王帥鋒,劉娜女,段曉磊,羅亦欣,范三紅,奚緒光
(西北農(nóng)林科技大學(xué) 生命科學(xué)學(xué)院,陜西 楊凌 712100)
?
熱脫硫弧菌解旋酶基因TyPif1的原核表達(dá)、純化及功能分析
王帥鋒,劉娜女,段曉磊,羅亦欣,范三紅,奚緒光
(西北農(nóng)林科技大學(xué) 生命科學(xué)學(xué)院,陜西 楊凌 712100)
【目的】 通過(guò)原核表達(dá)系統(tǒng)獲得熱脫硫弧菌(ThermodesulfovibrioyellowstoniiH.)Pif1解旋酶(TyPif1),研究TyPif1解旋酶的嗜熱特性和解旋機(jī)理?!痉椒ā?將Typif1解旋酶編碼區(qū)和SUMO促溶標(biāo)簽編碼區(qū)融合連入pET15b獲得重組表達(dá)載體pET15b-SUMO-TyPif1,將該重組載體導(dǎo)入大腸桿菌BL21(DE3)菌株誘導(dǎo)表達(dá),經(jīng)Ni-NTA柱親和純化獲得融合蛋白,SUMO蛋白酶切除標(biāo)簽,再經(jīng)Ni-NTA柱去除標(biāo)簽蛋白及SUMO蛋白酶,經(jīng)Heparin柱進(jìn)一步純化最終獲得TyPif1全長(zhǎng)蛋白。通過(guò)熒光各向異性、圓二色譜(CD)和熒光共振能量轉(zhuǎn)移(FRET)分析TyPif1解旋酶的DNA結(jié)合活性、解旋活性以及二級(jí)結(jié)構(gòu)的熱穩(wěn)定性?!窘Y(jié)果】 獲得了純度大于95%的TyPif1蛋白,1 L培養(yǎng)基可以獲得約10 mg純度大于95%的蛋白;TyPif1解旋酶結(jié)合單鏈DNA和G4 DNA的活性明顯高于雙鏈DNA;TyPif1具有較高的解旋G4 DNA的活性,在25~60 ℃下其二級(jí)結(jié)構(gòu)相對(duì)穩(wěn)定,且解旋速率隨溫度升高而增大,25~50 ℃TyPif1的解旋速率由0.09 s-1增大到0.23 s-1。【結(jié)論】 表達(dá)純化了熱脫硫弧菌TyPif1解旋酶,其不僅具有良好的熱穩(wěn)定性,同時(shí)具有特異的結(jié)合和解旋G4 DNA的能力。
熱脫硫弧菌;Pif1解旋酶;蛋白表達(dá)純化;DNA結(jié)合活性;DNA解旋活性
解旋酶是一類利用水解NTP釋放的能量沿著DNA磷酸骨架移動(dòng)的分子“馬達(dá)”,參與核酸復(fù)制、轉(zhuǎn)錄、重組與修復(fù)等過(guò)程,在生物體內(nèi)扮演著重要的角色[1-2]。其相關(guān)基因突變會(huì)導(dǎo)致遺傳病的發(fā)生,如Werner 綜合癥、Bloom 綜合癥等[3-4]。Pif1解旋酶是高度保守的5′→3′方向解旋酶,屬于解旋酶超家族Ⅰ的一個(gè)亞家族,廣泛存在于病毒、原核和真核生物中[5-6]。釀酒酵母(SaccharomycescerevisiaeH.)Pif1是第一個(gè)被發(fā)現(xiàn)的Pif1基因(ScPif1),其編碼蛋白ScPif1參與線粒體DNA的復(fù)制、重組[7-9];隨后的研究表明,ScPif1也參與了端粒長(zhǎng)度調(diào)控及核內(nèi)DNA的斷裂修復(fù)[10-12],說(shuō)明ScPif1同時(shí)參與了線粒體和核基因組穩(wěn)定性的維持。釀酒酵母中還存在另一種Pif1-like蛋白R(shí)rm3,其作為復(fù)制體的一部分,可以與聚合酶ε的催化亞基Pol2作用并在復(fù)制過(guò)程中隨著復(fù)制叉移動(dòng)[13];同時(shí),酵母雙雜交試驗(yàn)表明,Rrm3 N端保守的motif(模體)可以與PCNA(增殖細(xì)胞核抗原)相互作用[14-15]。裂殖酵母(SchizosaccharomycespombeH.)