趙麗清,尚書旗,高連興,胡修慧,殷元元,龔麗農(nóng)
(1. 沈陽農(nóng)業(yè)大學(xué)工程學(xué)院,沈陽 110161; 2. 青島農(nóng)業(yè)大學(xué)機電工程學(xué)院,青島 266109)
基于同心軸圓筒式電容傳感器的花生仁水分無損檢測技術(shù)
趙麗清1,2,尚書旗2,高連興1※,胡修慧2,殷元元2,龔麗農(nóng)2
(1. 沈陽農(nóng)業(yè)大學(xué)工程學(xué)院,沈陽 110161; 2. 青島農(nóng)業(yè)大學(xué)機電工程學(xué)院,青島 266109)
為了實現(xiàn)花生仁含水率的快速準確檢測,設(shè)計了以MSP430單片機為控制芯片的花生仁含水率檢測儀,利用圓筒式電容傳感器、溫度傳感器和稱質(zhì)量傳感器分別檢測花生仁的電容、溫度和容積密度,通過信號檢測調(diào)理電路進行測量信號電容到頻率的轉(zhuǎn)換,單片機進行數(shù)據(jù)處理后計算出花生仁含水率,在液晶屏上顯示檢測結(jié)果,并將檢測數(shù)據(jù)存儲到內(nèi)存卡中。進一步研究了含水率、溫度和容積密度對頻率的影響規(guī)律,建立了描述含水率與差頻、溫度的數(shù)學(xué)模型,并驗證了基于電容法檢測花生含水率的可行性和模型的可靠性。試驗表明,在含水率6.4%~18.2%、溫度10~40℃范圍內(nèi),該檢測儀的測量相對誤差絕對值小于0.5%。該研究為快速無損檢測花生仁含水率提供了參考。
電容法;含水率;溫度;花生仁;溫度補償;容積密度
花生是我國的重要油料與經(jīng)濟作物。我國花生常年種植面積約500萬hm2,總產(chǎn)1 400萬t,分別占世界20% 和40%。剛收獲的花生仁含水率達45%~50%,而儲藏時要求含水率要低于10.5%[1-4]。含水率對花生收獲過程中的晾曬與摘果、收后干燥、儲藏、脫殼和貿(mào)易等多個環(huán)節(jié)有極其重要的影響。花生仁含水率過高,不但影響測得的花生質(zhì)量,而且造成脫殼時的花生仁損傷與損失,同時花生莢果或花生仁存放與儲藏過程中容易霉變?;ㄉ稍?、加工、儲藏和貿(mào)易過程中需要頻繁、快速、精確地進行水分檢測。
測量花生仁水分常用的方法有傳統(tǒng)烘干法、近紅外光譜檢測法、微波法、電容法等。
花生仁水分檢測的國標法是烘干法。通過手搖切片機或小刀將花生仁切成0.5 mm以下的薄片或剪碎[5],然后進行烘干通過質(zhì)量損失率檢測水分含量,該方法過程繁瑣,且需花費幾個小時的時間烘干;K.N.Govindarajan 等[6]采用近紅外反射比方法檢測整?;ㄉ屎剩涓m宜于花生仁表面含水率檢測;S. Trabelsi等[7]采用微波技術(shù)檢測花生仁含水率,并通過試驗研究進行了溫度和容積密度校正補償,但該技術(shù)成本極高。
電容法糧食水分測量傳感器因其結(jié)構(gòu)簡單、動態(tài)響應(yīng)快、性價比高,仍是目前糧食水分測量的研究熱點。Chari V. K. Kandala等[8]采用射頻阻抗法設(shè)計了一種平行極板式電容水分檢測儀來檢測花生仁含水率,使用射頻阻抗儀測量并計算不同頻率下樣本電容值、相角值及損耗因子,但平行板電容器由邊界效應(yīng)導(dǎo)致的測量誤差較大;翟寶峰等[9]采用交流法將電容變化轉(zhuǎn)變成電壓變化后檢測糧食含水率;郭文川等[10]利用直流充/放電電路,分析了影響小雜糧介電特性的因素;劉志壯等[11]利用電容數(shù)字轉(zhuǎn)換芯片AD7150檢測稻谷含水率;滕召勝等[12]研究了稻谷、小麥及大米的導(dǎo)電浴盆效應(yīng)。美國DICKEY-John公司的GAC2500型水分儀和日本PM8188水分儀在國內(nèi)有一定的市場。前者精度高,但體積較大,不方便移動,且價格極高;后者是手持式水分儀,精度比前者低。國內(nèi)個別廠家在深入研究PM8188的基礎(chǔ)上,研發(fā)了自己的產(chǎn)品,比較有代表性的是上海青浦綠洲LDS系列谷物水分測定儀,但因其測量精度和重復(fù)率較低,未得到行業(yè)廣泛認同,特別是對于花生仁等大籽粒糧食作物,精度問題更加顯著。本文基于電容法測量原理,優(yōu)選了邊界效應(yīng)最小的圓筒式電容器作為傳感器核心、采用電容-差頻轉(zhuǎn)換方法,設(shè)計了相應(yīng)的硬件電路,研究了溫度和容積密度對花生仁水分測試的影響關(guān)系,對數(shù)據(jù)進行了溫度補償,首次在國內(nèi)進行了花生仁無損水分檢測系統(tǒng)的試驗研究。
1.1 花生仁水分檢測系統(tǒng)構(gòu)成
