宋 凱 駱 源 張春曉 王 玲 游文煌 陳曉卉 陽 達
(農(nóng)業(yè)部東海海水健康養(yǎng)殖重點實驗室,廈門市集美大學飼料檢測與安全評價重點實驗室,集美大學水產(chǎn)學院,廈門361021)
?
皮質(zhì)醇對斜帶石斑魚原代培養(yǎng)肝細胞糖代謝的影響
宋 凱 駱 源 張春曉 王 玲 游文煌 陳曉卉 陽 達
(農(nóng)業(yè)部東海海水健康養(yǎng)殖重點實驗室,廈門市集美大學飼料檢測與安全評價重點實驗室,集美大學水產(chǎn)學院,廈門361021)
本試驗旨在研究皮質(zhì)醇對斜帶石斑魚原代培養(yǎng)肝細胞糖代謝的影響。分離斜帶石斑魚肝細胞,選取2個孵育時間(24和36 h)和3個皮質(zhì)醇濃度[0(對照)、100 和1 000 nmol/L],測定培養(yǎng)上清液中葡萄糖含量(即肝細胞葡萄糖釋放量),肝細胞糖原和丙酮酸含量以及肝細胞糖代謝關(guān)鍵酶[磷酸烯醇丙酮酸羧激酶(PEPCK)、葡萄糖-6-磷酸酶(G6Pase)、糖原合成酶(GSase)、蘋果酸脫氫酶(MDH)、異檸檬酸脫氫酶(ICD)和丙酮酸激酶(PK)]的活性。結(jié)果表明:在孵育24和36 h時,與對照組相比,100 和1 000 nmol/L皮質(zhì)醇組肝細胞葡萄糖釋放量顯著提高(P<0.05),而肝細胞丙酮酸含量顯著降低(P<0.05);皮質(zhì)醇孵育時間對肝細胞葡萄糖釋放量、丙酮酸含量均無顯著影響(P>0.05)。在孵育24 h時,皮質(zhì)醇濃度對肝細胞糖原含量無顯著影響(P>0.05),而在孵育36 h時,肝細胞糖原含量則隨著皮質(zhì)醇濃度的升高而顯著降低(P<0.05);隨著皮質(zhì)醇孵育時間的延長,肝細胞糖原含量顯著下降(P<0.05)。在孵育24和36 h時,100 和1 000 nmol/L皮質(zhì)醇顯著提高了肝細胞PEPCK和G6Pase的活性(P<0.05),顯著降低了肝細胞MDH和ICD的活性(P<0.05),但對肝細胞GSase活性則無顯著影響(P>0.05);在孵育24 h時,皮質(zhì)醇濃度對肝細胞PK活性無顯著影響(P>0.05),但在孵育36 h時,100 和1 000 nmol/L皮質(zhì)醇則顯著提高了肝細胞PK活性(P<0.05)。隨著孵育時間的延長,肝細胞G6Pase活性顯著下降(P<0.05),PK活性顯著升高(P<0.05),而MDH和ICD活性均無顯著變化(P>0.05)。由此可見,皮質(zhì)醇能夠促進斜帶石斑魚原代培養(yǎng)肝細胞糖異生作用,抑制葡萄糖的分解代謝,而對糖原合成無調(diào)節(jié)作用。
斜帶石斑魚;原代培養(yǎng);皮質(zhì)醇;糖代謝;酶活性
斜帶石斑魚(Epinepheluscoioides)是世界范圍內(nèi)重要的海水養(yǎng)殖魚類之一,而外界不良環(huán)境因子引起的應激反應會對其生長繁殖造成不利影響,導致下丘腦-垂體-腎上腺皮質(zhì)軸興奮和一系列物質(zhì)代謝的變化。皮質(zhì)醇是魚類重要的皮質(zhì)類固醇類激素,廣泛作用于機體的各個組織器官[1-2],是魚類應激反應、生長、新陳代謝和免疫應答等生理過程的重要調(diào)節(jié)激素[3-4]。研究表明,當魚類受到外界不良環(huán)境刺激之后,下丘腦-垂體-腎間腺皮質(zhì)軸興奮并釋放皮質(zhì)醇,導致血液中皮質(zhì)醇濃度升高[2,5-6],伴隨而來的是機體物質(zhì)和能量代謝的劇烈變化。魚類糖代謝的主要途徑包括糖酵解、糖異生、糖原合成、肝糖分解、三羧酸循環(huán)和磷酸戊糖途徑,是魚類機體代謝的重要組成部分[7-8]。