中只存在一個(gè)Pif1家族解旋酶基因Pfh1[5],該基因編碼兩種形式的Pfh1蛋白,一種定位于線粒體,一種定位于細(xì)胞核,缺失線粒體定位Pfh1會(huì)引起線粒體DNA丟失,并最終導(dǎo)致細(xì)胞死亡;缺失核定位異構(gòu)體會(huì)導(dǎo)致細(xì)胞停滯在G2期,并引起核DNA損傷位點(diǎn)的累積[16-17]。哺乳動(dòng)物中人類和小鼠基因組都只編碼單一的Pif1-like蛋白,序列比對(duì)發(fā)現(xiàn)人類和小鼠Pif1蛋白相似度高達(dá)84%,人類Pif1(hPif1)同其他Pif1-like蛋白相似,其作用靶點(diǎn)在細(xì)胞核和線粒體[18-19];而小鼠Pif1可以與端粒酶相互作用,但對(duì)端粒長(zhǎng)度沒(méi)有明顯影響[5]。
生化研究表明,Pif1解旋酶具有依賴ATP和Mg2+的5′→3′方向的解旋活性,ScPif1和hPif1均可以解旋DNA/DNA、DNA/RNA和G4 DNA底物,且ScPif1解旋DNA/RNA雜合底物的速度要快于DNA/DNA底物[12,20-21];近期研究發(fā)現(xiàn),ScPif1更偏好解開(kāi)G4 DNA結(jié)構(gòu),其解旋G4 DNA的速度高于雙鏈DNA,且G4 DNA的存在能夠激活對(duì)雙鏈DNA的解旋活力[22]。進(jìn)化分析發(fā)現(xiàn),原核生物中同樣存在Pif1家族解旋酶,它們也具有雙鏈DNA和G4 DNA解旋活力[23]。
獲取酶蛋白甚至蛋白/底物共結(jié)晶對(duì)于闡明特定酶的催化機(jī)理具有關(guān)鍵性作用,而嗜熱菌蛋白具有易表達(dá)純化、結(jié)構(gòu)穩(wěn)定、易結(jié)晶等優(yōu)點(diǎn),通常被用于大分子結(jié)構(gòu)解析,如已報(bào)道的DnaB、RecG和XPD等嗜熱菌蛋白[24-26]。本研究以一種熱脫硫弧菌(ThermodesulfovibrioyellowstoniiH.)(最適生長(zhǎng)溫度為65 ℃)Pif1基因TyPif1[27]為材料,利用蛋白原核表達(dá)系統(tǒng)獲得高純度TyPif1蛋白,并對(duì)其熱穩(wěn)定性、DNA結(jié)合活性和解螺旋活性進(jìn)行分析,以期拓展原核生物Pif1家族解旋酶活性研究,并為Pif1家族解旋酶結(jié)構(gòu)解析提供素材。
1.1材料
表達(dá)載體pET15b、克隆菌株E.coli2984、表達(dá)菌株E.coliBL21(DE3)均為本實(shí)驗(yàn)室保存;限制性內(nèi)切酶BamHⅠ、EcoRⅠ、XhoⅠ購(gòu)自NEB公司;T4 DNA連接酶、Prime STAR HS DNA polymerase購(gòu)自大連寶生物公司;PageRuler預(yù)染蛋白Ladder購(gòu)自Thermo Scientific公司;Ni-NTA Beads購(gòu)自QIAGEN公司;HiTrap Heparin HP 5 mL預(yù)裝柱購(gòu)自GE公司;其他試劑均為進(jìn)口或國(guó)產(chǎn)分析純。
1.2方法
1.2.1底物制備用于底物制備的熒光標(biāo)記和非標(biāo)記單鏈DNA由上海生工生物公司合成;制備雙鏈和帶有G4結(jié)構(gòu)的DNA底物時(shí),將對(duì)應(yīng)寡核苷酸溶于包含100 mmol/L KCl的Tris-HCl(50 mmol/L,pH 8.0)緩沖液中,100 ℃加熱5 min,然后緩慢冷卻至室溫。DNA底物的序列長(zhǎng)度見(jiàn)表1,其中前5種底物用于DNA結(jié)合活性測(cè)定,第6~8種底物用于DNA解旋活性測(cè)定。
表 1 試驗(yàn)所用的DNA底物信息Table 1 DNA oligonucleotides used in the study
注:F代表熒光素;H代表六氯熒光素。
Note:F represents fluorescein;HF represents hexachloro fluorescein.
