劉利琴, 邱 雨, 張永恒, 唐友剛
(天津大學(xué) 水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072)
?
Spar平臺(tái)垂蕩-縱搖與月池內(nèi)流體垂向振動(dòng)的耦合運(yùn)動(dòng)研究
劉利琴, 邱 雨, 張永恒, 唐友剛
(天津大學(xué) 水利工程仿真與安全國(guó)家重點(diǎn)實(shí)驗(yàn)室,天津 300072)
考慮半開口月池,研究桁架式Spar平臺(tái)垂蕩、縱搖、月池內(nèi)流體垂向振動(dòng)的耦合運(yùn)動(dòng)。建立了平臺(tái)垂蕩-縱搖-月池內(nèi)流體垂向振動(dòng)的耦合運(yùn)動(dòng)方程,推導(dǎo)了月池內(nèi)流體對(duì)平臺(tái)垂蕩和縱搖運(yùn)動(dòng)產(chǎn)生的力和力矩。針對(duì)三種工況,即不考慮月池開口、月池開孔率為30%和70%,數(shù)值計(jì)算了耦合系統(tǒng)的運(yùn)動(dòng)響應(yīng),分析了月池內(nèi)流體對(duì)平臺(tái)垂蕩和縱搖運(yùn)動(dòng)的影響,結(jié)果表明,月池內(nèi)流體對(duì)平臺(tái)主體垂蕩有抑制作用,且抑制程度與月池開孔面積有關(guān);對(duì)于70%的開孔率,平臺(tái)垂蕩響應(yīng)RAO曲線在月池流體垂向振動(dòng)固有周期附近出現(xiàn)高頻峰值;70%開孔率時(shí),月池內(nèi)流體的運(yùn)動(dòng)遠(yuǎn)大于30%開孔率的情況;考慮月池開口后,平臺(tái)的縱搖響應(yīng)變化較小。最后,分析了耦合參數(shù)對(duì)平臺(tái)及月池內(nèi)流體運(yùn)動(dòng)的影響。
Spar平臺(tái);半開口月池;垂蕩-縱搖耦合;耦合參數(shù)分析
隨著Spar平臺(tái)作業(yè)水深的不斷增大,人們對(duì)平臺(tái)運(yùn)動(dòng)預(yù)報(bào)的精確度提出了更高要求。目前對(duì)Spar平臺(tái)主體、系泊系統(tǒng)與立管之間的耦合運(yùn)動(dòng)以及平臺(tái)主體各自由度之間的相互耦合問題進(jìn)行了研究[1-3],關(guān)于Spar平臺(tái)月池內(nèi)部流體的運(yùn)動(dòng)及平臺(tái)主體與月池流體之間的相互耦合運(yùn)動(dòng)考慮較少。Spar平臺(tái)的中央井自下而上貫穿整個(gè)主體,其內(nèi)按照一定的方式布置立管和其它重要鉆井設(shè)施,構(gòu)成Spar平臺(tái)的月池。根據(jù)實(shí)際要求,有時(shí)將月池設(shè)計(jì)為半開口形式,海水可以自由進(jìn)入或者流出月池。若采用頂張緊立管系統(tǒng),則月池海水質(zhì)量與平臺(tái)主體質(zhì)量量級(jí)相當(dāng),月池內(nèi)流體對(duì)平臺(tái)主體運(yùn)動(dòng)的影響不可忽略[4]。
BARREIRA等[5]研究了重力式平臺(tái)混凝土立柱與其月池內(nèi)部海水的耦合運(yùn)動(dòng),將月池流體運(yùn)動(dòng)處理為彈簧-質(zhì)量系統(tǒng),考慮月池流體質(zhì)量的變化,建立了立柱與月池海水的耦合運(yùn)動(dòng)模型,分析了耦合系統(tǒng)的振動(dòng)特性。SPHAIER等[6]基于模型試驗(yàn)研究了單柱式平臺(tái)與月池內(nèi)流體的耦合運(yùn)動(dòng),測(cè)試了月池底部不同導(dǎo)向板面積時(shí)平臺(tái)的垂蕩運(yùn)動(dòng),分析了導(dǎo)向板面積對(duì)平臺(tái)垂蕩的影響。GUPTA等[4]建立了Spar平臺(tái)垂蕩與月池流體垂向振動(dòng)耦合的二自由度模型,研究了系統(tǒng)響應(yīng)特性。