魚類和其他脊椎動物類似,糖代謝與內(nèi)分泌活動緊密相關(guān),一些內(nèi)分泌激素對糖代謝的調(diào)節(jié)發(fā)揮重要作用,如胰島素和胰高血糖素等[9-10]。肝臟是魚類參與糖代謝的重要器官,同時也是機體內(nèi)分泌系統(tǒng)作用的靶器官[11-12],皮質(zhì)醇作為魚類機體新陳代謝調(diào)節(jié)的重要內(nèi)分泌激素,它與肝臟物質(zhì)代謝調(diào)節(jié)密切相關(guān)。研究表明,體外培養(yǎng)肝細胞能夠表達絕大部分在體肝臟的生理功能,并且保留和維持了活體肝細胞的完整形態(tài)及代謝活性,能夠很好地反映體內(nèi)的代謝狀態(tài)[13]。肝細胞培養(yǎng)模型已成為研究激素對糖代謝途徑調(diào)節(jié)作用的重要工具。然而,大部分有關(guān)皮質(zhì)醇對肝臟物質(zhì)代謝的研究以整體動物為模型,由于動物機體中多種激素的交互作用,為確定某一種激素獨立的調(diào)節(jié)作用帶來很大困難,而且,皮質(zhì)醇對魚類肝臟糖代謝的研究主要是探討皮質(zhì)醇與糖代謝途徑中關(guān)鍵酶活性的關(guān)系[8]。利用體外分離培養(yǎng)肝細胞模型可以克服在體難以確定某一激素對糖代謝調(diào)節(jié)作用的不足。皮質(zhì)醇對魚類體外分離培養(yǎng)肝細胞糖代謝的研究鮮有報道,而其對石斑魚原代培養(yǎng)肝細胞物質(zhì)代謝機制方面的研究尚未見報道。因此,本研究利用建立的斜帶石斑魚原代培養(yǎng)肝細胞模型,探討皮質(zhì)醇對斜帶石斑魚糖代謝的作用機制。
1.1 試驗動物及飼養(yǎng)管理
健康的斜帶石斑魚(體重約為50 g)購于廈門當?shù)匾患宜a(chǎn)公司。將斜帶石斑魚放于600 L循環(huán)桶中暫養(yǎng)。每天08:30和18:30飽食投喂商業(yè)飼料,投喂0.5 h后吸去殘餌和糞便,吸完殘餌和糞便后換水,換水量為循環(huán)桶的1/3~1/2。養(yǎng)殖期間,采用自然光照,海水鹽度為30‰,水溫為(27±2)℃,溶解氧濃度>6.5 mg/L,氨氮濃度<0.02 mg/L,pH 8.0~8.2。
1.2 主要試劑
皮質(zhì)醇(含皮質(zhì)醇50 μmol/L的鹽溶液,適用于細胞培養(yǎng)),購于Sigma公司。0.25%胰蛋白酶、L-15培養(yǎng)基、青鏈霉素(10 000 IU/mL、10 000 μg/mL)、兩性霉素B、胎牛血清(FBS),購于Gibco公司;臺盼藍、二甲基亞砜(DMSO),購于上海捷瑞生物工程有限公司;葡萄糖測定試劑盒、肝糖原測定試劑盒、丙酮酸測定試劑盒、磷酸烯醇式丙酮酸激酶(PEPCK)測定試劑盒、葡萄糖-6-磷酸酶(G6Pase)測定試劑盒、糖原合成酶(GSase)測定試劑盒、蘋果酸脫氫酶(MDH)測定試劑盒、異檸檬酸脫氫酶(ICD)測定試劑盒、丙酮酸激酶(PK)測定試劑盒,購于南京建成生物工程研究所。
1.3 肝細胞原代培養(yǎng)與皮質(zhì)醇孵育試驗
在Segner等[14]和Qin等[15]方法的基礎(chǔ)上進行改良,具體操作如下:采用胰蛋白酶消化法分離肝細胞,新鮮分離的肝細胞在含20%胎牛血清的L-15培養(yǎng)液中培養(yǎng)48 h后,棄去培養(yǎng)上清液,并用L-15培養(yǎng)基(無胎牛血清)清洗3遍,以去除其他激素。然后再加入含有不同濃度皮質(zhì)醇的新鮮L-15培養(yǎng)基,皮質(zhì)醇濃度分別為0(作為對照,為了使培養(yǎng)體系中L-15培養(yǎng)液中加入的處理藥物體積一致,故加入與后2個處理中等體積的磷酸鹽緩沖液)、100和1 000 nmol/L,分別在孵育24和36 h后收集培養(yǎng)上清液和肝細胞,用于后續(xù)試驗指標測定。每個處理設4個重復,新鮮分離的肝細胞以2×105個/mL的濃度按照不同處理接種于12孔細胞培養(yǎng)板進行培養(yǎng),剩下的剛分離的細胞按照不同處理接種于25 cm2培養(yǎng)瓶培養(yǎng),以用于后續(xù)試驗指標(生化分析)的測定。
