陳麗燕,雷廷武?,啜瑞媛
(1.中國農(nóng)業(yè)大學(xué),水利與土木工程學(xué)院,100083,北京;2.天津市龍網(wǎng)科技發(fā)展有限公司,300181,天津)
坡面薄層水流優(yōu)勢流速研究
陳麗燕1,雷廷武1?,啜瑞媛2
(1.中國農(nóng)業(yè)大學(xué),水利與土木工程學(xué)院,100083,北京;2.天津市龍網(wǎng)科技發(fā)展有限公司,300181,天津)
降雨形成的徑流是產(chǎn)生坡面土壤侵蝕的主要動力來源,徑流流速是土壤侵蝕模型的重要參數(shù)之一。為研究電解質(zhì)示蹤法測量坡面水流流速過程中電解質(zhì)優(yōu)勢流速和水流流速的關(guān)系,本研究利用實驗水槽,在坡度4°、8°、12°,流量12、24、48 L/min條件下,于距離電解質(zhì)注入位置0.3、0.6、0.9、1.2、1.5m處放置探針測量電解質(zhì)傳遞過程,計算不同工況下各測量斷面的電解質(zhì)優(yōu)勢流速。結(jié)果表明:流量對電解質(zhì)優(yōu)勢流速的影響大于坡度對其影響,電解質(zhì)優(yōu)勢流速隨距離增加而增大,采用指數(shù)函數(shù)擬合計算得到的電解質(zhì)優(yōu)勢流速隨距離的變化過程,得到穩(wěn)定的電解質(zhì)優(yōu)勢流速,即水流優(yōu)勢流速,其范圍在0.241~0.568m/s之間。隨坡度和流量的增大,水流優(yōu)勢流速均增大。流量對水流優(yōu)勢流速增長的影響大于坡度對其的影響。不同坡度和流量條件下,水流優(yōu)勢流速與平均流速基本一致,二者的比值為1.007,水流優(yōu)勢流速與最大流速的比值為0.774,平均流速與最大流速的比值為0.776,符合坡面薄層水流的流態(tài)。結(jié)果可為研究坡面薄層水流動力過程提供新的計算方法和參考數(shù)據(jù)。
薄層水流;電解質(zhì)示蹤法;流量法;優(yōu)勢流速;平均流速
降雨形成的坡面水流是地表土壤侵蝕的主要動力之一,地表徑流的水力學(xué)特性是研究土壤侵蝕過程物理模型的基礎(chǔ)[1]。坡面水流不同于明渠水流,其水深極淺,一般為幾厘米甚至幾毫米,稱為薄層水流。薄層水流運動受降雨及地表下墊面狀況影響較大,如降雨強度、降雨歷時、土壤種類或質(zhì)地、前期水分條件、植被密度和類型、坡度、坡長[2]和土壤表面石塊的密度以及埋沒深度[3]等。坡面薄層水流流速是土壤侵蝕模型中的重要參數(shù)之一,是計算其他水力學(xué)要素如佛羅德數(shù)、雷諾數(shù)等的重要參數(shù)。
薄層水流的流態(tài)不同于明渠水流,因此其流速的計算方法也不能沿用明渠水流的計算方法。目前用于測量薄層水流流速的便攜式儀器比較少,一些儀器如聲學(xué)多普勒測速儀(ADV)[4]、粒子圖像測速儀[5]、熱膜流速計[6-7]、光電或電導(dǎo)傳感器[8-10]等,由于價格昂貴、日常維護費用高等各種條件限制不能廣泛應(yīng)用。流量法只適用于斷面規(guī)則的水流,如實驗室人工模擬水槽中的水流流速。常用的方法主要是示蹤法,示蹤劑通常為染色劑(一般為KMnO4溶液)或電解質(zhì)(如NaCl或KCl)[11-12],示蹤粒子通常為聚苯乙烯泡沫粒子等。染色劑示蹤法測量誤差較大,因此提出電解質(zhì)示蹤法。其基本原理是通過儀器測量水流斷面的電導(dǎo)率,來確定水流中電解質(zhì)到達(dá)被測斷面所需要的時間,從而計算水流流速,避免染色劑示蹤法目測帶來的人為操作誤差。受泥沙含量以及水流流態(tài)的影響,由最大流速計算平均流速的校正系數(shù)一直不能準(zhǔn)確確定[13-15]。
在測得的電導(dǎo)率曲線中,由于水流的導(dǎo)電性以及水流的紊動,判斷電解質(zhì)溶液最早到達(dá)測點的時間有難度,而測量電導(dǎo)率達(dá)到最大值的時間比較容易確定;因此室內(nèi)實驗更多采用測量得到的電導(dǎo)率計算水流的優(yōu)勢流速[16-17]。目前對于經(jīng)驗系數(shù)α的研究較多[18-21],不同水流流態(tài)α值不同。國內(nèi)一般認(rèn)為水流為層流α=0.67,混合水流或過度流α=0.7,紊流α=0.8[22]。理論上水流速度增大使校正系數(shù)增大,但在夏衛(wèi)生等的實驗中測量得到不同泥沙含量下水流速度對校正系數(shù)的影響并不顯著[23-24]。