1.2.2表達(dá)載體的構(gòu)建EcoRⅠ和XhoⅠ酶切pBMH-TyPif1質(zhì)粒(該質(zhì)粒中包含TyPif1解旋酶編碼序列,由BioMatik公司合成),獲得TyPif1基因編碼區(qū)序列;對(duì)編碼序列進(jìn)行PCR擴(kuò)增獲得SUMO編碼序列(本實(shí)驗(yàn)室保存),并用NdeⅠ和EcoRⅠ雙酶切,將獲得的2個(gè)基因片段與同樣經(jīng)NdeⅠ和XhoⅠ雙酶切的pET15b載體混合連接;經(jīng)菌落PCR、雙酶切檢測(cè)及測(cè)序確證后,最終獲得重組表達(dá)載體pET15b-SUMO-TyPif1。
1.2.3重組TyPif1解旋酶在大腸桿菌中的過(guò)量表達(dá)和純化將重組載體pET15b-SUMO-TyPif1轉(zhuǎn)化入大腸桿菌BL21(DE3)感受態(tài)細(xì)胞中,挑取單克隆活化,37 ℃擴(kuò)大培養(yǎng)至OD600為0.6~0.8時(shí)加入IPTG(終濃度0.2 mmol/L),28 ℃誘導(dǎo)培養(yǎng)6~8 h。離心收獲菌體并稱質(zhì)量,按照1∶5~1∶10的質(zhì)量體積比加入lysis Buffer(50 mmol/L Tris-HCl pH 8.0,300 mmol/L NaCl,體積分?jǐn)?shù)10% 甘油,10 mmol/L 咪唑),高壓破碎細(xì)胞,并進(jìn)一步超聲斷裂DNA,以降低溶液黏度,12 000 r/min離心20 min后用0.45 μm濾膜過(guò)濾,所得上清載入Ni-NTA親和柱,使用Elute Buffer(50 mmol/L Tris-HCl pH 8.0,300 mmol/L NaCl,體積分?jǐn)?shù)10% 甘油,300 mmol/L 咪唑)洗脫。按照1∶1 000物質(zhì)的量比加入SUMO蛋白酶,4 ℃過(guò)夜酶切,透析除去咪唑后再次載入Ni-NTA親和柱,收集穿出液;用無(wú)鹽緩沖液(50 mmol/L Tris-HCl pH 8.0,體積分?jǐn)?shù)10% 甘油)稀釋1倍,然后載入Heparin柱進(jìn)一步純化。收集目標(biāo)蛋白組分,使用30 ku的Millipore超濾管離心濃縮,分裝后液氮冷凍,-80 ℃保存?zhèn)溆谩7蛛x過(guò)程中使用10%SDS-PAGE電泳檢測(cè)各步驟獲得樣品的純度。
1.2.4TyPif1解旋酶的DNA結(jié)合活性測(cè)定用Infinite F200/M200型多功能酶標(biāo)儀(瑞士Tecan公司)測(cè)定TyPif1解旋酶的DNA結(jié)合活性,反應(yīng)體系150 μL,其中包含5 nmol/L熒光標(biāo)記DNA和TyPif1解旋酶, 37 ℃孵育5 min后測(cè)定每一個(gè)反應(yīng)體系的各向異性值。由于鹽濃度和pH對(duì)解旋酶與DNA結(jié)合活性的影響很大,因此首先以18nt ssDNA為參考測(cè)定TyPif1結(jié)合DNA的最適緩沖液組分(50 mmol/L Tris-HCl pH 8.5,50 mmol/L NaCl,2 mmol/L MgCl2,2 mmol/L DTT)。在此條件下分別測(cè)定5種底物(表1中1~5底物)的各向異性值,用米氏方程擬合試驗(yàn)結(jié)果,Binding size(結(jié)合步長(zhǎng))參考Dou等[28]的方法計(jì)算。
1.2.5TyPif1解旋酶的熱穩(wěn)定性分析使用Bio-Logic MOS450/AF-CD光學(xué)系統(tǒng)(法國(guó)Bio-Logic公司),檢測(cè)TyPif1在波長(zhǎng)190~260 nm下的圓二色光譜(CD)值,以在25 ℃生活的擬桿菌(Bacteroidesspp.)Pif1解旋酶(BsPif1)(本實(shí)驗(yàn)室制備,分子質(zhì)量50 ku)為對(duì)照。測(cè)定時(shí)將Pif1蛋白稀釋至0.5 mg/mL,注入厚度為1 mm的石英杯中,在不同溫度(25,30,37,45,50,55,60 ℃)下分別進(jìn)行樣品的CD測(cè)試,每個(gè)溫度處理預(yù)平衡3 min,檢測(cè)步長(zhǎng)1 nm,分辨率0.1 nm,掃描速度100 nm/min,每試驗(yàn)重復(fù)3次。使用公式:θmoral,λ=θλ×100/m×d處理數(shù)據(jù),其中,θλ為不同波長(zhǎng)下的CD吸收峰(mdeg),m為樣品的物質(zhì)的量(mol),d為石英杯的厚度(cm)[29]。
