国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

松嫩鹽堿退化草地羊草葉氮、磷化學(xué)計量與土壤因子關(guān)系研究

2016-11-10 10:50:07梁正偉張衷華唐中華聶思銘趙冬梅
植物研究 2016年5期
關(guān)鍵詞:羊草草葉鹽堿

趙 龍 王 化 梁正偉 張衷華,* 唐中華 聶思銘 趙冬梅

(1.東北林業(yè)大學(xué)森林植物生態(tài)學(xué)教育部重點實驗室,哈爾濱 150040; 2.中國科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所,長春 130102; 3.黑龍江省科學(xué)院自然與生態(tài)研究所,哈爾濱 150040)

松嫩鹽堿退化草地羊草葉氮、磷化學(xué)計量與土壤因子關(guān)系研究

趙 龍1王 化3梁正偉2張衷華1,2*唐中華1聶思銘1趙冬梅1

(1.東北林業(yè)大學(xué)森林植物生態(tài)學(xué)教育部重點實驗室,哈爾濱 150040;2.中國科學(xué)院東北地理與農(nóng)業(yè)生態(tài)研究所,長春 130102;3.黑龍江省科學(xué)院自然與生態(tài)研究所,哈爾濱 150040)

頂級群落建群種的N、P化學(xué)計量特征對退化草地群落穩(wěn)定性和生產(chǎn)力維持具有重要意義。本文以松嫩草地頂級群落建群種羊草(Leymuschinensis)為研究對象,分析鹽堿退化對羊草N、P化學(xué)計量特征的影響。結(jié)果表明:松嫩鹽堿退化草地羊草相比較于中國北方草地羊草和草地植物具有較低的葉P含量(1.32 g·kg-1)、中等的葉N含量(18.90 g·kg-1)和略高的N/P(15.83)。葉N含量和N/P與土壤全氮、土壤堿解氮顯著正相關(guān);葉P含量與土壤全氮、土壤堿解氮顯著負相關(guān),其它因子與葉N、P和N/P相關(guān)性不明顯。葉P含量與土壤氮的顯著相關(guān)性和與土壤P含量的背離顯示松嫩鹽堿退化草地羊草可能存在一定的P限制。

鹽堿退化草地;羊草;化學(xué)計量;氮磷;土壤因子

氮(N)、磷(P)是植物的基本營養(yǎng)元素,但在大多數(shù)自然陸地生態(tài)系統(tǒng)中,N、P也是限制植物生長的重要決定性因子[1]。N、P施肥顯著提高單位面積生產(chǎn)力水平,過量N輸入也已經(jīng)引發(fā)生態(tài)危機,例如水體富養(yǎng)化[2],植物多樣性降低[3~4],溫室氣體排放等[5~6],低氮種植與管理成為我國科學(xué)研究的重要任務(wù)。松嫩草甸草原(E121°30′~127°00′,N43°30′~48°40′)是中國東北三大草原和全國十大重點牧區(qū)之一,成土母質(zhì)、水文條件和過度放牧等原因?qū)е滤赡鄄莸椴菰寥利}堿化日趨嚴重[7],鹽堿退化的主要影響之一是土壤有效營養(yǎng)的下降[8],高pH值和高鹽加劇氨態(tài)氮揮發(fā)[9~10]和硝態(tài)氮流失[11],同時高鹽堿環(huán)境降低有機物礦化速度、抑制菌根真菌活性,植物可利用P減少[12~13]。在我國整體N輸入過量的環(huán)境下,松嫩鹽堿化草地N、P現(xiàn)狀評估對草地生產(chǎn)力維持和農(nóng)牧業(yè)生產(chǎn)尤為重要。目前,不同研究者已經(jīng)從生態(tài)系統(tǒng)、群落和種群水平對松嫩鹽堿退化草地N、P限制進行研究[14~16],結(jié)果并不一致。考慮到羊草(Leymuschinensis)是松嫩草甸草原的優(yōu)勢種和頂級群落建群種,也是松嫩草甸草原最具經(jīng)濟價值的天然牧草,退化草地的恢復(fù)和生產(chǎn)力維持也應(yīng)以羊草群落的恢復(fù)和生產(chǎn)力提升為依據(jù)。所以在鹽堿條件下,羊草N、P限制水平與土壤因子的關(guān)系研究將為當前松嫩鹽堿化草甸草原保護和生態(tài)恢復(fù)的人工N、P行為提供指導(dǎo)。