1.4 生化分析
肝細胞培養(yǎng)上清液中葡萄糖含量(即肝細胞葡萄糖釋放量)以及肝細胞內(nèi)糖原和甘油三酯含量、糖代謝相關(guān)酶活性的測定均采用在25 cm2培養(yǎng)瓶培養(yǎng)的細胞進行測定。孵育試驗結(jié)束后,細胞采用胰蛋白酶消化法進行收集,并用磷酸鹽緩沖液清洗2次。收集的細胞采用臺盼藍拒染法鑒定細胞活力,試驗中的活細胞用于酶活性和代謝物含量的測定。
肝細胞培養(yǎng)上清液中葡萄糖含量采用Kikuchi等[16]的操作方法進行測定;為測定肝細胞內(nèi)糖原和甘油三酯的含量,肝細胞收集后加入適量磷酸鹽緩沖液進行超聲破碎,肝細胞糖原含量采用de Frutos等[17]描述的方法進行測定,肝細胞糖原含量表示為每毫克細胞蛋白質(zhì)所含的肝糖原毫克數(shù)。
肝細胞GSase活性采用Vijayan等[18]描述的方法測定,MDH和ICD活性采用Sunny等[19]描述的方法測定,G6Pase活性采用Chan等[20]描述的方法測定。
肝細胞加入緩沖液(100 mmol Tris-HCl,pH 7.5,10 ℃)后勻漿,采用Sullivan等[21]所描述的方法測定PK活性。
肝細胞PEPCK活性采用Polakof等[22]描述的方法測定,操作如下:取預先收集好的肝細胞,在4 ℃下加入10倍緩沖液(緩沖液配制參照Polakof等[22])勻漿,勻漿液于10 000 r/min離心30 min后取上清,在30 ℃、340 nm波長下用酶標儀測定吸光度值。
細胞內(nèi)蛋白質(zhì)濃度以牛血清蛋白(BSA)作為標準品采用考馬斯亮藍法[23]定量測定。所有酶活性均采用特定活性(U/mg prot)表示。
1.5 數(shù)據(jù)處理
試驗數(shù)據(jù)用平均值±標準誤(mean±SE)表示。數(shù)據(jù)采用SPSS 19.0軟件進行統(tǒng)計和分析,先對數(shù)據(jù)進行方差齊性檢驗,如滿足方差齊性條件則對數(shù)據(jù)進行單因素方差分析(one-way ANOVA)和獨立樣本t檢驗,若組間存在顯著性差異,則再采用Duncan氏法進行多重比較,以P<0.05表示差異顯著。
2.1 皮質(zhì)醇對斜帶石斑魚原代培養(yǎng)肝細胞葡萄糖釋放量及糖原和丙酮酸含量的影響
皮質(zhì)醇對斜帶石斑魚原代培養(yǎng)肝細胞葡萄糖釋放量及糖原和丙酮酸含量的影響結(jié)果見圖1。皮質(zhì)醇孵育肝細胞24或36 h時,肝細胞葡萄糖含量均隨著皮質(zhì)醇濃度的升高而逐漸增加,與對照組相比,100和1 000 nmol/L皮質(zhì)醇組的肝細胞葡萄糖含量均顯著增加(P<0.05),且以1 000 nmol/L皮質(zhì)醇組為最高,顯著高于其他組(P<0.05)。皮質(zhì)醇孵育肝細胞24 h時,肝細胞糖原含量各組之間無顯著差異(P>0.05),而在孵育36 h時,肝細胞糖原含量則隨著皮質(zhì)醇濃度的升高而顯著降低(P<0.05),且以1 000 nmol/L皮質(zhì)醇組為最低。皮質(zhì)醇孵育36 h的肝細胞糖原含量顯著低于皮質(zhì)醇孵育24 h的肝細胞糖原含量(P<0.05)。皮質(zhì)醇孵育肝細胞24或36 h后,100和1 000 nmol/L皮質(zhì)醇組肝細胞丙酮酸含量均顯著低于對照組(P<0.05),但100和1 000 nmol/L皮質(zhì)醇組之間無顯著差異(P>0.05)。皮質(zhì)醇孵育時間對肝細胞葡萄糖和丙酮酸含量均沒有顯著影響(P>0.05)。