本研究采用電解質(zhì)示蹤法測量電解質(zhì)隨薄層水流運動不同測量斷面電導(dǎo)率隨時間的變化過程,計算不同位置的電解質(zhì)優(yōu)勢流速,用指數(shù)函數(shù)擬合不同工況下電解質(zhì)優(yōu)勢流速隨距離的變化得到穩(wěn)定的電解質(zhì)優(yōu)勢流速,即水流的優(yōu)勢流速。采用流量法計算坡面薄層水流的平均流速,采用漂浮物法計算水流最大流速,并分析三種流速之間的相關(guān)關(guān)系。
1.1 坡面薄層水流溶質(zhì)遷移模型
在較短距離內(nèi),忽略土壤入滲作用和降雨產(chǎn)生的影響,可假定水流流速變化不大[25-26],根據(jù)菲克定律和質(zhì)量守恒定律,當(dāng)上邊界條件假設(shè)為脈沖函數(shù)時,描述溶質(zhì)在一維穩(wěn)態(tài)流中的對流彌散方程的解析解即為電解質(zhì)在水流中的遷移過程[23]。
1.2 優(yōu)勢流速、最大流速以及平均流速的計算方法
1.2.1 電解質(zhì)示蹤法 采用薄層水流流速測量儀測量不同工況下水槽中各斷面的電導(dǎo)率隨時間變化,根據(jù)測量斷面電導(dǎo)率變化對應(yīng)的時間計算該斷面的流速。測量斷面電導(dǎo)率隨時間變化如圖1所示。
圖1 測量斷面電導(dǎo)率隨時間的變化Fig.1 Measured electronic conductivity as a function of time
圖1中,電解質(zhì)脈沖從加入水流到運動至測量斷面所用的時間為電解質(zhì)以最大流速傳遞通過給定距離所用的時間Te,測量斷面電解質(zhì)濃度達(dá)到最大值所用的時間為Tp,電解質(zhì)質(zhì)心到達(dá)測量斷面所用的時間為Tc。由此可以分別根據(jù)相應(yīng)的距離計算得到電解質(zhì)的最大流速,優(yōu)勢流速和質(zhì)心運動速度,其中質(zhì)心運動速度經(jīng)公式推導(dǎo)得出與平均流速相等。
本實驗中最大流速同時采用漂浮物法測量,平均流速采用流量法測量。電解質(zhì)優(yōu)勢流速的計算公式如下:
式中:up為電解質(zhì)優(yōu)勢流速,m/s;Lp為電解質(zhì)脈沖注入點到測量斷面的距離,m;Tp為從電解質(zhì)脈沖注入水流到測量斷面電導(dǎo)率達(dá)到峰值所用的時間,s。
1.2.2 最大流速的計算
試驗采用漂浮物法測量水流的最大流速。漂浮物法是將可視性及跟隨性較好的粒子加入到流動的水體中,讓它跟隨流體流動,從而測定流體流動情況。示蹤物有液體、懸浮物、漂浮物或沉淀物[27],本試驗選擇直徑5 mm的泡沫粒子作為示蹤物,試驗中將若干粒子同時快速加入水流中,記錄泡沫粒子從第2組探針到最后一組探針的時間,從而計算得到水流的最大流速ue。計算公式為
式中:ue為最大流速,m/s;Le為第2組探針到最后一組探針的距離,m;Te為泡沫粒子從第2組探針運動到最后一組探針的時間,s。
1.2.3 平均流速的計算
土壤侵蝕研究中的水流流速通常用流量法標(biāo)定[27]。
對于規(guī)則河床內(nèi)水流,流量適當(dāng)時,可采用流量法測量計算水流流速,測量原理簡單,計算公式為
由于水流深度在厘米甚至毫米級,并且極其不均勻,水流深度的測量會產(chǎn)生一定誤差。在實際坡面徑流測量中,斷面形狀的不規(guī)則也會影響最終結(jié)果的準(zhǔn)確性。
試驗主要由薄層水流流速測量系統(tǒng)和水槽組成,薄層水流流速測量系統(tǒng)主要由電解質(zhì)脈沖發(fā)生器、感應(yīng)探針、數(shù)據(jù)采集管理器、操作控制計算機系統(tǒng)組成[28],如圖2所示。
試驗采用有機玻璃制作的長4 m,寬14.7 cm,高50 cm的水槽,底部粘接粒砂紙,模擬土壤下墊面。水槽前端設(shè)有水流注入系統(tǒng),模擬徑流。依據(jù)馬氏瓶原理設(shè)計而成的恒壓水箱控制水槽上方來水流量,流量通過板閥控制。
在水槽前端固定電解質(zhì)脈沖發(fā)生器,在距離脈沖發(fā)生器下游0.3、0.6、0.9、1.2、1.5m處各固定一組探針,將電解質(zhì)脈沖發(fā)生器和探針分別與數(shù)據(jù)采集管理器的相應(yīng)端口連接。
試驗坡度為4°、8°、12°,流量設(shè)置為12、24、48 L/min,試驗重復(fù)3次。