本文以羊草為研究對象,具體分析羊草N、P計量特征與土壤因子的關(guān)系,以期揭示松嫩鹽堿化草地羊草N、P現(xiàn)狀及其與土壤因子的關(guān)系。

1 研究地區(qū)與研究方法

1.1 研究區(qū)概況

松嫩平原(E121°30′~127°00′,N43°30′~48°40′)位于大、小興安嶺與長白山脈及松遼水嶺之間,主要有松花江和嫩江沖積而成,面積約17.0×106ha,屬于中溫帶半濕潤半干旱季風(fēng)氣候區(qū),松嫩平原西部草甸草原是我國典型的蘇打鹽堿分布區(qū),本研究根據(jù)1961~2010年東北地區(qū)多年平均降水量的空間分布規(guī)律[17],在松嫩草地3個不同降水量區(qū)域設(shè)置調(diào)查樣地,具體為年均降水500~550 mm草地東部的黑龍江省肇東市向陽鄉(xiāng)(E125°22′~126°22′,N45°10′~46°20′)、年均降水450~500 mm草地中西部的黑龍江省大慶市讓胡路區(qū)水源路(E124°19′~125°12′,N46°46′~46°55′)和年均降水400~450 mm草地西南部的吉林省大安市大崗子鎮(zhèn)姜家甸子草場(E123°09′~124°22′,N44°57′~45°46′)。

1.2 調(diào)查方法

本研究于2014年8月在野外采集樣品,大致按照柵格采樣方法進行采樣,每個柵格內(nèi)選擇羊草單優(yōu)勢群落,即上層全部為羊草,無其他物種,設(shè)置0.5 m×0.5 m的樣方,柵格間距5 m,結(jié)合研究區(qū)實際情況確定50~70個采樣樣方,其中肇東樣地57個,大慶樣地50個,大安樣地62個,每個樣方均采集土壤樣品和植物樣品1份,最后形成169份土壤樣品和169份植物樣品(最終符合測定要求植物樣品143份),具體為用GPS對每個采樣點定位,在樣方對角線上用土壤環(huán)刀采集5~10 cm深度土層土壤樣品3個,均勻混合后作為該點的土壤樣品。地上部分測定平均高度后收割、裝袋。以上樣品帶回實驗室進行分析[18]。

1.3 指標測定

地上部分在120℃烘箱中殺青2 h,調(diào)節(jié)溫度到80℃,烘干至恒重,分離羊草葉片研磨成粉末,供葉N、P含量測定。土壤置于陰涼通風(fēng)處,風(fēng)干60 d,稱量質(zhì)量,計算土壤容重,土壤容重表示為單位體積土壤質(zhì)量,然后對剩余土壤進行研磨,過100目土壤篩,供土壤N、P含量和鹽堿指標測定。土壤pH值和電導(dǎo)率按照水土比5∶1(mL∶g)配制成雙蒸水溶液,采用pH計(PB-10,Sartorius,德國)和電導(dǎo)率儀(DDS-307,雷磁,中國)測定。土壤和葉片全氮采用半微量凱式定氮法測定,土壤堿解氮用堿解擴散法測定,土壤和葉片全磷采用NaOH熔融鉬銻比色法測定,土壤速效磷采用碳酸氫鈉提取,鉬銻抗比色法測定[19]。