2.2 皮質(zhì)醇對斜帶石斑魚原代培養(yǎng)肝細胞糖代謝相關(guān)酶活性的影響
皮質(zhì)醇對斜帶石斑魚原代培養(yǎng)肝細胞糖代謝相關(guān)酶活性的影響見圖2。皮質(zhì)醇孵育肝細胞24或36 h時,隨著皮質(zhì)醇濃度的升高,肝細胞PEPCK活性呈現(xiàn)逐漸升高的趨勢,且各組之間差異顯著(P<0.05)。在皮質(zhì)醇濃度為100 nmol/L時,隨著孵育時間的延長,肝細胞PEPCK活性顯著升高(P<0.05)。皮質(zhì)醇孵育肝細胞24或36 h時,與對照組相比,100和1 000 nmol/L皮質(zhì)醇組肝細胞G6Pase活性均顯著升高(P<0.05),但100和1 000 nmol/L皮質(zhì)醇組之間無顯著差異(P>0.05)。在皮質(zhì)醇濃度為100和1 000 nmol/L時,肝細胞G6Pase活性隨著孵育時間的延長顯著下降(P<0.05)。皮質(zhì)醇孵育肝細胞24或36 h時,肝細胞MDH和ICD活性均隨著皮質(zhì)醇濃度的升高而顯著下降(P<0.05),且在1 000 nmol/L皮質(zhì)醇組達到最小值。孵育時間對同一濃度皮質(zhì)醇組的肝細胞MDH和ICD活性均無顯著影響(P>0.05)。皮質(zhì)醇孵育肝細胞24或36 h時,肝細胞G6Pase活性在各組之間均無顯著差異(P>0.05)。皮質(zhì)醇孵育肝細胞24 h時,肝細胞PK活性各組之間無顯著差異(P>0.05);在孵育36 h時,肝細胞PK活性隨著皮質(zhì)醇濃度的升高而增加,100和1 000 nmol/L皮質(zhì)醇組顯著低于對照組(P<0.05),但100和1 000 nmol/L皮質(zhì)醇組之間無顯著差異(P>0.05)。隨著孵育時間的延長,100和1 000 nmol/L皮質(zhì)醇組的肝細胞PK活性顯著升高(P<0.05)。但皮質(zhì)醇濃度及孵育時間對肝細胞GSase活性均未產(chǎn)生顯著影響(P>0.05)。
在魚類中,皮質(zhì)醇對物質(zhì)代謝的調(diào)節(jié)作用已有廣泛研究[24-27],主要是研究外源性皮質(zhì)醇對魚類在血漿和肝臟組織代謝水平以及肝臟組織中代謝相關(guān)酶活性變化規(guī)律的影響。由于魚體內(nèi)存在各種激素的擾動,很難對單個激素如皮質(zhì)醇在魚體糖代謝中的獨特調(diào)節(jié)作用進行研究。本試驗以斜帶石斑魚原代培養(yǎng)肝細胞為模型,用不同濃度皮質(zhì)醇對原代培養(yǎng)的肝細胞進行處理,探討皮質(zhì)醇對魚類糖代謝的調(diào)節(jié)作用。
數(shù)據(jù)柱標注不同小寫字母表示在同一孵育時間下不同皮質(zhì)醇濃度之間存在顯著差異(P<0.05),不同大寫字母表示在同一皮質(zhì)醇濃度下不同孵育時間之間存在顯著差異(P<0.05)。下圖同。
Date columns with different small letters indicate significant difference among different cortisol concentrations at the same exposure time (P<0.05), and with different capital letters indicate significant difference between different exposure time at the same cortisol concentration (P<0.05). The same as below.
