陳恒大,鄔曉光,姚絲思,郭飛,2
(1.長(zhǎng)安大學(xué) 橋梁與隧道陜西省重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710064;2.浙江省交通規(guī)劃設(shè)計(jì)研究院,浙江 杭州 310000)
?
考慮主塔剛度影響的三塔斜拉橋振動(dòng)基頻實(shí)用公式
陳恒大1,鄔曉光1,姚絲思1,郭飛1,2
(1.長(zhǎng)安大學(xué) 橋梁與隧道陜西省重點(diǎn)實(shí)驗(yàn)室,陜西 西安 710064;2.浙江省交通規(guī)劃設(shè)計(jì)研究院,浙江 杭州 310000)
為方便計(jì)算多塔斜拉橋的豎向自振頻率,基于最簡(jiǎn)單的多塔斜拉橋形式——三塔斜拉橋,考慮主塔剛度對(duì)振動(dòng)頻率的影響,應(yīng)用Rayleigh法,給出主梁豎向自由振動(dòng)的振型函數(shù)和主塔縱向自由振動(dòng)的振型函數(shù),并推導(dǎo)出考慮主塔剛度影響的三塔斜拉橋豎彎振動(dòng)頻率公式,且對(duì)其精確性進(jìn)行多個(gè)算例驗(yàn)證。研究結(jié)果表明:主塔剛度對(duì)于三塔斜拉橋豎彎剛度影響較大,頻率計(jì)算時(shí)應(yīng)予以考慮,給出的能量法得到的縱飄基頻計(jì)算值與有限元值誤差比規(guī)范解與有限元值誤差小,該公式能滿足概念設(shè)計(jì)階段的要求,適用于三塔斜拉橋的振動(dòng)基頻估算。
橋梁工程 ;三塔斜拉橋;主塔剛度;基頻;實(shí)用公式
隨著橋梁結(jié)構(gòu)形式的多樣化,三塔斜拉橋應(yīng)運(yùn)而生,相比傳統(tǒng)獨(dú)塔或雙塔斜拉橋,三塔斜拉橋的中間塔兩側(cè)既沒(méi)有輔助墩和過(guò)渡墩,又沒(méi)有端錨索,缺少了對(duì)主梁和索塔剛度的有效幫助,使已經(jīng)是柔性結(jié)構(gòu)的斜拉橋柔性更大[1-4]。因此,對(duì)獨(dú)塔或雙塔斜拉橋在概念設(shè)計(jì)階段的動(dòng)力特性估算由于忽略了主塔剛度的影響而不適用于三塔斜拉橋?!豆窐蛄嚎癸L(fēng)設(shè)計(jì)規(guī)范》中的雙塔斜拉橋的基頻估算公式是以雙塔漂浮體系為基礎(chǔ),找出影響斜拉橋的振動(dòng)特性的主要設(shè)計(jì)參數(shù),根據(jù)現(xiàn)有斜拉橋振動(dòng)特性資料進(jìn)行回歸分析或者曲線擬合,由于統(tǒng)計(jì)樣本在數(shù)量及規(guī)格上的不足,大跨度、超大跨度斜拉橋估算頻率值與真實(shí)頻率值存在較大差異[5-8];李國(guó)豪等
當(dāng)系統(tǒng)進(jìn)行固有振動(dòng)時(shí),如果不考慮阻尼力消耗能量,其動(dòng)能和勢(shì)能會(huì)反復(fù)交換,對(duì)于保守系統(tǒng),其結(jié)構(gòu)總能量是守恒的??芍?,頻率ωb的近似公式為
(1)
式中:ωb為與此對(duì)應(yīng)的頻率;ωbb為不考慮主塔剛度時(shí)頻率;EI(x)為彎曲剛度;m(x)為質(zhì)量分布值;φ(x)為滿足橋梁位移邊界條件的近似振型函數(shù)。
為方便表述,對(duì)下文中的符號(hào)作如下說(shuō)明:EGIG和ETIT為加勁梁、主塔的抗彎剛度;η,ξ和ηci為加勁梁、主塔及拉索的振型函數(shù);mG,mT和mci為加勁梁、主塔及拉索的線均布質(zhì)量;Eci和Aci為拉索的彈性模量及截面面積;αci和Lci為拉索的水平傾角及長(zhǎng)度。