1.2.6TyPif1解旋酶的DNA解旋活性測(cè)定使用Bio-Logic SFM-400混合儀(法國(guó)Bio-Logic公司),利用熒光共振能量轉(zhuǎn)移(FRET)原理測(cè)定TyPif1解開(kāi)DNA螺旋的活性,以BsPif1為對(duì)照。DNA底物的2條鏈分別用熒光素和六氯熒光素標(biāo)記,激發(fā)波長(zhǎng)492 nm,檢測(cè)波長(zhǎng)525 nm。反應(yīng)體系緩沖液包含25 mmol/L Tris-HCl(pH 7.5)、10 mmol/L NaCl、5 mmol/L MgCl2、1 mmol/L ATP,解旋酶濃度為100 nmol/L,底物濃度為4 nmol/L。用14nt-38bp底物研究溫度對(duì)Pif1蛋白解旋活性的影響,溫度設(shè)置為25,30,37,45,50,55 ℃;50nt-16bp和26nt-3G4-17bp底物用于TyPif1的解旋底物偏好性測(cè)定,解旋試驗(yàn)數(shù)據(jù)處理參考Zhang等[30]的方法。
2.1TyPif1基因表達(dá)載體構(gòu)建及編碼蛋白的表達(dá)純化
構(gòu)建表達(dá)載體pET15b-SUMO-TyPif1的流程見(jiàn)圖1-A,該載體經(jīng)EcoRⅠ、XhoⅠ雙酶切檢測(cè)獲得預(yù)期條帶(圖1-B)。將重組質(zhì)粒導(dǎo)入大腸桿菌BL21(DE3)表達(dá)菌,28 ℃誘導(dǎo)表達(dá)后重組蛋白大部分以可溶形式存在(圖1-C泳道2)。上清經(jīng)過(guò)Ni-NTA親和柱純化、SUMO蛋白酶切并再次過(guò)Ni-NTA親和柱及Heparin柱,純化后再用10%SDS-PAGE電泳檢測(cè)(圖1-C)。最終在1 L 發(fā)酵LB培養(yǎng)基中獲得了約10 mg純度大于95%的蛋白。
圖 1pET15b-SUMO-TyPif1載體構(gòu)建(A)、雙酶切檢測(cè)(B)及TyPif1蛋白的表達(dá)純化(C)
(B)M.DS5000 DNA Marker,1.EcoRⅠ和XhoⅠ雙酶切的pET15b-SUMO-TyPif1載體;(C)M.蛋白Marker,1.不溶蛋白,2.可溶蛋白,3.Ni-NTA磁珠純化的重組蛋白,4.SUMO酶切的重組蛋白,5.再次被Ni-NTA磁珠純化的TyPif1蛋白,6.被Heparin柱純化的TyPif1蛋白,7.純化后的TyPif1蛋白
Fig.1Construction and double digestion of recombination vector(A),expression (B) and purification (C)of TyPif1 helicase analyzed by SDS-PAGE
(B)M.DS5000 DNA Marker,1.pET15b-SUMO-TyPif1 digested withEcoRⅠ andXhoⅠ;(C)M.Protein Marker,1.Insoluble protein induced by IPTG,2.Soluble protein induced by IPTG,3.Recombinant protein purified by Ni-NTA beads,4.Recombinant protein cleaved by SUMO protease,5.TyPif1 re-purified by Ni-NTA beads,6.TyPif1 purified by Heparin column,7.TyPif1 after final concentration
2.2TyPif1解旋酶的DNA結(jié)合活性