圖1 皮質(zhì)醇孵育時間和濃度對斜帶石斑魚原代培養(yǎng)肝細胞葡萄糖釋放量及糖原、丙酮酸含量的影響
Fig.1 Effects of cortisol incubation time and concentration on glucose production, glycogen and pyruvate contents in primary cultured hepatocytes fromEpinepheluscoioides
本試驗中,皮質(zhì)醇孵育離體培養(yǎng)肝細胞后,其物質(zhì)代謝水平發(fā)生了顯著變化。皮質(zhì)醇可以顯著提高肝細胞葡萄糖的釋放量,并且葡萄糖釋放量與皮質(zhì)醇濃度存在劑量依賴性關(guān)系。皮質(zhì)醇的孵育時間長短并不會影響肝細胞葡萄糖釋放量,但皮質(zhì)醇的孵育時間長短影響了肝細胞糖原含量,孵育24 h時,皮質(zhì)醇濃度對肝細胞糖原含量不產(chǎn)生顯著影響,而在孵育36 h時皮質(zhì)醇濃度越高肝細胞糖原含量則越低。這表明,在皮質(zhì)醇孵育24 h時,肝細胞葡萄糖釋放量的增加不是由肝糖原分解產(chǎn)生的,可能是肝細胞利用培養(yǎng)液中的氨基酸通過糖異生途徑合成的葡萄糖。而孵育36 h時,葡萄糖釋放量的增加不僅由肝糖原分解得到,而且可能還由其他糖代謝途徑合成葡萄糖。已有研究表明,皮質(zhì)醇能夠刺激魚類肝臟氨基酸和甘油三酯用于糖異生[28-29]。本研究結(jié)果與Vijayan等[30]對美洲杜父魚(Hemitripterusamericanus)和Mommsen等[31]對大馬哈魚(Oncorhynchusketa)有關(guān)皮質(zhì)醇對糖代謝的研究結(jié)果一致。
糖酵解、糖異生與三羧酸循環(huán)是在動物體內(nèi)糖代謝的重要途徑,在維持血糖平衡中發(fā)揮重要作用[32]。本試驗中,皮質(zhì)醇顯著提高了斜帶石斑魚原代培養(yǎng)肝細胞PEPCK和G6Pase活性,但延長皮質(zhì)醇孵育時間提高了PEPCK的活性卻抑制了G6Pase的活性。這說明PEPCK和G6Pase活性與皮質(zhì)醇存在劑量和時間依賴性關(guān)系。PEPCK和G6Pase均為糖異生作用的關(guān)鍵酶,其活性的升高說明皮質(zhì)醇提高了肝細胞糖異生能力,促進了肝細胞葡萄糖的生成,這是肝細胞葡萄糖釋放量增加的重要原因。本試驗結(jié)果也證明了皮質(zhì)醇能夠刺激魚類肝臟糖異生作用以維持應激對葡萄糖的需要量這一結(jié)論[33-34]。Jones等[35]研究表明,地塞米松能夠刺激小鼠原代培養(yǎng)肝細胞利用丙酮酸作為基質(zhì)物的生糖作用。本試驗中,斜帶石斑魚原代培養(yǎng)肝細胞MDH和ICD活性均隨著皮質(zhì)醇濃度的升高而呈顯著降低,MDH和ICD是三羧酸循環(huán)中的限速酶,其活性降低說明皮質(zhì)醇抑制了肝細胞糖的有氧分解,促使肝細胞釋放更多的葡萄糖供給機體其他組織對能量的需求。Sunny等[19]研究表明,皮質(zhì)醇能夠降低羅非魚分離培養(yǎng)肝細胞MDH和ICD活性,與本試驗結(jié)果一致。本試驗結(jié)果表明,斜帶石斑魚原代培養(yǎng)肝細胞PK活性隨著皮質(zhì)醇孵育時間的延長而顯著增加,PK是糖酵解過程中催化磷酸烯醇式丙酮酸轉(zhuǎn)化成丙酮酸的調(diào)節(jié)酶,其活性增加表明皮質(zhì)醇能夠刺激糖酵解中丙酮酸的生成,而本研究中添加皮質(zhì)醇后丙酮酸的含量非但沒有增加,還較對照組顯著下降,這說明皮質(zhì)醇抑制了肝細胞的糖分解作用。研究表明,在魚類中皮質(zhì)醇對肝細胞糖原代謝的調(diào)節(jié)發(fā)揮重要作用[2]。本試驗中,作者利用肝細胞原代培養(yǎng)模型探討皮質(zhì)醇對肝細胞糖原合成過程中GSase的直接調(diào)節(jié)作用,但結(jié)果發(fā)現(xiàn),無論是皮質(zhì)醇濃度還是孵育時間都沒有對斜帶石斑魚原代培養(yǎng)肝細胞GSase的活性產(chǎn)生顯著影響,說明原代培養(yǎng)肝細胞糖原合成能力不受皮質(zhì)醇的調(diào)節(jié),與Vijayan等[18]對大馬哈魚的研究結(jié)果一致。相反,有研究表明,腹腔注射皮質(zhì)醇能夠刺激金頭鯛肝臟糖原的合成[6]。還有學者指出,皮質(zhì)醇通過上調(diào)海鯛離體肝細胞中GSase的轉(zhuǎn)錄水平來提高肝細胞的糖原合成能力[8]。這說明,皮質(zhì)醇對肝細胞糖原合成的調(diào)節(jié)作用不僅與魚的種類有關(guān),而且與皮質(zhì)醇的作用濃度和孵育時間有關(guān)。
圖2 皮質(zhì)醇孵育時間和濃度對斜帶石斑魚原代培養(yǎng)肝細胞磷酸烯醇丙酮酸羧激酶、葡萄糖-6-磷酸酶、糖原合成酶、蘋果酸脫氫酶、異檸檬酸脫氫酶和丙酮酸激酶活性的影響
綜上所述,皮質(zhì)醇提高了斜帶石斑魚原代培養(yǎng)肝細胞的糖異生能力,促進了葡萄糖的生成,抑制了葡萄糖的分解,而對糖原合成無調(diào)節(jié)作用。