結(jié)果表明,月池流體運(yùn)動(dòng)嚴(yán)重影響平臺(tái)的垂蕩運(yùn)動(dòng),考慮月池的耦合影響時(shí),平臺(tái)的運(yùn)動(dòng)形式非常復(fù)雜,具體形式與平臺(tái)運(yùn)動(dòng)周期、月池流體振動(dòng)周期以及波浪周期有關(guān)。ZHOU等[7]基于線性勢(shì)流理論,研究了帶月池的柱狀結(jié)構(gòu)的橫蕩、縱搖和垂蕩運(yùn)動(dòng),結(jié)果表明,月池對(duì)垂蕩運(yùn)動(dòng)影響較大。劉利琴等[8-9]基于模型實(shí)驗(yàn)和數(shù)值模擬相結(jié)合的方法研究了Spar平臺(tái)月池內(nèi)流體與平臺(tái)垂蕩的耦合運(yùn)動(dòng),分析了月池內(nèi)流體對(duì)平臺(tái)垂蕩運(yùn)動(dòng)的影響。SEAN等[10]考慮月池的影響,研究了作業(yè)過程中浮筒接近轉(zhuǎn)塔時(shí)FPSO系統(tǒng)的時(shí)域響應(yīng)。LIU等[11]采用特征函數(shù)匹配法,計(jì)算了帶月池的柱狀結(jié)構(gòu)的水動(dòng)力參數(shù)。
本文考慮半開口月池,考慮月池內(nèi)流體垂向運(yùn)動(dòng)的耦合研究桁架式Spar平臺(tái)垂蕩-縱搖運(yùn)動(dòng),根據(jù)可變形控制體質(zhì)量守恒定律及動(dòng)量守恒定律建立了月池內(nèi)流體垂向運(yùn)動(dòng)方程,分析了月池內(nèi)流體對(duì)平臺(tái)運(yùn)動(dòng)的影響及耦合參數(shù)對(duì)平臺(tái)和月池內(nèi)流體運(yùn)動(dòng)的影響。
1.1 平臺(tái)主體垂蕩-縱搖耦合運(yùn)動(dòng)方程
考慮恢復(fù)力、阻尼力、波浪力、系泊纜提供的恢復(fù)剛度、月池內(nèi)流體的作用力, 以平臺(tái)重心為坐標(biāo)原點(diǎn),Spar平臺(tái)的垂蕩、縱搖耦合運(yùn)動(dòng)方程可表示為[12]:
(1)
(2)
1.2 月池內(nèi)流體的垂向運(yùn)動(dòng)方程
月池內(nèi)部流體的運(yùn)動(dòng)形式可分為兩種,一種是沿月池垂向的活塞振動(dòng),另一種是在橫向的左右晃蕩運(yùn)動(dòng),本文考慮月池內(nèi)部流體的垂向運(yùn)動(dòng)與平臺(tái)主體運(yùn)動(dòng)的耦合。描述月池內(nèi)部流體運(yùn)動(dòng)的坐標(biāo)如圖1所示,其中,d0為平臺(tái)吃水,ξ為月池內(nèi)流體的垂向位移,Smp為月池截面積,Sg為擋板的開口面積。
圖1 月池內(nèi)流體運(yùn)動(dòng)坐標(biāo)Fig.1 The coordinate of fluid motion in the moon pool
月池內(nèi)流體的質(zhì)量為:
Mmp=ρSmp(ξ+d0-ξ3cosξ5)
(3)
根據(jù)月池內(nèi)流體的質(zhì)量守恒定律,可以得到:
(4)
(5)
進(jìn)一步求解式(5),有:
(6)
根據(jù)月池內(nèi)部流體的動(dòng)量守恒定律,即作用在控制體上外力的合力與單位時(shí)間內(nèi)通過控制面流入控制體內(nèi)的動(dòng)量之和等于單位時(shí)間內(nèi)控制體中動(dòng)量的增量,有:
(7)
(8)
(9)
(10)
(11)
將式(9)~式(11)代入式(7)中,有:
-ρg(ξ+d0-ξ3cosξ5)Smp+p1Smp
(12)
假設(shè)平臺(tái)做小幅縱搖運(yùn)動(dòng),令cosξ5=1,由式(12)可以求得:
(13)