酶標(biāo)儀試驗(yàn)結(jié)果表明,TyPif1解旋酶結(jié)合單鏈、雙鏈以及G4螺旋DNA底物的活力具有差異性,依據(jù)米氏方程擬合,得到TyPif1結(jié)合24nt ssDNA、G4 DNA、24bp dsDNA的米氏常數(shù)Km依次為14.03±1.69,13.97±2.92,223.79±54.61,由Km值可知,解旋酶對(duì)不同底物的結(jié)合活性強(qiáng)弱依次為G4 DNA>24nt ssDNA?24bp dsDNA(圖2-A)。TyPif1解旋酶結(jié)合16、18、24 nt ssDNA的各向異性值經(jīng)過(guò)數(shù)據(jù)處理后結(jié)果如圖2-B所示。由圖2-B可見(jiàn),隨著DNA長(zhǎng)度的延長(zhǎng),結(jié)合相同總量的底物所需要的解旋酶增多,表明DNA底物越長(zhǎng)需要結(jié)合解旋酶的分子數(shù)量越多。數(shù)據(jù)處理后得到TyPif1結(jié)合單鏈DNA的化學(xué)計(jì)量數(shù)(N)與單鏈長(zhǎng)度的線性關(guān)系,當(dāng)化學(xué)計(jì)量數(shù)N=1時(shí),表明在底物上只結(jié)合1個(gè)解旋酶分子,根據(jù)線性關(guān)系得出底物長(zhǎng)度為11.27 nt,即Binding size=11.27 nt(圖2-C)。
圖 2TyPif1解旋酶的DNA結(jié)合活性
(A)TyPif1解旋酶結(jié)合單鏈DNA、雙鏈DNA和G4 DNA的比較;(B)TyPif1解旋酶結(jié)合不同單鏈DNA底物的比較;(C)單鏈DNA底物與化學(xué)計(jì)量數(shù)的線性關(guān)系
Fig.2DNA binding activity of TyPif1
(A)Comparison of binding to ssDNA,dsDNA and G4 DNA to TyPif1 helicase;(B)Comparison of TyPif1 helicase binding to different length ssDNA helicase;(C)The linear relationship of ssDNA substrate and number of stoichiometry
2.3TyPif1解旋酶的熱穩(wěn)定性
由圖3-A可知,TyPif1在216 nm處有一個(gè)強(qiáng)負(fù)峰,且隨著溫度升高其負(fù)峰強(qiáng)度逐漸減小,表明其二級(jí)結(jié)構(gòu)以β折疊為主,且隨溫度升高β折疊含量逐漸減少;但是TyPif1隨溫度改變呈現(xiàn)相似的CD曲線,說(shuō)明其二級(jí)結(jié)構(gòu)在25~60 ℃變化不大。而BsPif1的CD圖譜隨著溫度升高負(fù)峰強(qiáng)度減小且溫度高于45 ℃后出現(xiàn)峰遷移現(xiàn)象(圖3-B),由此可知BsPif1在溫度高于45 ℃后二級(jí)結(jié)構(gòu)發(fā)生劇烈變化。
圖 3不同溫度下TyPif1(A)和BsPif1(B)二級(jí)結(jié)構(gòu)的CD譜圖
Fig.3CD spectra of TyPif1(A) and BsPif1(B) at different temperatures
2.4TyPif1解旋酶的解旋活性
使用FRET方法檢測(cè)TyPif1解旋的DNA底物,結(jié)果如圖4所示。由圖4-A可知,嗜熱菌TyPif1的解旋速率低于BsPif1,然而溫度升高時(shí)TyPif1解旋DNA雙鏈的速率由25 ℃時(shí)的0.09 s-1增加到50 ℃時(shí)的0.23 s-1,而BsPif1的解旋速率則隨著溫度升高而降低,高于45 ℃解旋活性完全喪失。這表明溫度對(duì)TyPif1解旋酶具有激活作用,溫度升高有利于解旋反應(yīng)的進(jìn)行,這與該嗜熱細(xì)菌生活環(huán)境中的生長(zhǎng)和代謝規(guī)律相吻合。圖4-B反映了TyPif1解旋G4 DNA和雙鏈DNA的差異,數(shù)據(jù)經(jīng)雙指數(shù)擬合得到TyPif1解開(kāi)G4 DNA和雙鏈DNA的速率分別為0.546和0.301 s-1,表明TyPif1解旋G4 DNA的活力明顯高于雙鏈DNA。
圖 4 TyPif1酶在不同溫度(A)和DNA底物(B)下的解旋活性