[1] IWAMA G K,VIJAYAN M M,FORSYTH R B,et al.Heat shock proteins and physiological stress in fish[J].American Zoologist,1999,39(6):901-909.
[2] MOMMSEN T P,VIJAYAN M M,MOON T W.Cortisol in teleosts:dynamics,mechanisms of action,and metabolic regulation[J].Reviews in Fish Biology and Fisheries,1999,9(3):211-268.
[3] GAAB J,ROHLEDER N,NATER U M,et al.Psychological determinants of the cortisol stress response:the role of anticipatory cognitive appraisal[J].Psychoneuroendocrinology,2005,30(6):599-610.
[4] TORT L.Stress and immune modulation in fish[J].Developmental & Comparative Immunology,2011,35(12):1366-1375.
[5] BARTON B A,IWAMA G K.Physiological changes in fish from stress in aquaculture with emphasis on the response and effects of corticosteroids[J].Annual Review of Fish Diseases,1991,1:3-26.
[6] WENDELAAR B S E.The stress response in fish[J].Physiological Reviews,1997,77(3):591-625.
[7] WILSON R P.Utilization of dietary carbohydrate by fish[J].Aquaculture,1994,124(1/2/3/4):67-80.
[8] LEUNG L Y,WOO N Y S.Effects of growth hormone,insulin-like growth factor I,triiodothyronine,thyroxine,and cortisol on gene expression of carbohydrate metabolic enzymes in sea bream hepatocytes[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2010,157(3):272-282.
[9] PUVIANI A C,OTIOLENGHI C,GAVIOLI M E,et al.Action of glucagon and glucagon-like peptide on glycogen metabolism of trout isolated hepatocytes[J].Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1990,96(2):387-391.
[10] MOMMSEN T P,PLISETSKAYA E M.Insulin in fishes and agnathans:history,structure,and metabolic regulation[J].Reviews in Aquatic Sciences,1991,4(2/3):225-259.
[11] REINECKE M.Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-Ⅰ system [J].Journal of Fish Biology,2010,76(6):1233-1254.
[12] WOOD A W,DUAN C M,BERN H A.Insulin-like growth factor signaling in fish[J].International Review of Cytology,2005,243:215-285.
[13] BATTLE T,STACEY G.Cell culture models for hepatotoxicology[J].Cell Biology and Toxicology,2001,17(4/5):287-299.
[14] SEGNER H,B?HM R,KLOAS W.Binding and bioactivity of insulin in primary cultures of carp (Cyprinuscarpio) hepatocytes[J].Fish Physiology and Biochemistry,1993,11(1/2/3/4/5/6):411-420.