月池?fù)醢宓南卤砻鎵毫Πo水壓力、垂蕩加速度產(chǎn)生的慣性力及入射波產(chǎn)生的動(dòng)水壓力,寫為如下的半解析半經(jīng)驗(yàn)公式[4]:
(14)
式中:α3為平臺(tái)主體對(duì)月池的質(zhì)量耦合系數(shù);dg為擋板開口的等效直徑;pw為作用在擋板處的波浪壓力;ps為靜水壓力。
根據(jù)牛頓定理,對(duì)月池?fù)醢彘_口處的流體建立力平衡方程,有:
(15)
式中:Kg為擋板開口流體運(yùn)動(dòng)的阻尼力系數(shù);α1為月池附加質(zhì)量系數(shù)。將式(13)和式(14)代入式(15),整理后得到月池內(nèi)流體的垂向運(yùn)動(dòng)方程為:
(16)
聯(lián)立式(1)、式(2)和式(16),即得到月池內(nèi)流體的垂向運(yùn)動(dòng)與平臺(tái)主體垂蕩-縱搖耦合的運(yùn)動(dòng)方程。
1.3 月池內(nèi)流體對(duì)平臺(tái)的作用力(矩)
本文考慮月池內(nèi)流體對(duì)平臺(tái)垂蕩和縱搖運(yùn)動(dòng)的作用力。月池內(nèi)流體在垂蕩方向?qū)ζ脚_(tái)的作用力根據(jù)2.2節(jié)中擋板受力的力平衡方程求解,可表示為:
(17)
式中:Fc為修正項(xiàng),其形式可用如下經(jīng)驗(yàn)公式表示[4]:
(18)
式中:α4為月池對(duì)平臺(tái)主體的質(zhì)量耦合系數(shù)。
平臺(tái)搖擺運(yùn)動(dòng)時(shí),可將月池內(nèi)流體分為兩部分,即接近上部自由液面隨平臺(tái)搖擺發(fā)生晃動(dòng)的部分和月池下部相對(duì)平臺(tái)靜止的部分。根據(jù)貯液容器內(nèi)液體的晃蕩理論,將月池內(nèi)流體的晃動(dòng)等效為單擺,相對(duì)平臺(tái)靜止的部分等效為固定在平臺(tái)上的質(zhì)量快。當(dāng)平臺(tái)以Ψ0sinΩt的形式縱搖時(shí),月池內(nèi)流體對(duì)平臺(tái)的縱搖力矩為[13]:
(19)
式中:h為月池內(nèi)水深;m0和I0分別為相對(duì)平臺(tái)靜止的流體質(zhì)量及其對(duì)自身質(zhì)心的轉(zhuǎn)動(dòng)慣量;mn為第n階單擺質(zhì)量;ln為第n階單擺的擺長(zhǎng);mn、ln、Ln和m0的表達(dá)式如下:
(i=1,2,…)
(20)
(i=1,2,…)
(21)
(i=1,2,…)
(22)
(23)
式(19)~式(22)中,L為月池寬度,M為月池內(nèi)流體的總質(zhì)量。
1.4 平臺(tái)主體波浪力
基于微幅波理論計(jì)算平臺(tái)受到的一階波浪載荷。根據(jù)文獻(xiàn)[14]的推導(dǎo),得到規(guī)則波作用下平臺(tái)受到的一階垂蕩激勵(lì)力和縱搖激勵(lì)力矩分別為:
Fw=2ρghwSp
(24)
(25)
式中:R為平臺(tái)主體半徑;Hw為波高;k為波數(shù);ω為波浪頻率;J1(kR)和Y1(kR)分別是第一類和第二類一階Bessel函數(shù),β1和β2的表達(dá)式如下:
(26)
(27)
式(27)中,′表示求一階導(dǎo)數(shù)。
以Horn Mountain Spar平臺(tái)為基礎(chǔ)進(jìn)行分析[15],該平臺(tái)由BP石油公司在墨西哥灣安裝并工作,工作水深達(dá)到1 646 m,在開放式平臺(tái)主體上裝有三層垂蕩板結(jié)構(gòu),并通過9條系泊纜定位,主體結(jié)構(gòu)示意圖見圖2。原始的Horn Mountain平臺(tái)采用浮力罐來支撐立管,底部為封閉月池。本研究將浮力罐改為頂部張緊器,考慮三種不同的月池底部形式,即0%開口(全封閉,工況1)、30%開孔率(工況2)及70%開孔率(工況3),見圖3,平臺(tái)參數(shù)見表1。