3.1 電解質(zhì)優(yōu)勢流速
在給定的坡度和設(shè)定的流量條件下,利用電解質(zhì)示蹤法測量得到水流流經(jīng)各斷面的電導(dǎo)率隨時間變化數(shù)據(jù),根據(jù)式(1)計算得到各測量斷面的電解質(zhì)優(yōu)勢流速,同時采用流量法測量并計算水流的平均流速,如表1所示。
圖2 薄層水流流速測量系統(tǒng)示意圖Fig.2 Schematic diagram for themeasurement system of shallow water flow velocity
表1 平均流速和各斷面的電解質(zhì)優(yōu)勢流速Tab.1 Mean velocity and electrolyte peak velocity at different section m/s
為研究坡度、流量和距離對電解質(zhì)優(yōu)勢流速的影響,作圖如圖3??梢钥闯?,不同坡度和流量條件下,隨著坡度、流量的增大,電解質(zhì)的優(yōu)勢流速增大,流量對流速的影響較流速更為明顯,流速隨距離呈增大趨勢,增大程度逐漸減小,最終趨于穩(wěn)定,即與水流流速相同。
3.2 穩(wěn)定電解質(zhì)優(yōu)勢流速及水流優(yōu)勢流速
董月群等[28]建議的流速隨距離變化的模型計算公式為
式中:u為計算得到的電解質(zhì)優(yōu)勢流速,m/s;v為達(dá)到穩(wěn)定的電解質(zhì)優(yōu)勢流速,即水流優(yōu)勢流速,m/s;x為探針距離電解質(zhì)脈沖發(fā)生器的距離,m;β為測量流速隨距離增加的速度,1/m。
根據(jù)公式(4)將計算得到的各斷面水流中電解質(zhì)的優(yōu)勢流速利用Grapher進行擬合,各工況下擬合結(jié)果如圖4所示。
不同工況下,電解質(zhì)的優(yōu)勢流速隨距離增大而增大,變化規(guī)律符合指數(shù)函數(shù),擬合系數(shù)均大于0.9,擬合效果較好。
電解質(zhì)注入水流后并不能立刻與水流流速相同,而是存在一個呈指數(shù)函數(shù)的加速過程,最終達(dá)到穩(wěn)定后與水流流速相同,因此擬合得到的穩(wěn)定電解質(zhì)優(yōu)勢流速即可作為水流優(yōu)勢流速。
3.3 坡度和流量對水流優(yōu)勢流速變化的影響
各工況下的水流優(yōu)勢流速以及坡度和流量對水流優(yōu)勢流速的影響見表2。
不同工況下,水流優(yōu)勢流速隨流量、坡度的增大而增大,變化范圍在0.241~0.568 m/s之間。坡度固定時,流量從12 L/min增大到24 L/min時,水流優(yōu)勢流速的增大程度較流量從24 L/min增大到48 L/min時大,最大可達(dá)54.2%;但隨著坡度增大,流量從12 L/min增大到24 L/min時增大程度遞減,從54.2%減小到29.4%,流量從24 L/min到48 L/min時增大程度遞增,從16.2%增大到30%。流量固定時,坡度從4°增加到8°時水流優(yōu)勢流速增大較明顯,在16.2~29.2%之間,坡度從8°增加到12°時,水流優(yōu)勢流速的增大程度明顯減小,在2.3%~3.6%之間。流量對水流優(yōu)勢流速的影響在16.4%~54.2%之間,坡度對優(yōu)勢流速的影響在2.3%~29.4%之間;因此流量對水流流速的影響大于坡度的影響。
圖3 不同試驗條件下各測量斷面的電解質(zhì)優(yōu)勢流速Fig.3 Electrolyte peak velocities at different distance under different experimental conditions
表2 流量和坡度對水流優(yōu)勢流速的影響Tab.2 The impact of flow rate and slope on flow peak velocities
3.4 優(yōu)勢流速與平均流速的關(guān)系
將擬合得到的水流優(yōu)勢流速與流量法測量得到的平均流速進行比較,通過常數(shù)項為零的線性擬合,結(jié)果如圖5所示??梢钥闯?,優(yōu)勢流速與平均流速的比值為1.007,近似相等;因此,在理論上可用此方法計算的優(yōu)勢流速作為水流的平均流速。
3.5 優(yōu)勢流速與最大流速的關(guān)系