目前,大跨度斜拉橋多采用自錨式漂浮體系,塔墩固結(jié)、塔梁分離,塔墩上設(shè)置豎向支承(半漂浮)或者不設(shè)置豎向支承(全漂浮)。作基本假定如下:
1)斜拉橋視為平面結(jié)構(gòu),結(jié)構(gòu)變形符合線彈性的假定,適用疊加原理;
2)斜拉索視為一根直桿,不考慮彈性模量的修正;
3)不考慮主梁、主塔的Ρ-Δ效應(yīng);
4)不考慮斜拉橋各部件受力后幾何尺寸的改變所引起的結(jié)構(gòu)內(nèi)力重分配。
1.1結(jié)構(gòu)體系的勢(shì)能
斜拉體系在鉛垂平面內(nèi)發(fā)生1階豎向振動(dòng)時(shí),其勢(shì)能為加勁梁、主塔(中間主塔及邊塔)和拉索勢(shì)能之和。
加勁梁的勢(shì)能為
(2)
主塔的勢(shì)能為
(3)
圖1 拉索與主梁的變形協(xié)調(diào)Fig.1 Deformation compatibility of cable and main girder
(4)
由于整體結(jié)構(gòu)的體系的振動(dòng),使得拉索的傾角發(fā)生變化,索力也發(fā)生變化,索力的垂直分量的變化量為ΔFv?ΔF·cosα·dα,
則拉索二次勢(shì)能為
(5)
于是,整個(gè)斜拉體系的勢(shì)能為:
(6)
1.2結(jié)構(gòu)體系的動(dòng)能
斜拉體系在鉛垂平面內(nèi)發(fā)生1階豎向振動(dòng)時(shí),其動(dòng)能為加勁梁、斜拉索和主塔動(dòng)能之和。
加勁梁的動(dòng)能為
(7)
斜拉索的動(dòng)能為
(8)
主塔的動(dòng)能為
(9)
則整個(gè)斜拉體系的動(dòng)能為
(10)
1.3斜拉體系的豎彎基頻
將式(6)、式(10)代入式(1),可得到斜拉體系的豎向振動(dòng)頻率的計(jì)算公式為:
(11)
李國(guó)豪在文獻(xiàn)[9]中指出,斜拉體系的面內(nèi)彎曲振動(dòng)的勢(shì)能主要是由拉索的勢(shì)能和主塔的勢(shì)能,加勁梁勢(shì)能及拉索的二次變形能是次要的,可以忽略不計(jì)。結(jié)構(gòu)動(dòng)能中,主梁和主塔的動(dòng)能是主要的;拉索的動(dòng)能可以忽略,亦不考慮系統(tǒng)阻尼對(duì)結(jié)構(gòu)振動(dòng)特性的影響。于是,該結(jié)構(gòu)的豎彎頻率理論近似公式:
(12)
由式(12)可知,基頻ωb僅與結(jié)構(gòu)的計(jì)算參數(shù)ET,Eci,Aci,IT,mG,mT和振型函數(shù)η(x,t),ξ(z,t)有關(guān),與斜拉索截面形式無(wú)關(guān)。求解三塔斜拉橋的振動(dòng)基頻,獲得其基本振型函數(shù)η(x,t)和ξ(z,t)是前提。
而不考慮主塔剛度影響的結(jié)構(gòu)豎彎頻率理論近似公式為:
(13)
由式(13)可知,當(dāng)不考慮主塔剛度影響時(shí),基頻ωbb僅與結(jié)構(gòu)的計(jì)算參數(shù)Eci,Aci,MG和振型函數(shù)η(x,t)有關(guān),與其他因素?zé)o關(guān)。
根據(jù)文獻(xiàn)[9]及三塔斜拉橋的結(jié)構(gòu)特點(diǎn),可得到其1階反對(duì)稱和正對(duì)稱的豎彎振型,如圖2~3所示。
圖2 1階反對(duì)稱豎彎振型Fig.2 Mode shape of 1st asymmetric vertical vibration