1.4 數(shù)據(jù)分析

用SPSS 15.0統(tǒng)計分析軟件進行測定因子Pearson相關(guān)分析,并進行雙尾檢驗。

2 結(jié)果與分析

2.1研究區(qū)域羊草葉N、P含量,土壤鹽堿和土壤N、P含量水平

對3個研究區(qū)域羊草葉片N、P、N/P、土壤鹽分和土壤N、P營養(yǎng)特征進行測定(表1),研究區(qū)域葉N、葉P和葉N/P平均含量分別為19.90、1.32和15.83 g·kg-1。土壤pH值變化從6.93~10.17,平均值為9.30;土壤電導(dǎo)率變化從34.80~1 814.00 μs·cm-1,平均值為263.99 μs·cm-1,根據(jù)土壤pH和電導(dǎo)率數(shù)值范圍確定大部分樣點分布于土壤鹽堿化區(qū)域。土壤全氮、土壤堿解氮、土壤全磷、土壤速效磷平均值分別為1.93、116.50、0.34和8.12 mg·kg-1,變異系數(shù)分布在27.38%~45.81%,屬于中等程度變異。植物葉N、P含量變異系數(shù)分別為24.68和27.70,變異性明顯低于土壤。

表1研究區(qū)域羊草葉N、P含量,土壤鹽堿特征和土壤N、P含量

Table1CharacteristicsofNandPcontents,N∶PratioofL.chinensis,soilsalinityandsoilnutritioninresearcharea

植物或土壤特征Characteristicsofplantorsoil極小值Min極大值Max均值Mean標準差SD變異系數(shù)CV(%)葉氮含量LeafN(g·kg-1)12.04 34.0219.90 4.911724.68葉磷含量LeafP(g·kg-1)0.752.901.320.365627.70葉N:PLeafN:P5.5229.7915.835.001631.61土壤容重Bulkdensity(g·cm-3)0.671.801.300.213616.44土壤pH值pHvalue6.9310.179.300.57596.19土壤電導(dǎo)率Electricalconductivity(μs·cm-1)34.801814.00263.99270.0814102.31土壤全氮TotalN(g·kg-1)0.424.051.930.882445.81土壤堿解氮Alkaline?N(mg·kg-1)43.39287.38116.5048.419241.56土壤全磷TotalP(g·kg-1)0.120.650.340.122736.21土壤速效磷Available?P(mg·kg-1)3.3512.738.122.222727.38土壤全氮/土壤全磷TotalN/TotalP1.1822.406.664.618269.33土壤堿解氮/土壤速效磷Alkaline?N/Available?P5.5453.2715.287.713950.50

2.2研究區(qū)域羊草葉N、P含量和N/P與土壤因子相關(guān)性

對3個研究區(qū)域羊草葉N、P含量、N/P與土壤鹽堿特性和土壤N、P含量進行雙變量Pearson相關(guān)分析,結(jié)果表明,葉N、P含量與土壤全氮、土壤堿解氮顯著相關(guān)(表2);葉N/P與土壤全氮、土壤堿解氮極顯著相關(guān),與土壤堿解氮和土壤速效磷比率顯著相關(guān)。羊草葉N、P含量、N/P與土壤其它因子不存在顯著相關(guān)關(guān)系。

表2羊草葉N、P含量和N/P與土壤因子相關(guān)性分析

Table2Relationshipsbetweensoilfactorsandleafnitrogen,leafphosphorusonL.chinensisinSongnenPlain

土壤因子Soilfactors葉氮含量LeafN(g·kg-1)葉磷含量LeafP(g·kg-1)葉N/PLeafN/P土壤容重Bulkdensity(g·cm-3)R=0.117,P=0.158,n=147R=0.079,P=0.344,n=147R=0.045,P=0.591,n=147土壤pH值pHvalueR=-0.116,P=0.162,n=147R=0.068,P=0.410,n=147R=-0.150,P=0.069,n=147土壤電導(dǎo)率Electricalconductivity(μs·cm-1)R=-0.062,P=0.454,n=147R=-0.057,P=0.493,n=147R=-0.040,P=0.634,n=147土壤全氮TotalN(g·kg-1)R=0.165,P=0.046?,n=147R=-0.167,P=0.043?,n=147R=0.237,P=0.004??,n=147土壤堿解氮Alkaline?N(mg·kg-1)R=0.188,P=0.022?,n=147R=-0.201,P=0.015?,n=147R=0.315,P=0.000??,n=147土壤全磷TotalP(g·kg-1)R=0.083,P=0.317,n=147R=-0.1112,P=0.177,n=147R=0.137,P=0.097,n=147土壤速效磷Available?P(mg·kg-1)R=0.023,P=0.782,n=147R=-0.156,P=0.059,n=147R=0.105,P=0.207,n=147土壤全氮/土壤全磷TotalN/TotalPratioR=0.102,P=0.221,n=147R=-0.072,P=0.386,n=147R=0.113,P=0.174,n=147土壤堿解氮/土壤速效磷Alkaline?N/Available?PratioR=0.148,P=0.074,n=147R=-0.088,P=0.291,n=147R=0.210,P=0.011,n=147