圖2 整體結(jié)構(gòu)示意圖Fig.2 Diagram of overall structure
項(xiàng)目數(shù)據(jù)項(xiàng)目數(shù)據(jù)平臺(tái)總長(zhǎng)/m169.16軟艙長(zhǎng)度/m5平臺(tái)吃水/m153.924軟艙直徑/m32.31總排水量/t56401.45垂蕩板厚度/m1.5硬艙直徑/m32.31垂蕩板直徑/m32.31硬艙長(zhǎng)度/m68.88月池邊長(zhǎng)/m15.85
圖3 不同開口率的月池示意圖Fig.3 Diagram of moon pool of different opening ratios
文獻(xiàn)[8]開展了該平臺(tái)三種不同工況的模型試驗(yàn),本文在文獻(xiàn)[8]的基礎(chǔ)上,進(jìn)一步計(jì)算了不同工況時(shí)平臺(tái)垂蕩、縱搖運(yùn)動(dòng)的周期和阻尼系數(shù)。對(duì)于桁架式Spar平臺(tái),垂蕩運(yùn)動(dòng)的非線性阻尼(黏滯阻尼)遠(yuǎn)大于線性阻尼,以下分析中只考慮了非線性垂蕩阻尼。平臺(tái)垂蕩和縱搖運(yùn)動(dòng)的周期及阻尼系數(shù)如表2和表3所示。
表2 垂蕩周期及阻尼系數(shù)
表3 縱搖周期及阻尼系數(shù)
表2和表3結(jié)果表明,考慮月池底部開孔后,平臺(tái)阻尼和固有周期增加,月池開口后對(duì)平臺(tái)垂蕩模態(tài)的運(yùn)動(dòng)特性影響較大。與全封板情況相比較,30%開孔率時(shí)垂蕩阻尼增大約48%,70%開孔率時(shí)垂蕩阻尼增大約18%。
3.1 運(yùn)動(dòng)響應(yīng)分析
利用Runga-Kuta方法數(shù)值求解式(1)、(2)和式(16),其中阻尼系數(shù)由表4和表5獲得,其它參數(shù)為α1=0.326、α3=0.5、α4=0.5及Kg=1.0。針對(duì)三種工況進(jìn)行分析,即全封板、30%開孔率和70%開孔率,計(jì)算不同波浪周期時(shí)耦合系統(tǒng)的運(yùn)動(dòng)響應(yīng),得到三種工況平臺(tái)垂蕩、縱搖及月池內(nèi)流體垂向運(yùn)動(dòng)響應(yīng)的RAO曲線,圖4~圖6所示。
圖4 平臺(tái)垂蕩RAO曲線Fig.4 RAO curves of platform heave
圖5 平臺(tái)縱搖RAO曲線Fig.5 RAO curves of platform pitch
圖6 月池內(nèi)部流體垂向運(yùn)動(dòng)RAO曲線Fig.6 RAO curves of fluid motion in the moon pool in the vertical direction
圖4~圖6表明,考慮半封閉月池后,在波浪周期接近垂蕩固有周期時(shí),月池流體對(duì)平臺(tái)主體垂蕩有抑制作用,且抑制程度與月池開孔面積有關(guān),本文計(jì)算中30%開孔率時(shí)平臺(tái)的垂蕩運(yùn)動(dòng)響應(yīng)較小。另外,70%開孔率時(shí),平臺(tái)垂蕩的RAO曲線在月池內(nèi)部流體固有周期附近出現(xiàn)低頻共振峰,月池內(nèi)流體的運(yùn)動(dòng)遠(yuǎn)大于30%開孔率時(shí)月池內(nèi)流體的運(yùn)動(dòng)。考慮月池開口后平臺(tái)的縱搖響應(yīng)變化較小。
3.2 參數(shù)敏感性分析
針對(duì)30%開孔率和70%開孔率兩種情況,分析了月池附加質(zhì)量α1、平臺(tái)對(duì)月池的質(zhì)量耦合系數(shù)α3及月池對(duì)平臺(tái)的質(zhì)量耦合系數(shù)α4分別對(duì)月池內(nèi)流體運(yùn)動(dòng)及平臺(tái)垂蕩運(yùn)動(dòng)的影響,結(jié)果如圖7~圖12所示。