圖3 1階正對(duì)稱豎彎振型Fig.3 Mode shape of 1st symmetric vertical vibration
根據(jù)圖2~3所顯示的三塔斜拉橋1階反對(duì)稱和正對(duì)稱豎彎振動(dòng)變形圖可知,其主梁振型函數(shù)η(x,t)與四跨連續(xù)梁豎向自由振動(dòng)的振型函數(shù)η(x,t)類似。由于拉索和加勁梁滿足變形協(xié)調(diào)條件,故只需確定滿足邊界條件的加勁梁的振型函數(shù)η(x,t)即可。而主塔振型函數(shù)ξ(z,t)與側(cè)向受均布荷載作用下的懸臂塔的振型函數(shù)ξ(z,t)相似,由此只要找到能滿足主梁豎向自由振動(dòng)的振型函數(shù)η(x,t)和主塔縱向自由振動(dòng)的振型函數(shù)ξ(z,t),即可通過(guò)微積分運(yùn)算求出三塔斜拉橋的1階豎彎振動(dòng)頻率ωb,具體推導(dǎo)如下文。
加勁梁1階反對(duì)稱的振型關(guān)于中間支座反對(duì)稱,如圖4所示。
圖4 加勁梁1階反對(duì)稱豎彎振型Fig.4 Mode shape of stiffening girder 1st asymmetric vertical vibration
主梁滿足1階反對(duì)稱豎彎自由振動(dòng),設(shè)其滿足邊界條件的加勁梁振型函數(shù)為
(14)
(15)
(16)
(17)
由于加勁梁振型曲線在各橋塔處是連續(xù)的,即滿足變形協(xié)調(diào)條件,可得
(18)
(19)
(20)
主塔滿足1階反對(duì)稱豎彎自由振動(dòng),設(shè)其滿足邊界條件的主塔振型函數(shù)為
(21)
文獻(xiàn)[11]中指出,結(jié)構(gòu)豎彎平面內(nèi)自由振動(dòng)過(guò)程中,主塔塔頂順橋向偏位為
Δh1=0.001 2l1,Δh2=0.001 2l2且Δh3=Δh1
(22)
(23)
將式(19)~(20)和式(22)~(23)代入式(12)可得:
(24)
不考慮主塔剛度時(shí),同理可得:
(25)
加勁梁1階正對(duì)稱的振型關(guān)于中間支座對(duì)稱,如圖5所示。
圖5 加勁梁1階正對(duì)稱豎彎振型Fig.5 Mode shape of stiffening girder 1st symmetric vertical vibration
主梁滿足1階正對(duì)稱豎彎自由振動(dòng),設(shè)其滿足邊界條件的加勁梁振型函數(shù)為
(26)
(27)
(28)
(29)
由于加勁梁振型曲線在各橋塔處是連續(xù)的,即滿足變形協(xié)調(diào)條件,可得
經(jīng)簡(jiǎn)化可得
(30)
于是,可得:
(31)
(32)
主塔滿足1階反對(duì)稱豎彎自由振動(dòng),設(shè)其滿足邊界條件的主塔振型函數(shù)為
(33)
文獻(xiàn)[11]中指出,結(jié)構(gòu)豎彎平面內(nèi)自由振動(dòng)過(guò)程中,主塔塔頂順橋向偏位為
Δh1=0.001 2l1,Δh2=0.001 2l2且Δh3=Δh1
(34)
(35)
將式(31)~(32)和式(34)~(35)代入式(12)可得:
(36)
不考慮主塔剛度時(shí),同理可得:
(37)
為驗(yàn)證文中解與有限元解的計(jì)算精度,選取4座三塔斜拉橋?qū)ι鲜龉郊右则?yàn)證,其中算例1,2和3均無(wú)輔助墩,算例4有輔助墩,實(shí)橋結(jié)構(gòu)計(jì)算參數(shù)如表1所示。