注:*表示顯著相關(guān);**表示極顯著相關(guān)

Note:*and**indicate significant correlation at the 0.05 and 0.01 level.

3 討論

3.1 松嫩鹽堿化草地羊草葉N、P整體水平

羊草是歐亞大陸草原區(qū)東部草甸草原及干旱草原的重要建群種之一,在我國東北、西北和華北草原區(qū)廣泛分布[20]。本研究采樣地位于松嫩草甸草原區(qū),三個樣地按照自東南向西北的降水梯度設(shè)置,試圖整體反應(yīng)松嫩草甸草原羊草N、P狀態(tài),研究表明松嫩草甸草原羊草平均葉N、葉P和N/P分別為19.90、1.32和15.83 g·kg-1,變異系數(shù)分別為24.68%、27.70%和31.61%。其中葉N水平和變異系數(shù)與我國北方羊草研究結(jié)果相似;葉P水平略低于我國北方羊草研究的結(jié)果,并且存在較高的變異系數(shù);葉N/P比率略高于我國北方羊草研究的結(jié)果,且存在較高的變異系數(shù)(表3)。這與王月嬌等對吉林西部羊草N、P含量及其變異系數(shù)基本一致[21],表明雖然土壤鹽堿化可能導(dǎo)致土壤氮流失,但當前松嫩草甸羊草葉N水平并未受到顯著影響;葉P水平較低,變異系數(shù)較大,可能來自于土壤鹽堿化的影響。

表3 不同研究羊草葉片N、P化學(xué)計量特征

注:括號內(nèi)為變異系數(shù)。

Note:Coefficient of variation within the brackets.

表4 羊草氮磷計量與其它植物的比較

3.2 松嫩草地羊草葉氮、磷計量與其他植物比較

松嫩草地羊草葉片N、P含量在松嫩草地草本類群中處于較低水平(表4),在松嫩草地C3植物中也處于較低水平,但葉N/P明顯高于群落的整體水平;相比較于中國草地的平均水平,松嫩草地羊草葉片N、P水平明顯偏低,但N/P基本相當;松嫩草地羊草葉P含量明顯低于全球平均水平、N/P高于全球平均水平??傮w上松嫩平原羊草具有較低的P水平和較高的N/P。植物體內(nèi)的N/P被認為可用來判斷限制植物生長的限制元素類型[28],但對于不同的種,在群落水平上這種臨界值存在差異[29],N/P小于14為N限制,N/P大于16為P限制被認為適合于大多數(shù)的生態(tài)系統(tǒng)[28,30];在貧瘠的草原,N/P<10被認為N限制,而>14被認為P限制[31],松嫩草地羊草平均N/P為15.83,按照Koerselman[28]和Aerts[30]研究結(jié)論可能不存在氮磷限制,但本研究認為松嫩草地鹽堿退化嚴重(平均pH=9.30,電導(dǎo)率264 μs·cm-1),結(jié)合其較低的葉P(1.32 mg·g-1)和土壤磷水平(全磷含量0.339 g·kg-1),更適合貧瘠草原N、P限制的標準,判斷為存在明顯的P限制。