圖7 α1對(duì)月池內(nèi)流體的運(yùn)動(dòng)影響分析Fig.7 The analysis of the effect of α1to the fluid motion in the moon pool
圖8 α1對(duì)平臺(tái)垂蕩的運(yùn)動(dòng)影響分析Fig.8 The analysis of the effect of α1 to the platform heave
圖9 α3對(duì)月池內(nèi)流體的運(yùn)動(dòng)影響分析Fig.9 The analysis of the effect of α3to the fluid motion in the moon pool
圖10 α3對(duì)平臺(tái)垂蕩的運(yùn)動(dòng)影響分析Fig.10 The analysis of the effect of α3 to the platform heave
圖11 α4對(duì)月池內(nèi)流體的運(yùn)動(dòng)影響分析Fig.11 The analysis of the effect of α4to the fluid motion in the moon pool
圖12 α4對(duì)平臺(tái)垂蕩的運(yùn)動(dòng)影響分析Fig.12 The analysis of the effect of α4 to the platform heave
圖7和圖8表明,α1顯著影響月池內(nèi)部流體運(yùn)動(dòng)及平臺(tái)垂蕩運(yùn)動(dòng)。隨著α1的增加,月池內(nèi)部流體垂向運(yùn)動(dòng)的固有周期增加;對(duì)于30%的開孔率,平臺(tái)的垂蕩運(yùn)動(dòng)幅值隨α1的增加而減??;對(duì)于70%的開孔率,α1對(duì)平臺(tái)垂蕩響應(yīng)RAO曲線的高頻峰值影響較為明顯,增加α1后,高頻峰值增大且固有周期增加。圖9和圖10表明,α3影響月池內(nèi)部流體垂向運(yùn)動(dòng)的幅值,增大α3后月池內(nèi)流體的垂蕩運(yùn)動(dòng)幅值減??;對(duì)于平臺(tái)的垂蕩運(yùn)動(dòng),70%開孔率時(shí),由于平臺(tái)垂蕩與月池內(nèi)流體垂向運(yùn)動(dòng)的耦合較強(qiáng),α3對(duì)平臺(tái)垂蕩運(yùn)動(dòng)的高頻峰值有一定的影響。圖11和圖12表明,α4對(duì)平臺(tái)垂蕩運(yùn)動(dòng)影響顯著,隨著α4的增加平臺(tái)的垂蕩運(yùn)動(dòng)幅值增大;對(duì)于大的開孔率,平臺(tái)垂蕩運(yùn)動(dòng)的高頻峰值隨α4的增加逐漸增大,并最終超過低頻峰值,α4對(duì)月池內(nèi)流體的垂向運(yùn)動(dòng)幅值也有一定的影響。
本文考慮半開口月池,推導(dǎo)了桁架式Spar平臺(tái)垂蕩-縱搖-月池內(nèi)流體垂向振動(dòng)的耦合運(yùn)動(dòng)方程及月池內(nèi)流體對(duì)平臺(tái)垂蕩和縱搖運(yùn)動(dòng)產(chǎn)生的力和力矩,計(jì)算了耦合系統(tǒng)的運(yùn)動(dòng)響應(yīng),分析了月池內(nèi)流體對(duì)平臺(tái)垂蕩和縱搖運(yùn)動(dòng)的影響及耦合參數(shù)對(duì)平臺(tái)及月池內(nèi)流體運(yùn)動(dòng)的影響。結(jié)果如下:
(1) 當(dāng)波浪周期較小時(shí),月池內(nèi)流體對(duì)平臺(tái)主體垂蕩有抑制作用,且抑制程度與月池開孔面積有關(guān),在實(shí)際中可設(shè)計(jì)月池底部擋板的最優(yōu)開孔面積來最大程度地減小平臺(tái)主體的垂蕩運(yùn)動(dòng)。