詳細(xì)計(jì)算結(jié)果如表2所示。
表1 實(shí)橋結(jié)構(gòu)計(jì)算參數(shù)Table 1 Structural parameters of real bridge
表2 實(shí)橋1階豎彎基頻頻率對(duì)比Table 2 First fundamental frequency of comparison vertical vibration
注:誤差1是文中解2與有限元解之間的誤差;誤差2是規(guī)范解與有限元解之間的誤差;誤差3是文中解4與文中解2之間的誤差
根據(jù)表1~2計(jì)算的數(shù)據(jù)分析可知,本文推導(dǎo)的考慮主塔剛度影響的三塔斜拉橋豎彎基頻能量表達(dá)式與有限元數(shù)值結(jié)果誤差1最大為5.71%,未考慮主塔剛度影響的公式解與有限元值誤差會(huì)更大一些,而規(guī)范解與有限元解之間的誤差2最大為13.79%,誤差大小皆能滿足概念設(shè)計(jì)階段的要求;考慮了主塔剛度影響的頻率公式計(jì)算值與不考慮主塔剛度影響的公式計(jì)算值相比精確度提高2%~5%,因此,在計(jì)算三塔斜拉橋豎彎基頻時(shí)需考慮主塔剛度影響。1階反對(duì)稱的估算值與有限元值之間的誤差比1階正對(duì)稱的估算值與有限元值之間的誤差相對(duì)要大,原因在于其振型函數(shù)更趨近于簡(jiǎn)支固端梁的振型函數(shù);本文推導(dǎo)的縱飄豎彎基頻能量表達(dá)式僅適用于塔梁固結(jié)、墩支承的三塔斜拉橋的豎彎頻率估算,不適用于其他斜拉體系的豎彎頻率估算。
1)推導(dǎo)了考慮主塔剛度和不考慮主塔剛度2種情形的基頻計(jì)算公式,可知三塔斜拉橋豎彎基頻隨著主塔剛度的提升而增大,當(dāng)考慮主塔剛度時(shí),基頻公式的計(jì)算精度提高2%~5%,因此在橋梁概念設(shè)計(jì)階段振動(dòng)基頻計(jì)算時(shí)應(yīng)充分考慮主塔剛度的影響。
2)三塔斜拉橋振動(dòng)基頻ωb僅與結(jié)構(gòu)的計(jì)算參數(shù)主塔抗彎剛度、拉索彈性模量、拉索截面面積、主梁及主塔的線均布質(zhì)量和主梁豎向自由振動(dòng)的振型函數(shù)η(x,t)和主塔縱向自由振動(dòng)的振型函數(shù)ξ(z,t)有關(guān),與斜拉索截面形式無(wú)關(guān)。
3)通過(guò)假設(shè)主梁的基本振型函數(shù),推導(dǎo)了其1階豎彎正對(duì)稱和反對(duì)稱的能量表達(dá)式,給出的能量法縱飄基頻計(jì)算值與有限元值誤差比規(guī)范解與有限元值誤差小約5%,此公式可以適用于考慮主塔剛度影響的三塔斜拉橋豎彎頻率初步概念設(shè)計(jì)階段的估算中。
4)豎彎頻率實(shí)用計(jì)算公式僅適用于三塔斜拉體系,對(duì)其他體系斜拉橋應(yīng)另做專門研究,《公路橋梁抗風(fēng)設(shè)計(jì)規(guī)范》中的斜拉結(jié)構(gòu)的豎向彎曲的基頻估算公式不適用于塔梁固結(jié)、墩支承的三塔斜拉體系的豎彎頻率的估算。
[1] Ge Y J, Xiang H F. Computational models and methods for aerodynamic flutter of long-span bridges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10-11):1-13.