3.3松嫩鹽堿化草地羊草氮磷化學(xué)計量的影響因素

雖然生物體內(nèi)元素具有內(nèi)穩(wěn)定性,但是高等植物由于存在細胞壁和行貯藏功能的液泡等,以及分離的C固定和N、P吸收途徑,使高等植物體內(nèi)元素內(nèi)穩(wěn)定性更復(fù)雜[36]。植物N、P化學(xué)計量往往受到生物因素(如遺傳特性、生長階段、種群分類等)和非生物因素的綜合影響(如溫度、水分、土壤養(yǎng)分等)[1]。Güsewell認為土壤的N、P水平顯著影響植物的N、P水平和N/P[37],土壤N、P含量增加可增加組織內(nèi)N、P濃度,增加或降低N/P[38],本研究土壤全氮、土壤堿解氮與羊草葉N和N/P顯著相關(guān),符合以上結(jié)論。但松嫩鹽堿化草原也存在自身的特點,土壤全氮、土壤堿解氮與葉P呈顯著負相關(guān),而土壤全P和土壤速效P與葉P相關(guān)性不強,甚至有負相關(guān)的趨勢。一般植物在自然生態(tài)系統(tǒng)中,葉片中N與P含量都是顯著正相關(guān)[39],所以葉N的增加要求葉P相應(yīng)增加,而葉P增加導(dǎo)致土壤P含量繼續(xù)降低,導(dǎo)致土壤P含量和葉P含量背離,這說明松嫩草甸P可能是限制羊草生長的主要因素,這與丁凡等[15]和Li等[16]關(guān)于松嫩草甸羊草N、P限制研究結(jié)論一致,與群落研究結(jié)論不同[14]。

1.劉超,王洋,王楠,等.陸地生態(tài)系統(tǒng)植被氮磷化學(xué)計量研究進展[J].植物生態(tài)學(xué)報,2012,36(11):1205-1216.

Liu C,Wang Y,Wang N,et al.Advances research in plant nitrogen,phosphorus and their stoichiometry in terrestrial ecosystems:a review[J].Chinese Journal of Plant Ecology,2012,36(11):1205-1216.

2.Gao Y,Kennish M J,Flynn A M.Atmospheric nitrogen deposition to the New Jersey coastal waters and its implications[J].Ecological Applications,2007,17(S5):S31-S41.

3.Bobbink R,Hicks K,Galloway J,et al.Global assessment of nitrogen deposition effects on terrestrial plant diversity:a synthesis[J].Ecological Applications,2010,20(1):30-59.

4.Stevens C J,Dupre C,Dorland E,et al.Nitrogen deposition threatens species richness of grasslands across Europe[J].Environmental Pollution,2010,158(9):2940-2945.

5.Lund M,Christensen T R,Mastepanov M,et al.Effects of N and P fertilization on the greenhouse gas exchange in two northern peatlands with contrasting N deposition rates[J].Biogeosciences,2009,6(10):2135-2144.

6.Jiang C M,Yu G R,Fang H J,et al.Short-term effect of increasing nitrogen deposition on CO2,CH4and N2O fluxes in an alpine meadow on the Qinghai-Tibetan Plateau,China[J].Atmospheric Environment,2010,44(24):2920-2926.

7.周道瑋,李強,宋彥濤,等.松嫩平原羊草草地鹽堿化過程[J].應(yīng)用生態(tài)學(xué)報,2011,22(6):1423-1430.

Zhou D W,Li Q,Song Y T,et al.Salinization-alkalization ofLeymuschinensisgrassland in Songnen Plain of Northeast China[J].Chinese Journal of Applied Ecology,2011,22(6):1423-1430.

8.Lodhi A,Arshad M,Azam F,et al.Changes in mineral and mineralizable N of soil incubated at varying salinity,moisture and temperature regimes[J].Pakistan Journal of Botany,2009,41(2):967-980.

9.Rao D L N,Batra L.Ammonia volatilization from applied nitrogen in alkali soils[J].Plant and Soil,1983,70(2):219-228.

10.Li H,Hong M,Zhang D L,et al.Experimental study of ammonia volatilization from applied nitrogen in soda saline-alkali soil[J].Journal of Food,Agriculture & Environment,2013,11(3-4):1467-1472.