(2) 對(duì)于70%的開孔率,平臺(tái)主體垂蕩RAO有兩個(gè)峰值,分別出現(xiàn)在月池流體垂向振動(dòng)固有周期及平臺(tái)主體垂蕩固有周期附近。70%開孔率時(shí),月池內(nèi)流體的運(yùn)動(dòng)幅值大于30%開孔率的情況??紤]月池開口后平臺(tái)的縱搖響應(yīng)變化較小。
(3) 月池附加質(zhì)量α1顯著影響月池內(nèi)流體垂向運(yùn)動(dòng)的固有周期和響應(yīng)幅值及平臺(tái)垂蕩的響應(yīng)幅值;平臺(tái)對(duì)月池的質(zhì)量耦合系數(shù)α3影響月池內(nèi)部流體垂向運(yùn)動(dòng)的幅值,當(dāng)月池開孔率為70%時(shí),α3對(duì)平臺(tái)垂蕩運(yùn)動(dòng)的高頻峰值有一定的影響;月池對(duì)平臺(tái)的質(zhì)量耦合系數(shù)α4對(duì)平臺(tái)垂蕩運(yùn)動(dòng)影響顯著,當(dāng)月池開孔率為70%時(shí),α4對(duì)月池內(nèi)流體的垂向運(yùn)動(dòng)幅值也有一定的影響。
[1] 單鵬昊,任慧龍,李輝,等. 極限海況下Spar平臺(tái)系泊系統(tǒng)耦合動(dòng)力分析[J].海洋工程, 2013,31(2): 35-40.
SHAN Penghao, REN Huilong, LI Hui, et al. Coupled dynamic analysis of mooring system of Spar platform under extreme conditions [J]. Ocean Engineering, 2013, 31 (2) : 35-40.
[2] 龍?bào)銜?李巍,尤云祥.風(fēng)浪流中Truss Spar平臺(tái)耦合動(dòng)力響應(yīng)分析[J].中國(guó)海洋平臺(tái), 2013, 28(1): 29-35.
LONG Xiaoye, LI Wei, YOU Yunxiang. Analysis of the coupled response of dynamic Truss Spar platform with wind and wave [J]. Offshore Platform, 2013, 31(2):35-40.
[3] KIM M H, RAN Z, ZHENG W. Hull/Mooring coupled dynamic analysis of a truss spar in time domain [J]. International Journal of Offshore and Polar Engineering, 2001, 11(1): 42-54.
[4] GUPTA H, BLEVINS R, BANON H. Effect of moonpool hydrodynamics on spar heave[C]//In: Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. New York: American Society of Mechanical Engineers, 2008:275-282.
[5] BARREIRA R, SPHAIER S H, MASETTI I Q. Behavior of a mono-column structure(monobr) in waves [C]//In: Proceedings of 24th International Conference on Offshore Mechanics and Arctic Engineering.New York: American Society of Mechanical Engineers, 2005:867-873.