[2] Au F T K, Cheng Y S, Cheung Y K, et al. On the determination of natural frequencies and mode shapes of cable-stayed bridges[J]. Applied Mathematical Modelling, 2001(25):1099-1115.
[3] Nagal Masatsugu, Fujino Yozo, Yamaguchi Hiroki,et al. Feasibility of a 1,400 m span steel cable-stayed bridge[J]. Journal of Bridge Engineering.2004, 9(5):444-452.
[4] Cheung M X, Li D T, Lau W. Recent developments on computer bridge analysis and design[J]. Progress in Structural Engineering and Materials, 2000, 2(3):376-385.
[5] JTG/T D60—01—2004,公路橋梁抗風(fēng)設(shè)計(jì)規(guī)范[S].
JTG/T D60—01—2004, Wind-resistant design specification for highway bridge[S].
[6] 劉春華,秦權(quán).橋梁結(jié)構(gòu)固有頻率的統(tǒng)計(jì)特征[J].中國(guó)公路學(xué)報(bào),1997,10(4):49-54.
LIU Chunhua, QIN Quan. Statistics of natural frequencies for bridge structures[J]. China Journal of Highway and Transport, 1997,10(4):49-54.
[7] Zhang Yunfeng. The concept and development of smart structures technologies for long-span cable-supported bridges[J]. Marine Georesources and Geotechnology, 2003, 21(3-4):315-331.
[8] Brown Jeff L. Bridges: Hybrid span combines suspension, cable-stayed systems[J]. Civil Engineering, 2006, 76(9):16-17
[9] 李國(guó)豪.橋梁結(jié)構(gòu)穩(wěn)定與振動(dòng)[M].北京:中國(guó)鐵道出版社,2002.
LI Guohao. Stability and vibration of bridge structures[M].Beijing: China Railway Publishing House,2002.
[10] 袁萬(wàn)城,閆冬.斜拉橋縱飄頻率簡(jiǎn)化計(jì)算方法[J].同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版),2005,33(11):1423-1427.
YUAN Wancheng, YAN Dong. Simplifiedcalculationalmethod of floating frequency for cable-stayed bridge [J].Journal of Tongji university(Natural Science Edition), 2005,33(11):1423-1427.
[11] 張楊永.斜拉橋近似計(jì)算與結(jié)構(gòu)體系研究[D]. 上海: 同濟(jì)大學(xué), 2010.
ZHANG Yangyong. Approximate calculation and study of structural system incable-stayed bridge [D].Shanghai :Tongji University, 2010.
[12] 柳惠芬.斜拉橋的實(shí)用簡(jiǎn)化分析[D]. 上海: 同濟(jì)大學(xué), 1995.
LIU Huifen. Approximate calculation and study of structural system incable-stayed bridge [D]. Shanghai :Tongji University, 1995.
[13] Walther R. Cable stayed bridge[M]. 2nd edition. American Society of Civil Engineer (Thomas Telford, Ltd.), 1999.
[14] 苗家武.超大跨斜拉橋設(shè)計(jì)理論研究[D]. 上海: 同濟(jì)大學(xué), 2006.
MIAO Jiawu. Study for design theories of suplongcable-stayed bridge [D]. Shanghai :Tongji University, 2006.
[15] 盛善定,袁萬(wàn)城,范立礎(chǔ).懸索橋振動(dòng)基頻的實(shí)用估算公式[J].東北公路,1996( 1) : 71 -76.
SHENG Shanding,YUAN Wancheng,F(xiàn)AN Lichu. Practical estimation formula of vibration basic frequency of suspension bridge[J]. Northeast Highways,1996(1):71-76.
[16] 鞠小華,廖海黎,沈銳利.對(duì)懸索橋?qū)ΨQ豎彎基頻近似公式的修正[J].土木工程學(xué)報(bào),2002,2( 1) :44-49.
JU Xiaohua,LIAO Haili,SHEN Ruili. Modification on simplified formula of symmetric-vertical natural frequencies for suspension bridge[J].China Civil Engineering Journal,2002,2 ( 1 ) : 44- 49.