本研究利用原核系統(tǒng)表達(dá)純化了一種熱脫硫弧菌Pif1解旋酶,利用優(yōu)化的純化方法可從1 L菌液中得到約10 mg純度大于95%的全長(zhǎng)TyPif1蛋白。試驗(yàn)測(cè)定了TyPif1解旋酶與不同DNA底物的結(jié)合活性,發(fā)現(xiàn)其結(jié)合G4 DNA和單鏈DNA的活性要高于雙鏈DNA,TyPif1對(duì)G4 DNA的高親和力是其特異性解旋G4 DNA的保證。Dou等[28]研究大腸桿菌RecQ解旋酶的DNA結(jié)合特性時(shí),得到大腸桿菌RecQ解旋酶的Binding size為8~12 nt。本研究通過(guò)對(duì)不同長(zhǎng)度單鏈DNA結(jié)合活性的測(cè)定,得出TyPif1結(jié)合DNA底物的Binding size為11.27 nt,但是由于使用單鏈較少,獲得的Binding size可能會(huì)有所偏差。
Paeschke等[23]研究表明,Pif1解旋酶解旋G4 DNA的活力是RecQ家族解旋酶的1 000倍,此外,通過(guò)對(duì)比不同的解旋底物發(fā)現(xiàn),RecQ家族解旋酶擅長(zhǎng)解旋Y-結(jié)構(gòu)底物,而Pif1家族擅長(zhǎng)解旋G4 DNA底物。最新研究表明,ScPif1解旋酶以單體形式發(fā)揮作用,同時(shí)研究還證明,G4結(jié)構(gòu)的存在能夠強(qiáng)烈激活ScPif1解旋酶的解旋雙鏈DNA底物活力[22]。本研究發(fā)現(xiàn),TyPif1解旋酶同樣能解旋雙鏈DNA和G4 DNA,且解旋G4 DNA的速率高于雙鏈DNA,表明其更偏好于解旋含有G4結(jié)構(gòu)的DNA底物,這與最近報(bào)道的ScPif1解旋酶的特性一致,然而ScPif1解旋酶解旋G4 DNA底物的速度高于TyPif1解旋酶[22-23]。
TyPif1解旋酶基因來(lái)自于一種生活在黃石湖熱水口的熱脫硫弧菌[27],本研究通過(guò)圓二色譜(CD)分析發(fā)現(xiàn),TyPif1解旋酶在25~60 ℃內(nèi)二級(jí)結(jié)構(gòu)穩(wěn)定,其DNA解螺旋活性隨著溫度升高而增大;而在25 ℃環(huán)境中生活的擬桿菌BsPif1解旋酶活力隨著溫度升高逐漸喪失。TyPif1的這一現(xiàn)象與其在生活環(huán)境中的生長(zhǎng)和代謝規(guī)律吻合,而有關(guān)真核生物Pif1解旋酶如ScPif1和hPif1卻無(wú)此報(bào)道。
Pif1解旋酶家族其他成員如hPif1、Rrm3、Pfh1不能獲得全長(zhǎng)蛋白[23],而TyPif1解旋酶具有該家族成員共有的DNA結(jié)合特性和解旋活性,同時(shí)具有良好的熱穩(wěn)定性。選擇熱脫硫弧菌Pif1解旋酶作為研究材料,一方面可拓展Pif1解旋酶的研究范圍,另一方面則是由于嗜熱菌蛋白相對(duì)容易結(jié)晶。本研究建立的表達(dá)純化體系為后續(xù)功能和結(jié)構(gòu)研究提供了一個(gè)理想的素材,為基于Pif1解旋酶的新藥開(kāi)發(fā)提供了理論依據(jù)。
[1]Matson S W,Bean D W,George J W.DNA helicases: enzymes with essential roles in all aspects of DNA metabolism [J].BioEssays:News and Reviews in Molecular,Cellular and Developmental Biology,1994,16(1):13-22.
[2]Wong I,Lohman T M.ATPase activity ofEscherichiacoliRep helicase crosslinked to single-stranded DNA: implications for ATP driven helicase translocation [J].Proceedings of the National Academy of Sciences of the United States of America,1996,93(19):10051-10056.
[3]Ellis N A,Groden J,Ye T Z,et al.The Bloom’s syndrome gene product is homologous to RecQ helicases [J].Cell,1995,83(4):655-666.