[6] SPHAIER S H, TORRES F G S. Monocolumn behavior in waves: Experimental analysis [J]. Ocean Engineering, 2007, 34(11/12): 1724-1733.[5] ZHOU Huawei, ZHANG Hongsheng. Radiation and diffraction analysis of a cylindrical body with a moon pool[J].Journal of Hydrodynamics,2013,25(2):196-204.
[8] LIU Liqin, INCECIK A, ZHANG Yongheng, et al. Analysis of heave motions of a truss spar platform with semi-closed moon pool [J]. Ocean Engineering, 2014, 94:162-174.
[9] 劉利琴, 張永恒, 滿金雙,等. Spar平臺(tái)主體垂蕩-月池流體耦合運(yùn)動(dòng)模型試驗(yàn)研究[J].哈爾濱工程大學(xué)學(xué)報(bào), 2015, 36(3): 287-291.
LIU Liqin, ZHANG Yongheng, MAN Jinshuang, et al. The research of coupling motion of heave-motion of fluid in the moon pool of body of Spar platform[J]. Journal of Harbin Engineering University, 2015, 36(3): 287-291.
[10] BION S, STEVE L, LEVERETTE S,et al. Motion of a large disconnectable buoy within fpso turret moon-pool [C]//In:Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering. San Francisco: American Society of Mechanical Engineers,2014:24371-24379.
[11] LIU Hengxu, DUAN Wenyang. Introduce dissipation for cylindrical structures with moon-pool of restricted entrances [J].Journal of Harbin Institute of Technology,2015,22:56-60.
[12] 趙晶瑞.經(jīng)典Spar平臺(tái)非線性耦合動(dòng)力響應(yīng)分析[D].天津:天津大學(xué), 2010.
[13] FALTINSEN O M, TIMOKHA A. Sloshing [M]. Cambridge University Press, 2009.
[14] WEGGEL D C, ROESSET J M. Vertical hydrodynamic forces on truncated cylinders[C]//In: Proceedings of the 4thInternational Offshore and Polar Engineering Conference. Osaka, Japan, 1994:210-217.
[15] PETTER A B. Dynamic response analysis of a truss spar in waves [D].Newcastle, University of Newcastle, 2000.
Coupling motions among vertical vibration of fluid inside a moonpool and heave-pitch of a spar platform
LIU Liqin, QIU Yu, ZHANG Yongheng, TANG Yougang
(State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China)
Coupling vibrations among heave-pitch of a truss Spar platform and vertical vibration of fluid inside a moonpool were studied considering semi-opening of the moon-pool. The coupled motion equations for the heave-pitch of the Spar platform and the vertical vibration of fluid inside the moon pool were established, and the forces and moments generated by fluid inside the moon-pool to the heave and pitch of the platform were deduced, respectively. Three cases were considered, they were the 0% opening ratio, the 30% opening ratio and the 70% opening ratio of the moon pool. The motion responses of the coupled system were calculated numerically and the influences of fluid inside the moon-pool on the heave and pitch motions of the platform were analyzed. It was shown that the fluid in the moon-pool reduces the heave motions of the platform, and the level of reduction is related to the opening ratio of the moon-pool; for the 70%opening rate, a smaller peak occurs in the RAO curve of the heave response of the platform nearby the natural vibration period of vertical motion direction of the fluid in the moon-pool; for the opening rate of 70%, the movement of fluid in the moon-pool is much larger than that for the 30% opening ratio; the pitch response of the platform changes slightly when the semi-opening of the moon pool is considered. The effects of coupling parameters on the motions of the platform and the motions of fluid inside the moon pool were analyzed as last.
Spar platform; semi-opening moon pool; heave-pitch coupling; analysis of coupling parameters
國(guó)家自然科學(xué)基金(51179125)
2015-04-01 修改稿收到日期:2015-09-23
劉利琴 女,博士,副教授,1977年生
P751; TB123
A
10.13465/j.cnki.jvs.2016.19.019