[17] 王本勁,馬如進(jìn),陳艾榮.多塔連跨懸索橋基頻估算方法[J].結(jié)構(gòu)工程師,2011,27 ( 6) :54-58.
WANG Benjin,MA Rujin,CHEN Airong. Estimation of fundamental frequency of multi-pylon suspension bridge [J].Structural Engineers,2011,27 ( 6) : 54-58.
[18] 王本勁,馬如進(jìn),陳艾榮. 多塔連跨懸索橋基頻估算實(shí)用公式[J].公路交通科技,2012,29(11):58-62.
WANG Benjin,MA Rujin,CHEN Airong. Practical formula of fundamental frequency estimation for multi-pylon suspension bridge[J].Journal of Highway and Transportation Research and Development, 2012,29(11):58-62
[19] 張超,黃群君,許莉.考慮主塔剛度影響的三塔自錨式懸索橋豎彎頻率計(jì)算公式[J].長(zhǎng)安大學(xué)學(xué)報(bào)(自然科學(xué)版),2014,34(6):100-106.
ZHANG Chao, HUANG Qunjun, XU Li. Frequency formulas for vertical vibration of three-tower self-anchored suspension Bridge considering tower stiffness influence[J].Journal of Chang’an University(Natural Science Edition), 2014,34(6):100-106.
[20] 姜洋.三塔懸索橋結(jié)構(gòu)體系及施工過(guò)程關(guān)鍵問(wèn)題研究[D]. 上海: 同濟(jì)大學(xué), 2014.
JIANG Yang. Study for structure system and process of construction for multi-tower suspensionbridge [D]. Shanghai :Tongji University, 2014.
[21] REN Weixin, PENG Xuelin, LIN Qinyou. Experimental and analytical studies on dynamic characteristics of a large span cable-stayed bridge[J]. Engineering Structures, 2005(27):535-548.
Practical vertical frequency formula for vibration of cable-stayedbridges with three tower considering tower stiffness influence
CHEN Hengda1,WU Xiaoguang1,YAO Sisi1, GUO Fei1,2
(1.Key Laboratory for Bridge and Tunnel of Shaanxi Province, Chang’an University , Xi’an 710064, China;2.ZHE JIANG Provincial Institute of Communications Planning, Design and Research, Hangzhou 310000, China;
In order to calculate fundamental frequency of the cable-stayed bridges with multi-tower conveniently, the cable-stayed bridges with three tower was taken as research object. Frequency formula for vibration mode of cable-stayed bridges was induced by the Rayleigh method and vibration mode function of vertical free vibration of main beam and vibration type function of longitudinal free vibration of main tower were introduced. The practical vertical frequency formula for vibration of cable-stayed bridges with three tower considering tower stiffness influence was then derived. Finally, the presented theoretical formula of fundamental frequency was found to be valid in engineering and the frequency formula for vibration was discussed therein. The results indicate that section types of the girder, tower and cable has no influence on the vertical frequency formula for vibration of cable-stayed bridges, but the tower stiffness has a great influence on vertical frequency of cable-stayed bridges. The constrain condition and tower stiffness should be carefully considered in the calculation of frequency. The fundamental frequency calculated by the recommended method has a smaller error compared with the finite element method (FEM) result, which satisfies the requirement of conceptive design. The presented theoretical formula can be applied to the estimation of frequency for vibration of cable-stayed bridges with three tower.
bridge engineering; cable-stayed bridges with three tower; tower stiffness; fundamental frequency; practical formula
2016-03-27
國(guó)家自然科學(xué)基金資助項(xiàng)目(51308056);中國(guó)電力建設(shè)股份有限公司科技專項(xiàng)資金資助項(xiàng)目(2014-38);中央高?;究蒲袠I(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(201493212002)
陳恒大(1989-),男,山東滕州人,博士研究生,從事大跨度橋梁結(jié)構(gòu)理論分析與養(yǎng)護(hù)管理研究;E-mail:kuangyedeliusha@126.com
U441.3
A
1672-7029(2016)10-1962-08