將流量法測量得到的平均流速與漂浮物法測量得到的最大流速進行常數(shù)項為零的線性擬合,結(jié)果如圖6所示??梢钥闯觯骄魉贋樽畲罅魉俚?.774倍,平均流速與最大流速的比值即為校正系數(shù)α=0.774,介于前面提到的過度流和紊流的校正系數(shù)區(qū)間范圍內(nèi),與坡面薄層水流的流態(tài)相吻合。
圖4 不同坡度與流量條件下擬合電解質(zhì)優(yōu)勢流速Fig.4 Fitting electrolyte peak velocities under different slopes and different flow rates
圖5 優(yōu)勢流速與平均流速的關(guān)系Fig.5 Relationship between peak velocities and mean velocities
圖6 平均流速與最大流速的關(guān)系Fig.6 Relationship between mean velocities and leading edge velocities
將水流優(yōu)勢流速與漂浮物法測量得到的最大流速,進行常數(shù)項為零的線性擬合,結(jié)果如圖7所示??梢钥闯觯鞯膬?yōu)勢流速與最大流速的比值為0.776,與平均流速和最大流速的比值0.774相近;因此水流優(yōu)勢流速在實際上可代替平均流速計算校正系數(shù)α。電解質(zhì)示蹤法計算水流優(yōu)勢流速可用于不規(guī)則斷面的水流平均流速測量,并減小了測量斷面面積和水深過程中產(chǎn)生的人為誤差,在理論上優(yōu)于流量法。
圖7 優(yōu)勢流速與最大流速的關(guān)系Fig.7 Relationship between peak velocities and leading edge velocities
電解質(zhì)示蹤法測量得到的電解質(zhì)的優(yōu)勢流速隨距離的增加而增大,最終達(dá)到穩(wěn)定后與水流流速相同,隨距離變化規(guī)律符合指數(shù)函數(shù),采用Grapher進行擬合,得到穩(wěn)定的電解質(zhì)優(yōu)勢流速,即水流優(yōu)勢流速。各工況下水流優(yōu)勢流速變化范圍在0.241~0.568m/s之間,流量對水流優(yōu)勢流速的影響較坡度對其的影響更為明顯。優(yōu)勢流速與平均流速的比值為1.007,在理論上可用優(yōu)勢流速代替平均流速,優(yōu)勢流速與最大流速的比值為0.776,與平均流速與最大流速的比值0.774相近,符合坡面薄層水流的流態(tài)特征。試驗區(qū)分了電解質(zhì)優(yōu)勢流速和水流優(yōu)勢流速,分析了電解質(zhì)注入水流之后隨水流的運動過程,結(jié)果可為研究坡面薄層水流動力過程提供新的計算方法和數(shù)據(jù),為土壤侵蝕研究提供參考。
[1] 啜瑞媛,雷廷武,史曉楠,等.測量坡面薄層水流流速的電解質(zhì)示蹤真實邊界條件法與系統(tǒng)[J].農(nóng)業(yè)工程學(xué)報,2012,28(2):77. Chuo Ruiyuan,Lei Tingwu,Shi Xiaonan,et al.Method and system for measuring hill-slope water flow velocity with realistic boundary condition ofelectrolyte tracer[J]. Transactions of the Chinese Society of Agricultural Engineering,2012,28(2):77.(in Chinese)
[2] 張永東,吳淑芳,馮浩,等.土壤侵蝕過程中坡面流水力學(xué)特性及侵蝕動力研究[J].土壤,2013,45(1):26. Zhang Yongdong,Wu Shufang,F(xiàn)eng Hao,et al.Review on hydraulic characteristics and erosion dynamics of overland flow in soil erosion process[J].Soils,2013,45(1):26.(in Chinese)