11.Hawkins B J,Robbins S.pH affects ammonium,nitrate and proton fluxes in the apical region of conifer and soybean roots[J].Physiologia Plantarum,2010,138(2):238-247.

12.Patil A V,Chavan P D.Influence of salt stress on phosphorus metabolism in the roots and leaves of one month oldProsopisjuliflora(Sw.) DC seedlings[J].Pharmacognosy Journal,2011,3(25):48-51.

13.Yang G W,Liu N,Lu W J,et al.The interaction between arbuscular mycorrhizal fungi and soil phosphorus availability influences plant community productivity and ecosystem stability[J].Journal of Ecology,2014,102(4):1072-1082.

14.宋彥濤,周道瑋,李強,等.松嫩草地80種草本植物葉片氮磷化學(xué)計量特征[J].植物生態(tài)學(xué)報,2012,36(3):222-230.

Song Y T,Zhou D W,Li Q,et al.Leaf nitrogen and phosphorus stoichiometry in 80 herbaceous plant species of Songnen grassland in Northeast China[J].Chinese Journal of Plant Ecology,2012,36(3):222-230.

15.丁凡,廉培勇,曾德慧.松嫩平原草甸三種植物葉片N、P化學(xué)計量特征及其與土壤N、P濃度的關(guān)系[J].生態(tài)學(xué)雜志,2011,30(1):77-81.

Ding F,Lian P Y,Zeng D H.Characteristics of plant leaf nitrogen and phosphorus stoichiometry in relation to soil nitrogen and phosphorus concentrations in Songnen Plain meadow[J].Chinese Journal of Ecology,2011,30(1):77-81.

16.Li Y F,Li Q Y,Guo D Y,et al.Ecological stoichiometry homeostasis ofLeymuschinensisin degraded grassland in western Jilin province,NE China[J].Ecological Engineering,2016,90:387-391.

17.勒春香,王秀茹,王希,等.黑龍江省近50年降水變化趨勢及空間分布特征[J].中國水土保持科學(xué),2015,13(1):76-83.

Jin C X,Wang X R,Wang X,et al.Variation trend and spatial distribution characteristics of precipitation in recent 50 years in Heilongjiang Province[J].Science of Soil and Water Conservation,2015,13(1):76-83.

18.李文,曹文俠,徐長林,等.不同休牧模式對高寒草甸草原土壤特征及地下生物量的影響[J].草地學(xué)報,2015,23(2):271-276.

Li W,Cao W X,Xu C L,et al.Ecological responses of belowground biomass and soil characteristics to different grazing rest modes in alpine meadow-steppe[J].Acta Agrestia Sinica,2015,23(2):271-276.

19.魏晨輝,沈光,裴忠雪,等.不同植物種植對松嫩平原鹽堿地土壤理化性質(zhì)與細根生長的影響[J].植物研究,2015,35(5):759-764.

Wei C H,Shen G,Pei Z X,et al.Effects of different plants cultivation on soil physical-chemical properties and fine root growth in saline-alkaline soil in Songnen Plain,Northeastern China[J].Bulletin of Botanical Research,2015,35(5):759-764.

20.He N P,Yu Q,WU L,et al.Carbon and nitrogen store and storage potential as affected by land-use in aLeymuschinensisgrassland of northern China[J].Soil Biology and Biochemistry,2008,40(12):2952-2959.

21.王月嬌,李月芬,梁碩,等.吉林西部羊草磷含量與土壤磷含量的關(guān)系研究[J/OL].吉林農(nóng)業(yè)大學(xué)學(xué)報,2016(3):http://www.cnki.net/kcms/detail/22.1100.S.20160413.0904.002.html.

Wang Y J,Li Y F,Liang S,et al.Relationship between soil and plant phosphorus concentration ofLeymuschinensisin Western of Jilin[J/OL].Journal of Jilin Agricultural University,2016(3):http://www.cnki.net/kcms/detail/22.1100.S.20160413.0904.002.html.

22.Lü X T,Freschet G T,Kazakou E,et al.Contrasting responses in leaf nutrient-use strategies of two dominant grass species along a 30-yr temperate steppe grazing exclusion chronosequence[J].Plant and Soil,2015,387(1-2):69-79.