[4]Yu C E,Oshima J,Fu Y H,et al.Positional cloning of the Werner’s syndrome gene [J].Science,1996,272(5259):258-262.
[5]Bochman M L,Sabouri N, Zakian V A.Unwinding the functions of the Pif1 family helicases [J].DNA Repair,2010,9(3):237-249.
[6]Bessler J B,Torre J Z,Zakian V A.The Pif1p subfamily of helicases:region-specific DNA helicases? [J].Trends in Cell Biology,2001,11(2):60-65.
[7]Foury F,Kolodynski J.Pif mutation blocks recombination between mitochondrial rho+and rho-genomes having tandemly arrayed repeat units inSaccharomycescerevisiae[J].Proceedings of the National Academy of Sciences of the United States of America,1983,80(17):5345-5349.
[8]Lahaye A,Stahl H,Thines-Sempoux D,et al.PIF1:a DNA helicase in yeast mitochondria [J].The EMBO Journal,1991,10(4):997-1007.
[9]Foury F,Dyck E V.A PIF-dependent recombinogenic signal in the mitochondrial DNA of yeast [J].The EMBO Journal,1985,4(13A):3525-3530.
[10]Boule J B,Vega L R,Zakian V A.The yeast Pif1p helicase removes telomerase from telomeric DNA [J].Nature,2005,438(7064):57-61.
[11]Budd M E,Reis C C,Smith S,et al.Evidence suggesting that Pif1 helicase functions in DNA replication with the Dna2 helicase/nuclease and DNA polymerase delta [J].Molecular and Cellular Biology,2006,26(7):2490-2500.
[12]Boule J B,Zakian V A.The yeast Pif1p DNA helicase preferentially unwinds RNA DNA substrates [J].Nucleic Acids Research,2007,35(17):5809-5818.
[13]Azvolinsky A,Dunaway S,Torres J Z,et al.TheS.cerevisiaeRrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes [J].Genes & Development,2006,20(22):3104-3116.
[14]Bessler J B,Zakian V A.The amino terminus of theSaccharomycescerevisiaeDNA helicase Rrm3p modulates protein function altering replication and checkpoint activity [J].Genetics,2004,168(3):1205-1218.
[15]Schmidt K H,Derry K L,Kolodner R D.SaccharomycescerevisiaeRRM3,a 5′ to 3′ DNA helicase, physically interacts with proliferating cell nuclear antigen [J].The Journal of Biological Chemistry,2002,277(47):45331-45337.
[16]Zhou J Q,Qi H,Schulz V P,et al.Schizosaccharomyces pom-be pfh1+encodes an essential 5′ to 3′ DNA helicase that is a member of the PIF1 subfamily of DNA helicases [J].Molecular Biology of the Cell,2002,13(6):2180-2191.
[17]Pinter S F,Aubert S D,Zakian V A.TheSchizosaccharomycespombePfh1p DNA helicase is essential for the maintenance of nuclear and mitochondrial DNA [J].Molecular and Cellular Biology,2008,28(21):6594-6608.
[18]Mateyak M K,Zakian V A.Human PIF helicase is cell cycle regulated and associates with telomerase [J].Cell Cycle,2006,5(23):2796-2804.
[19]Futami K,Shimamoto A,Furuichi Y.Mitochondrial and nuclear localization of human Pif1 helicase [J].Biological & Pharmaceutical Bulletin,2007,30(9):1685-1692.
[20]Zhang D H,Zhou B,Huang Y,et al.The human Pif1 helicase,a potentialEscherichiacoliRecD homologue,inhibits telomerase activity [J].Nucleic Acids Research,2006,34(5):1393-1404.
[21]Gu Y,Masuda Y,Kamiya K.Biochemical analysis of human PI-F1 helicase and functions of its N-terminal domain [J].Nucleic Acids Research,2008,36(19):6295-6308.
[22]Duan X L,Liu N N,Yang Y T,et al.G-Quadruplexes significantly stimulate Pif1 helicase-catalyzed duplex DNA unwinding [J].Journal of Biological Chemistry,2015,290(12):7722-7735.
[23]Paeschke K,Bochman M L,Garcia P D,et al.Pif1 family helicases suppress genome instability at G-quadruplex motifs [J].Nature,2013,497(7450):458-462.