[3] 陳麗燕,雷廷武,董月群,等.不同示蹤法測量礫石層中水流流速研究[J].農(nóng)業(yè)機械學(xué)報,2015,46(4):141. Chen Liyan,Lei Tingwu,Dong Yuequn,et al.Estimating velocity of water flow within gravel layer by different tracer methods[J].Transactions of the Chinese Society for Agricultural Machinery,2015,46(4):141.(in Chinese)
[4] Gimenez R,Planchon O,Silvera N,et al.Longitudinal velocity patterns and bed morphology interaction in a rill[J].Earth Surface Process and Landforms,2004,29(1):105.
[5] Hyun B S,Balachandar R,Yu K,et al.Assessment of PIV to measure mean velocity and turbulence in openchannel flow[J].Experiments in Fluids,2003,35(3):262.
[6] Robinson K M,Cook K R.Stress measurement upstream of an overfall[J].Transactions of the American Society of Agricultural Engineers,1998,41(4):1019.
[7] 李永祥,苑明順,李春華.熱膜技術(shù)在水流測速中的應(yīng)用研究[J].流體力學(xué)實驗與測量,1997,11(4):45. Li Yongxiang,Yuan Mingshun,Li Chunhua.Hot film technique in the application of flow velocity measurement[J].Experiments and Measurements in Fluid Mechanics,1997,11(4):45.(in Chinese)
[8] 劉鵬,李小昱,王為,等.基于相關(guān)法的坡面徑流流速測量系統(tǒng)[J].農(nóng)業(yè)工程學(xué)報,2008,24(3):48. Liu Peng,Li Xiaoyu,Wang Wei,et al.Runoff flow velocity measurement system based on correlation method[J].Transactions of the Chinese Society of Agricultural Engineering,2008,24(3):48.(in Chinese)
[9] 劉鵬,李小昱,王為.基于光電傳感器和示蹤法的徑流流速測量系統(tǒng)的研究[J].農(nóng)業(yè)工程學(xué)報,2007,23(5):116. Liu Peng,Li Xiaoyu,Wang Wei.Runoff flow velocity measurement system using photoelectric sensor and tracing method[J].Transactions of the Chinese Society of Agricultural Engineering,2007,23(5):116.(in Chinese)
[10]王為,李小昱,張軍,等.基于電導(dǎo)式傳感器徑流流速測量系統(tǒng)的試驗研究[J].農(nóng)業(yè)工程學(xué)報,2007,23(2):1. WangWei,Li Xiaoyu,Zhang Jun,et al.Experimental study on measurement system of runoff velocity based on conductance sensor[J].Transactions of the Chinese Society of Agricultural Engineering,2007,23(2):1.(inChinese)
[11]Luk S H,Merz W.Use of the salt tracing technique to determine the velocity ofoverland flow[J].Soil Technology,1992,5(4):289.