23.Bai Y F,Wu J G,Clark C M,et al.Grazing alters ecosystem functioning and C:N:P stoichiometry of grasslands along a regional precipitation gradient[J].Journal of Applied Ecology,2012,49(6):1204-1215.

24.Zhang H Y,Wu H H,Yu Q,et al.Sampling date,leaf age and root size:implications for the study of plant C:N:P stoichiometry[J].PLoS One,2013,8(4):e60360.

25.Lü X T,Reed S,Yu Q,et al.Convergent responses of nitrogen and phosphorus resorption to nitrogen inputs in a semiarid grassland[J].Global Change Biology,2013,19(9):2775-2784.

26.Huang J Y,Yu H L,Li L H,et al.Water supply changes N and P conservation in a perennial grassLeymuschinensis[J].Journal of Integrative Plant Biology,2009,51(11):1050-1056.

27.劉文亭,衛(wèi)智軍,呂世杰,等.中國草原生態(tài)化學(xué)計量學(xué)研究進展[J].草地學(xué)報,2015,23(5):914-926.

Liu W T,Wei Z J,Lü S J,et al.Research advances in stoichiometry of grassland in China[J].Acta Agrestia Sinica,2015,23(5):914-926.

28.Koerselman W,Meuleman A F M.The vegetation N:P ratio:a new tool to detect the nature of nutrient limitation[J].Journal of Applied Ecology,1996,33(6):1441-1450.

29.張麗霞,白永飛,韓興國.內(nèi)蒙古典型草原生態(tài)系統(tǒng)中N素添加對羊草和黃囊苔草N:P化學(xué)計量學(xué)特征的影響[J].植物學(xué)報,2004,46(3):259-270.

Zhang L X,Bai Y F,Han X G.Differential responses of N:P stoichiometry ofLeymuschinensisandCarexkorshinskyito N additions in a steppe ecosystem in Nei Mongol[J].Acta Botanica Sinica,2004,46(3):259-270.

30.Aerts R,Chapin F S III.The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns[J].Advances in Ecological Research,1999,30:1-67.

31.Braakhekke W G,Hooftman D A P.The resource balance hypothesis of plant species diversity in grassland[J].Journal of Vegetation Science,1999,10(2):187-200.

32.Han W X,Fang J Y,Guo D L,et al.Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China[J].New Phytologist,2005,168(2):377-385.

33.任書杰,于貴瑞,陶波,等.中國東部南北樣帶654種植物葉片氮和磷的化學(xué)計量學(xué)特征研究[J].環(huán)境科學(xué),2007,28(12):2665-2673.

Ren S J,Yu G R,Tao B,et al.Leaf nitrogen and phosphorus stoichiometry across 654 terrestrial plant species in NSTEC[J].Environmental Science,2007,28(12):2665-2673.

34.Reich P B,Oleksyn J.Global patterns of plant leaf N and P in relation to temperature and latitude[J].Proceedings of the National Academy of Sciences of the United States of America,2004,101(30):11001-11006.

35.Elser J J,Fagan W F,Denno R F,et al.Nutritional constraints in terrestrial and freshwater food webs[J].Nature,2000,408(6812):578-580.

36.曾冬萍,蔣利玲,曾從盛,等.生態(tài)化學(xué)計量學(xué)特征及其應(yīng)用研究進展[J].生態(tài)學(xué)報,2013,33(18):5484-5492.

Zeng D P,Jiang L L,Zeng C S,et al.Reviews on the ecological stoichiometry characteristics and its applications[J].Acta Ecologica Sinica,2013,33(18):5484-5492.

37.Güsewell S.High nitrogen:phosphorus ratios reduce nutrient retention and second-year growth of wetland sedges[J].New Phytologist,2005,166(2):537-550.

38.Perring M P,Hedin L O,Levin S A,et al.Increased plant growth from nitrogen addition should conserve phosphorus in terrestrial ecosystems[J].Proceedings of the National Academy of Sciences of the United States of America,2008,105(6):1971-1976.