[24]Singleton M R,Scaife S,Raven N D,et al.Crystallization and preliminary X-ray analysis of RecG,a replication-fork reversal helicase fromThermotogamaritimacomplexed with a three-way DNA junction [J].Acta Crystallographica Section D:Biological Crystallography,2001,57(Pt 11):1695-1696.
[25]Bailey S,Eliason W K,Steitz T A.The crystal structure of theThermusaquaticusDnaB helicase monomer [J].Nucleic Acids Research,2007,35(14):4728-4736.
[26]Fan L,Fuss J O,Cheng Q J,et al.XPD helicase structures and activities:insights into the cancer and aging phenotypes from XPD mutations [J].Cell,2008,133(5):789-800.
[27]Henry E A,Devereux R,Maki J S,et al.Characterization of a new thermophilic sulfate-reducing bacteriumThermodesulfovibrioyellowstonii,gen.nov.and sp.nov.:its phylogenetic relationship toThermodesulfobacterium commune and their origins deep within the bacterial domain [J].Archives of Microbiology,1994,161(1):62-69.
[28]Dou S X,Wang P Y,Xu H Q,et al.The DNA binding properties of theEscherichiacoliRecQ helicase [J].The Journal of Biological Chemistry,2004,279(8):6354-6363.
[29]Kelly S M,Jess T J,Price N C.How to study proteins by circular dichroism [J].Biochimica et Biophysica Acta,2005,1751(2):119-139.
[30]Zhang X D,Dou S X,Xie P,et al.EscherichiacoliRecQ is a rapid,efficient,and monomeric helicase [J].The Journal of Biological Chemistry,2006,281(18):12655-12663.
Prokaryotic expression,purification and functional analysis ofThermodesulfovibrioyellowstoniiH.TyPif1
WANG Shuaifeng,LIU Nanü,DUAN Xiaolei,LUO Yixin,FAN Sanhong,XI Xuguang
(CollegeofLifeScience,NorthwestA&FUniversity,Yangling,Shaanxi712100,China)
【Objective】 This research used prokaryotic expression system to obtain Pif1 helicase fromThermodesulfovibrioyellowstoniiH.(TyPif1),and studied the mechanism of thermophilic characteristic and unwinding mechanism of TyPif1 helicase.【Method】 ThePif1 gene ofThermodesulfovibrioyellowstoniiH.(Typif1) and a SUMO protein folding tag gene were synthesized to pET15b to construct recombinant plasmid pET15b-SUMO-TyPif1.Then,the plasmid was transformed intoEscherichiacolihost strain BL21 (DE3),and the TyPif1 helicase was purified by two-step Ni-NTA affinity chromatography and one-step Heparin chromatography at 4 ℃ using FPLC.Fluorescence anisotropy,fluorescence resonance energy transfer (FRET) and circular dichroism spectrum (CD) were used to analyze the DNA binding and unwinding activity of TyPif1 as well as the stability of its secondary structure.【Result】 The full-length TyPif1 helicase with high purity of >95% was obtained.Its binding activity with ssDNA and G-quadruplex (G4) DNA was much higher than that of dsDNA.TyPif1 has high activity to unwound G4 DNA.The secondary structure was relatively stable under 25-60 ℃,and the unwinding rate increased from 0.09 s-1to 0.23 s-1with the increase of temperature from 25 to 50 ℃.【Conclusion】 TyPif1 helicase was expressed and purified.TyPif1 helicase not only had good thermal stability,but also had specific ability of binding and unwinding G4 DNA.
ThermodesulfovibrioyellowstoniiH.;Pif1 helicase;protein expression and purification;DNA binding activity;DNA unwinding activity
時(shí)間:2016-08-0909:41DOI:10.13207/j.cnki.jnwafu.2016.09.028
2015-03-06
國(guó)家自然科學(xué)基金項(xiàng)目(31370798,11304252)
王帥鋒(1989-),男,河南平頂山人,在讀碩士,主要從事生物大分子結(jié)構(gòu)與功能研究。E-mail:phoonwang@163.com
奚緒光(1958-),男,吉林公主嶺人,教授,博士,博士生導(dǎo)師,主要從事生物大分子結(jié)構(gòu)及功能研究。
E-mail:xxi01@ens-cachan.fr
Q781;Q814.1
A
1671-9387(2016)09-0207-07
網(wǎng)絡(luò)出版地址:http://www.cnki.net/kcms/detail/61.1390.S.20160809.0941.056.html