[15] QIN Q W,WU T H,JIA T L,et al.Development and characterization of a new tropical marine fish cell line from grouper,Epinepheluscoioidessusceptible to iridovirus and nodavirus[J].Journal of Virological Methods,2006,131(1):58-64.
[16] KIKUCHI K,FURUTA T,HONDA H.Utilization of soybean meal as a protein source in the diet of juvenile japanese flounder,Paralichthysolivaceus[J].Aquaculture Science,1994,42(4):601-604.
[17] DE FRUTOS P G,BONAMUSA L,FERNANDEZ F,et al.Fructose 2,6-bisphosphate in liver ofSparusaurata:influence of nutritional state[J].Comparative Biochemistry and Physiology Part B:Comparative Biochemistry,1990,96(1):63-65.
[18] VIJAYAN M M,MAULE A G,SCHRECK C B,et al.Hormonal control of hepatic glycogen metabolism in food-deprived,continuously swimming coho salmon (Oncorhynchuskisutch)[J].Canadian Journal of Fisheries and Aquatic Sciences,1993,50(8):1676-1682.
[19] SUNNY F,LAKSHMY P S,OOMMEN O V.Rapid action of cortisol and testosterone on lipogenic enzymes in a fresh water fishOreochromismossambicus:short-terminvivoandinvitrostudy[J].Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2002,131(3):297-304.
[20] CHAN D K,WOO N Y S.Effect of hypophysectomy on the chemical composition and intermediary metabolism of the Japanese eel,Anguillajaponica[J].General and Comparative Endocrinology,1978,35(2):169-178.
[21] SULLIVAN K M,SOMERO G N.Enzyme activities of fish skeletal muscle and brain as influenced by depth of occurrence and habits of feeding and locomotion [J].Marine Biology,1980,60(2/3):91-99.
[22] POLAKOF S,MGUEZ J M,SOENGAS J L.A hepatic protein modulates glucokinase activity in fish and avian liver:a comparative study[J].Journal of Comparative Physiology B:Biochemical,Systemic,and Environmental Physiology,2009,179(5):643-652.
[23] BRADFORD M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J].Analytical Biochemistry,1976,72(1/2):248-254.
[24] CHAN D K O,WOO N Y S.Effect of glucagon on the metabolism of the eal,Anguillajaponica[J].General and Comparative Endocrinology,1978,35(3):216-225.
[25] FOSTER G D,MOON T W.Cortisol and liver metabolism of immature American eels,Anguillarostrata(LeSueur)[J].Fish Physiology and Biochemistry,1986,1(2):113-124.
[26] VIJAYAN M M,BALLANTYNE J S,LEATHERLAND J F.Cortisol-induced changes in some aspects of the intermediary metabolism ofSalvelinusfontinalis[J].General and Comparative Endocrinology,1991,82(3):476-486.
[27] VIJAYAN M M,LEATHERLAND J F.Invivoeffects of the steroid analogue RU486 on some aspects of intermediary and thyroid metabolism of brook charr,Salvelinusfontinalis[J].Journal of Experimental Zoology,1992,263(3):265-271.
[28] DAVE G,JOHANSSON-SJ?BECK M L,LARSSON ?,et al.Effects of insulin on the fatty acid composition of the total blood plasma lipids in the european EEL,AnguillaanguillaL[J].Comparative Biochemistry and Physiology Part A:Physiology,1979,62(3):649-653.
[29] SHERIDAN M A.Effects of thyroxin,cortisol,growth hormone,and prolactin on lipid metabolism of coho salmon,Oncorhynchuskisutch,during smoltification[J].General and Comparative Endocrinology,1986,64(2):220-238.
[30] VIJAYAN M M,FOSTER G D,MOON T W.Effects of cortisol on hepatic carbohydrate metabolism and responsiveness to hormones in the sea raven,Hemitripterusamericanus[J].Fish Physiology and Biochemistry,1993,12(4):327-335.
[31] MOMMSEN T P,MOON T W.Metabolic response of teleost hepatocytes to glucagon-like peptide and glucagon[J].Journal of Endocrinology,1990,126(1):109-118.
[32] RADZIUK J,PYE S.Hepatic glucose uptake,gluconeogenesis and the regulation of glycogen synthesis[J].Diabetes/Metabolism Research and Reviews,2001,17(4):250-272.
[33] VIJAYAN M M,MOON T W.The stress response and the plasma disappearance of corticosteroid and glucose in a marine teleost,the sea raven[J].Canadian Journal of Zoology,2011,72(3):379-386.