39.Güsewel S.N:P ratios in terrestrial plants:variation and functional significance[J].New Phytologist,2004,164(2):243-266.

This study was fully supported by the National Natural Science Foundation of China(No.41271522);The Fundamental Research Funds for the Central Universities(No.2572015CA05)

introduction:ZHAO Long(1991—),male,mainly engaged in the research of physiological ecology about sale stress.

date:2016-03-08

LeafNandPStoichiometryofLeymuschinensisinRelationtoSoilPropertiesinSaline-alkaliDegradedGrassland

ZHAO Long1WANG Hua3LIANG Zheng-Wei2ZHANG Zhong-Hua1,2*TANG Zhong-Hua1NIE Si-Ming1ZHAO Dong-Mei1

(1.Key Laboratory of Forest Plant Ecology,Northeast Forestry University,Harbin 150040;2.Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Changchun 130102;3.Institute of Natural Resources and Ecology,Heilongjiang Academy of Sciences,Harbin 150040)

N and P stoichiometry of constructive species of a climax community has an important influence on the stability and productivity of community. We choseLeymuschinensis, the constructive species of Songnen grassland community to study the effects of grassland degradation on N and P stoichiometry ofL.chinensisunder saline-alkali stress. There were lower leaf P content(1.32 g·kg-1), medium leaf N content(18.90 g·kg-1) and slightly higher N/P(15.83) in degradedL.chinensisgrassland compared with theL.chinensisgrassland in the north of China. Leaf N and N/P were significantly positively correlated with soil total nitrogen and soil alkaline hydrolysis nitrogen. Leaf P was significantly negatively correlated with soil total nitrogen and soil alkaline hydrolysis nitrogen, but other factors were not significantly correlated with N, P and N/P. Both the significant correlations between leaf P content and soil N content and departure from leaf P content and soil P content common displayed that there might be a limitation of P in Songnen Plain at the saline alkali degradation ofL.chinensisgrassland.

saline-alkali degraded grassland;Leymuschinensis;stoichiometry;N and P;soil factors

國家自然科學(xué)基金(41271522);中央高校基本科研業(yè)務(wù)費專項資金資助(2572015CA05)

趙龍(1991—),男,碩士研究生,主要從事植物抗逆生理生態(tài)學(xué)研究。

* 通信作者:E-mail:en_cn@126.com

2016-03-08

* Corresponding author:E-mail:en_cn@126.com

Q142.3

A

10.7525/j.issn.1673-5102.2016.05.019

猜你喜歡
羊草草葉鹽堿
鹽堿荒灘的“底色之變”
金橋(2021年11期)2021-11-20 06:37:14
羊草混播披堿草的好處及栽培技術(shù)
羊草的應(yīng)用及種植技術(shù)
鹽堿地區(qū)南美白對蝦、青蝦混養(yǎng)技術(shù)
九月,我為草葉寫下倨傲與傷痛的詩句(組章)
鴨綠江(2021年35期)2021-04-19 12:24:04
一片陽光躺在草葉上
草葉
民族音樂(2019年2期)2019-12-10 13:14:55
草葉旗
大灰狼(2019年9期)2019-10-20 09:24:04
鹽堿脅迫對三種西藏牧草種子萌發(fā)及幼苗影響
西藏科技(2016年8期)2016-09-26 09:00:55
北方羊草的特點及其在肉羊養(yǎng)殖中的應(yīng)用
大邑县| 和顺县| 永吉县| 白城市| 广平县| 安乡县| 偃师市| 博乐市| 万载县| 惠安县| 临夏市| 敦化市| 保山市| 沧源| 磐石市| 龙南县| 乐清市| 松原市| 宁海县| 砀山县| 屏东县| 峡江县| 霍州市| 冕宁县| 新田县| 双鸭山市| 漳平市| 邢台市| 扶绥县| 武川县| 南漳县| 子长县| 德化县| 岑巩县| 旅游| 土默特左旗| 西充县| 玉屏| 阳原县| 黄浦区| 望奎县|