[12]高素娟,王占禮,黃明斌,等.黃河中游多沙粗沙區(qū)坡面薄層水流水動力學(xué)特性[J].水土保持通報,2010,30(4):11. Gao Sujuan,Wang Zhanli,Huang Mingbin,et al.Hydraulic Properties of shallow flow in coarse sediment region of Yellow River middle reaches[J].Bulletin of Soil and Water Conservation,2010,30(4):11.(in Chinese)
[13]Dunkerley D L.Estimating the mean speed of laminar overland flow using injection uncertainty on rough surface[J].Earth Surface Process Landforms,2001,26(4):363.
[14]Oliver P,Norbert S,Raphael G,et al.An automated salt tracing gauge for flow velocity measurement[J].Earth Surface Process Landforms,2005,30(7):833.
[15]Myers TG.Modelling laminar sheet flow over rough surfaces[J].Water Resource Research,2002,38(11):1230.
[16]Elder JW.The dispersion of marked fluid in turbulent shear flow[J].Journal of Fluid Mechanics,1959(5):544.
[17]Gilley R E,Kottwitz ER,Simanton JR.Hydraulic characteristic of rill[J].Transactions of the American Society of Agriculture Engineering,1970,33:1900.
[18]Luk SH,Merz W.Use of the salt tracing technique to determine the velocity ofoverland flow[J].Soil Technology,1992,5:289.
[19]Horton R E,Leach H R,Vilet V R.Laminar sheet flow[J].Eos Transactions American Geophysical Union,1934,15(2):393.
[20]Taylor G.The dispersion of matter in turbulent flow through a pipe[J].Proceedings of the Royal Society A,1954,223(1155):446.
[21]Phelps H O.Shallow laminar flows over rough granular surfaces[J].Journal of the Hydraulics Division,1975,101:367.
[22]Abrahams A D,Parsons A J,Luk SH.Field measurement of the velocity of overland flow using dye tracing[J]. Earth Surface Processes and Landforms,1986,11(6):653.
[23]夏衛(wèi)生,劉春平,雷廷武,等.示蹤法測量坡面水流速度理論缺陷分析[J].自然災(zāi)害學(xué)報,2007,16(1):50. XiaWeisheng,Liu Chunping,Lei Tingwu,et al.Analysis of faults in theory for measuring flow velocity on slope with tracer method[J].Journal of Natural Disasters,2007,16(1):50.(in Chinese)
[24]夏衛(wèi)生,雷廷武,趙軍.泥沙含量對鹽液示蹤法經(jīng)驗系數(shù)影響的研究[J].農(nóng)業(yè)工程學(xué)報,2003(4):97. XiaWeisheng,Lei Tingwu,Zhao Jun.Research of empirical coefficient of salt tracer method affected by sediment[J].Transactions of the Chinese Society of Agricultural Engineering,2003(4):97.(in Chinese)
[25]Lei Tingwu,Xia Weisheng,Zhao Jun.Method for measuring velocity of shallow water flow for soil erosion with an electrolyte tracer[J].Journal of Hydrology,2005,301(1/2/3/4):139.