[34] VIJAYAN M M,REDDY P K,LEATHERLAND J F,et al.The effects of cortisol on hepatocyte metabolism in rainbow trout:a study using the steroid analogue RU486[J].General and Comparative Endocrinology,1994,96(1):75-84.
[35] JONES C G,HOTHI S K,TITHERADGE M A.Effect of dexamethasone on gluconeogenesis,pyruvate kinase,pyruvate carboxylase and pyruvate dehydrogenase flux in isolated hepatocytes[J].The Biochemical Journal,1993,289(Pt 3):821-828.
Author, SONG Kai, associate professor, E-mail: songkai@jmu.edu.cn
(責任編輯 菅景穎)
Effects of Cortisol on Glycometabolism in Primary Cultured Hepatocytes formEpinepheluscoioides
SONG Kai LUO Yuan ZHANG Chunxiao WANG Ling YOU Wenhuang CHEN Xiaohui YANG Da
(Key Laboratory of Healthy Mariculture for the East China Sea of Ministry of Agriculture, Key Laboratory for Feed Quality Testing and Safety Evaluation, Fish College, Jimei University, Xiamen 361021, China)
This experiment was conducted to study the effects of cortisol on glycometabolism in primary cultured hepatocytes formEpinepheluscoioides. Freshly hepatocytes were isolated fromEpinepheluscoioides, and cultured at different cortisol concentrations [0 (control), 100 and 1 000 nmol/L] and different incubation time (24 and 36 h). Medium glucose content (hepatocyte glucose production), hepatocyte glycogen and pyruvate contents, and the activities of glycometabolism related enzymes including phosphoenolpyruvate carboxykinase (PECK), glucose-6-phosphatase (G6Pase), glycogen synthase (GSase), malate dehydrogenase (MDH), isocitrate dehydrogenase (ICD) and pyruvate kinase (PK) were assessed at 24 and 36 h of incubation, respectively. The results showed as follows: compared with the control group, the hepatocyte glucose production in 100 and 1 000 nmol/L cortisol groups was significantly increased (P<0.05), but the hepatocyte pyruvate content was significantly decreased (P<0.05), both at 24 and 36 h of incubation. The time of incubate to cortisol showed no significant effect on hepatocyte glucose production and pyruvate content (P>0.05). At 24 h of incubation, cortisol concentration showed no significant effect on hepatocyte glycogen content (P>0.05), however, at 36 h of incubation, hepatocyte glycogen content was significantly decreased with cortisol concentration increasing (P<0.05). With the cortisol incubation time extending, hepatocyte glycogen content was significantly decreased (P<0.05). At 24 and 36 h of incubation, 100 and 1 000 nmol/L cortisol significantly increased the activities of hepatocyte PEPCK and G6Pase (P<0.05), and significantly decreased the activities of hepatocyte MDH and ICD (P<0.05), however, there was no significant difference in the activity of hepatocyte GSase (P>0.05). At 24 h of incubation, cortisol concentration showed no significant effect on the activity of hepatocyte PK (P>0.05), but at 36 h of incubation, 100 and 1 000 nmol/L cortisol significantly increased the activity of hepatocyte PK (P<0.05). With the cortisol incubation time extending, the activity of hepatocyte G6Pase was significantly decreased (P<0.05), the activity of hepatocyte PK was significantly increased (P<0.05), however, there were no significant differences in the activities of hepatocyte MDH and ICD (P>0.05). The present study demonstrates that cortisol can enhance the gluconeogenesis, and has no regulating effect on synthesis of hepatic glycogen, but inhibits the catabolism of glucose of the primary cultured hepatocytes fromEpinepheluscoioides.[ChineseJournalofAnimalNutrition, 2016, 28(11):3520-3527]
Epinepheluscoioides; primary cultured; cortisol; glycometabolism; enzyme activities
2016-05-11
國家自然科學基金青年科學基金項目(31302198);國家公益性行業(yè)(農(nóng)業(yè))專項(201303053);集美大學大學生創(chuàng)新性試驗計劃項目(201610390103)
宋 凱(1978—),男,黑龍江哈爾濱人,副教授,博士,從事動物營養(yǎng)與飼料學研究。E-mail: songkai@jmu.edu.cn
10.3969/j.issn.1006-267x.2016.11.019
S963
A
1006-267X(2016)11-3520-08