充的水質(zhì)量,即為最優(yōu)參數(shù)。其結(jié)果如圖4所示。
圖4 二級(jí)水火箭質(zhì)量與一級(jí)火箭填充水量對(duì)飛行高度的影響
圖4中Z軸是飛行高度,是所需要最大化的目標(biāo)量??梢院苊黠@的觀察到,二級(jí)水火箭的質(zhì)量越小越好,而填充的水量需要保持在一個(gè)適當(dāng)?shù)奈恢?,過(guò)多過(guò)少都不能達(dá)到最優(yōu)。從圖中還可以發(fā)現(xiàn),與二級(jí)火箭質(zhì)量多少無(wú)關(guān),第一級(jí)水火箭的最優(yōu)填充水量與第一級(jí)水火箭能容納的最大水量之比為0.433。
2.4實(shí)驗(yàn)及其分析
具體水火箭實(shí)驗(yàn)的各項(xiàng)參數(shù)見(jiàn)表1與表2。
各項(xiàng)參數(shù)確定后,可根據(jù)2.1與2.2節(jié)中的各項(xiàng)公式通過(guò)計(jì)算機(jī)模擬火箭的飛行過(guò)程。設(shè)時(shí)間增量Δt=0.001 s。
一級(jí)水火箭推進(jìn)階段之火箭速度曲線如圖5所示。從圖5可以看出整個(gè)過(guò)程的時(shí)間很短,在0.43 s時(shí)間內(nèi)水火箭從零加速到22.34 m/s的速度。
表1 第一級(jí)水火箭基本參數(shù)
表2 第二級(jí)水火箭基本參數(shù)
圖5 一級(jí)水火箭推進(jìn)階段速度曲線
第一級(jí)水火箭推進(jìn)階段其余參數(shù),如第一級(jí)水火箭噴水速度、總體受力見(jiàn)圖6和圖7。通過(guò)模擬可知,第一級(jí)火箭推進(jìn)階段最大受力為262.80 N,上升高度為4.8 m。
圖6 一級(jí)水火箭推進(jìn)階段噴水速度曲線
圖7 一級(jí)水火箭推進(jìn)受力曲線
第一級(jí)水火箭推升階段完畢后,水火箭上升一秒鐘時(shí)間,一二級(jí)水火箭開(kāi)始分離,此時(shí)受重力與空氣阻力影響。分離時(shí),第二級(jí)的初始速度為:11.62 m/s,分離高度為:21.68 m。分離前水火箭速度與高度數(shù)據(jù)曲線如圖8所示。
第二級(jí)水火箭分離后,分離運(yùn)動(dòng)量成了第二級(jí)火箭的初始量,其推進(jìn)階段和慣性運(yùn)動(dòng)階段運(yùn)動(dòng)參數(shù)的確定與第一級(jí)火箭的確定方法一致。水火箭總體運(yùn)動(dòng)過(guò)程如圖9所示。從圖9可以發(fā)現(xiàn),第一級(jí)水火箭推進(jìn)階段,分離階段,第二級(jí)水火箭推進(jìn)階段,第二級(jí)水火箭慣性飛行階段在圖中都有明顯的區(qū)分節(jié)點(diǎn)??傮w上水火箭在空中最大飛行速度為74.79 m/s,總體上升高度理論上能夠達(dá)到136.5 m。
圖8 水火箭分離前速度與高度曲線
圖9 水火箭全過(guò)程速度與飛行高度曲線
將水火箭第一級(jí)與第二級(jí)的水相加,然后平均分配到一級(jí)火箭的三個(gè)桶中。按照表1與表2的數(shù)據(jù),第一級(jí)水火箭每個(gè)模塊中水量為1.227 kg,第二級(jí)水火箭水量為零,動(dòng)力全部由第一級(jí)水火箭提供,第一級(jí)和第二級(jí)水火箭整個(gè)飛行過(guò)程不分離,其他參數(shù)不變。將數(shù)據(jù)代入模型擬,結(jié)果如圖10??梢钥吹?,整個(gè)火箭飛行時(shí)間為3.335 s,飛行高度為48.07 m。采用二級(jí)結(jié)構(gòu)的水火箭飛行高度是一級(jí)水火箭飛行高度的2.84倍。
圖10 同等質(zhì)量的推進(jìn)液體情況下一級(jí)火箭飛行情況
水火箭的制作簡(jiǎn)單易行,適合人們鍛煉動(dòng)手能力與理論水平,并且能夠引導(dǎo)初高中學(xué)生對(duì)航天科學(xué)的興趣。文章為了分析方便,忽略了液體推進(jìn)完畢后瓶?jī)?nèi)剩余氣壓的影響,在計(jì)算實(shí)際的水火箭飛行過(guò)程時(shí)會(huì)產(chǎn)生一定的偏差。
[1]FINNEY G A.Analysis of a water-propelled rocket:A problem in honors physics[J].American Journal of Physics,2000,68(3):223-227.