[26]夏衛(wèi)生,雷廷武,趙軍,等.薄層水流流速測量系統(tǒng)的研究[J].水科學(xué)進展,2003,14(6):781. Xia Weisheng,Lei Tingwu,Zhao Jun,et al.Velocity measuring system for sheet flow[J].Advances in Water Science,2003,14(6):781.(in Chinese)
[27]禹明忠,詹秀玲,龐東明,等.流場實時測量中示蹤球性能的研究[J].水利水電技術(shù),2002,33(2):43. Yu Mingzhong,Zhan Xiuling,Pang Dongming,et al. Research on the properties of particles in real-time velocity field measurement[J].Water Resources and Hydropower Engineering,2002,33(2):43.(in Chinese)
[28]董月群,莊曉輝,雷廷武,等.脈沖邊界模型測量凍土坡面徑流流速與距離優(yōu)選[J].農(nóng)業(yè)機械學(xué)報,2015,46(2):146. Dong Yuequn,Zhuang Xiaohui,Lei Tingwu,et al.Optimum measurement distance of water flow velocity over frozen slopes with pulse boundary model method[J]. Transactions of the Chinese Society for Agricultural Machinery,2015,46(2):146.(in Chinese)
Studies on peak velocity of shallow water flow on slopes
Chen Liyan1,Lei Tingwu1,Chuo Ruiyuan2
(1.College of Water Resources and Civil Engineering,China Agricultural University,100083,Beijing,China;2.Tianjin Lon win Technology,300181,Tianjin,China)
[Background]Rainfall runoff is the major dynamic source for hill-slope erosion,runoff velocity is one of the important parameters in soil erosion model.The accurate measurement of shallow water flow velocity is critical in hydrological process.Lei et al.proposed an electrolyte pulse method for measuring the velocity by fitting the solute transport process with time using the least square method and improved the system with a Normal Model and a Sine Model.This laboratory experiments were conducted to determine the relationship between electrolyte peak velocity and water flow peak velocity during the electrolyte transport process and verify the new computational method.[Methods]The experimental devices include a flume,4m long and 15 cm wide,a solute injector,a data logger for control and data acquisition and a computer with specially designed software for data measurement and storage.The experiments involved three flow rates(12,24 and 48 L/min)and three slope gradients(4°,8°and 12°).Five sensors were used to measure the electrolyte transport processes at 0.3 m,0.6 m,0.9 m,1.2m,and 1.5m from the location where the salt solute was injected into the water flow.During each experiment,five complete curves of electrolyte changes with time were recorded,which can be used tocalculate electrolyte peak velocity with the distance from the injection to the measuring sensor and the time used for the peak of the electrolyte to travel through the distance.The leading edge velocities were measured by floating objects method and mean velocities by volumetric method.[Results]The electrolyte peak velocity was between 0.15 to 0.54 m/s,increased with distance and tended to stable,and the flow rates caused greater effect on electrolyte peak velocity than slope gradient under different conditions.The steady electrolyte peak velocity,regarded as the water flow peak velocity,were computed through fitting the electrolyte peak velocity at different distances from the salt solution injector with exponential function,ranging from 0.241 to 0.568 m/s.The exponential function fitted the electrolyte peak velocities very well for all the experimental conditions.The flow rate had greater effect on flow peak velocity growth rate than that of slope gradient.The water flow peak velocity were 1.007 times of mean velocity,0.774 times of leading edge velocity,and mean velocity was 0.776 times of leading edge velocity.[Conclusions]The flow peak velocity agreed well with leading edge velocity and mean velocity.These demonstrated that the new computational method for measuring shallow water flow velocity was reasonable and valid.The results provide a new method for computing the mean velocity of sheet flow and relevant data for the dynamic process of sheet flow,which will be useful for the investigation of soil erosion.
shallow water flow;electrolyte tracer method;flow method;peak velocity;mean velocity
S157.9
A
1672-3007(2016)05-0130-08
10.16843/j.sswc.2016.05.017
2015- 10- 28
2016- 09- 21
項目名稱:國家自然科學(xué)基金重點項目“高海拔寒區(qū)融水土壤侵蝕機理與過程模擬研究”(41230746)
陳麗燕(1980—),女,博士研究生。主要研究方向:土壤侵蝕。E-mail:cly508@163.com
?通信作者簡介:雷廷武(1958—),男,博士,博士生導(dǎo)師。主要研究方向:土壤侵蝕與旱地農(nóng)業(yè)。E-mail:leitingwu@cau.edu. cn