[2]LE MéHAUTé,BERNARD.The Bernoulli Equation[M].An Introduction to Hydrodynamics and Water Waves.Springer Berlin Heidelberg,1976:101-115.
[3]陳燕黎.伯努利方程的原理及運(yùn)用淺析[J].漯河職業(yè)技術(shù)學(xué)院學(xué)報(bào),2012,11(2):86-88.
[4]王玉忠.確定標(biāo)準(zhǔn)大氣壓的歷史沿革[J].物理教學(xué)探討,2001,19(10).
[5]楊紀(jì)文.理想氣體狀態(tài)方程——從經(jīng)典到量子[J].物理,2003(5):6-8.
[6]田春山.利用新型超聲波傳感器測(cè)定空氣絕熱系數(shù)實(shí)驗(yàn)[J].青海大學(xué)學(xué)報(bào):自然科學(xué)版,2003,21(4):52-53.
[7]PUGH,LEWIS GRIFFITH CRESSWELL EVANS.Oxygen intake in track and treadmill running with observations on the effect of air resistance[J].The Journal of physiology,1970(3):823-835.
[8]陳南翼,張健.高速列車(chē)空氣阻力試驗(yàn)研究[J].鐵道學(xué)報(bào),1998(5):40-46.
[9]BARRIO-PEROTTI R,BLANCO-MARIGORTA A D K,FERNANDEZ-ORO J.Experimental evaluation of the drag coefficient of water rockets by a simple free-fall test[J].European Journal of Physics,2009,30(5):1039-1048.
[10]呂宗友,陳曉莉,王柏廬.水火箭的制作與發(fā)射[J].物理教學(xué)探討,2002,20(9):44-45.
[11]王健峰,張磊,陳國(guó)興,等.基于改進(jìn)的網(wǎng)格搜索法的SVM參數(shù)優(yōu)化[J].應(yīng)用科技,2012(3):28-31.
(責(zé)任編輯楊繼森)
DesignandSimulationofModularMultistageWaterrocket
HOUMu-lang
(BeijingNo.4MiddleSchool,Beijing100120,China)
Basedontheexistingcontainerdesignscheme,howtorealizemulti-stagewaterrocketwasanalyzed,andthebundledsecondarywaterrocketdesignideaswasresearched.Thefirststagewasconsistofthreepressurewatertankcomposition,andthesecondstageisapressurewatertank;thispaperfocusedontheanalysisoftherocketjetpropulsionphaseofthemathematicalandphysicalmodel,theinfluenceoftheairresistanceofthesystem,theoptimalwaterstorage,themultitankpressurebalanceandotherkeyissues.Atthesametime,usingthecomputerwecalculatedanddescribedthewholeflightprocessoftherocket,anditprovidespracticalideasformiddleschoolstudentstodevelopvariousstructuresofwaterrockets.
multistagewaterrocket;multitankpressurebalance;rocketseparation;optimalwaterquantity
2016-05-05;
2016-05-20
侯沐朗(1999—),男,主要從事航空航天技術(shù)研究。
10.11809/scbgxb2016.09.042
format:HOUMu-lang.DesignandSimulationofModularMultistageWaterrocket[J].JournalofOrdnanceEquipmentEngineering,2016(9):188-192.
V19
A
2096-2304(2016)09-0188-05
本文引用格式:侯沐朗.模塊化多級(jí)水火箭設(shè)計(jì)與模擬[J].兵器裝備工程學(xué)報(bào),2016(9):188-192.