圖1為花生仁水分檢測系統(tǒng)的總體構(gòu)成框圖,該系統(tǒng)主要由電容、溫度和稱質(zhì)量傳感器模塊、單片機模塊、A/D轉(zhuǎn)換模塊、電源模塊、顯示模塊、存儲模塊及按鍵等模塊組成。選用MSP430單片機作為主控芯片,其功耗低、信號處理速度快,用于實現(xiàn)數(shù)據(jù)的采集、計算及人機交互的功能;鍵盤由測量按鍵和存儲按鍵組成,完成對樣品的測量和采集信息的存儲;液晶顯示屏使用的是薄膜晶體管(thin film transistor,TFT)液晶模塊,用于顯示測量頻率、質(zhì)量、溫度及含水率等。
圖1 水分檢測系統(tǒng)結(jié)構(gòu)圖Fig.1 Structure diagram of moisture content detection system
接通電源后,系統(tǒng)開始進入水分檢測狀態(tài),將花生仁放入定量容器內(nèi),由固定高度落入電容傳感器內(nèi),按檢測按鍵進行檢測。電容、稱質(zhì)量傳感器和溫度分別檢測花生仁的電容、質(zhì)量、溫度信號;信號經(jīng)過檢測調(diào)理電路和模數(shù)轉(zhuǎn)換電路傳送到MSP430單片機,由單片機完成對花生仁電容到頻率的采集及轉(zhuǎn)換、溫度和質(zhì)量數(shù)據(jù)的采集;然后計算出差頻和容積密度;再通過對數(shù)據(jù)建模、計算得到水分值,最后各數(shù)據(jù)信息由顯示模塊顯示,并按下存儲按鍵由存儲模塊進行數(shù)據(jù)信息存儲。
1.2 工作原理
電容式水分儀的工作原理[13-16]是通過放入極板間的物料的含水率不同,其介電常數(shù)不同,導(dǎo)致電容值發(fā)生改變,通過測量電容值的變化,間接測出物料的含水率。設(shè)計的花生仁水分檢測儀采用高頻電容式原理進行含水率的檢測。
檢測微小電容的方法通常是在激勵信號的作用下,連續(xù)對被測電容充放電,將電容轉(zhuǎn)換成與之成一定比例關(guān)系的電壓或頻率信號,還有的將其轉(zhuǎn)換成脈沖寬度信號或電流信號,常用的2種電容轉(zhuǎn)換方式是電容-頻率法和電容-電壓法[17-21]。
本設(shè)計采用的方法是將電容值的大小轉(zhuǎn)換為頻率值輸出,由于儀器電容值的變化很小,而且易受到雜散電容及外界溫濕度的影響。為此本文采用了差頻式檢測方法,差頻式檢測方法具有精度高、穩(wěn)定性好等優(yōu)點,設(shè)計的檢測轉(zhuǎn)換電路如圖2所示。通過將電容傳感器Cx接入振蕩電路,分別測量未放入樣本空筒時電路產(chǎn)生的振蕩頻率和裝滿樣品時的頻率,將電容量的改變轉(zhuǎn)變成頻率的改變輸出,依據(jù)頻率的改變量,計算得出花生仁樣本的水分值。
圖2 電容檢測轉(zhuǎn)換電路Fig.2 Capacitance detection and conversion circuit
2.1 花生仁水分檢測儀結(jié)構(gòu)設(shè)計
圖3為檢測花生仁含水率儀器的結(jié)構(gòu)。整個檢測裝置主要包括電容、溫度和稱質(zhì)量傳感器以及底座等。電容傳感器采用同心軸圓筒式結(jié)構(gòu)。極板材料選用鋁合金,外直徑為8.4 cm,內(nèi)直徑為5 cm,柱高11 cm。溫度傳感器選用的南京時恒集團生產(chǎn)的MF58 NTC熱敏電阻,其體積小、精度高、抗干擾能力強,能在?55~+250℃下正常工作。平行梁式稱質(zhì)量傳感器選用的上海天賀自動化儀表有限公司生產(chǎn)的LCS-D1,精度為±0.02%,靈敏度為(2.0±0.1)mV/V。底座使用亞克力板支撐整個檢測裝置。圖4為所設(shè)計檢測儀的實物圖。
圖3 檢測儀結(jié)構(gòu)Fig.3 Structure of detector
圖4 檢測儀器實物圖Fig.4 Picture of real detector
2.2 軟件設(shè)計
圖5為測量儀軟件系統(tǒng)的設(shè)計框圖。軟件系統(tǒng)由主程序完成對各模塊的初始化,子程序包括頻率、溫度和質(zhì)量的采集程序,差頻、容積密度和含水率的計算程序,以及按鍵識別、液晶顯示等程序??梢詫崿F(xiàn)對頻率、溫度、質(zhì)量的采集,以及完成差頻、容積密度和最終水分值的計算與顯示。
圖5 軟件系統(tǒng)框圖Fig.5 Block diagram of software system
3.1 試驗材料
花生仁:品種為四粒紅,產(chǎn)自吉林省吉林市。帶殼花生:品種為四粒紅,產(chǎn)自山東省臨沂市。對花生仁和帶殼花生分別進行處理,除去雜質(zhì)及破碎不完整的籽粒,只選用籽粒完好、形狀大小較均勻的花生仁作為試驗樣品。
3.2 試驗儀器
DHG-9140A型電熱鼓風(fēng)干燥箱:杭州得聚儀器設(shè)備有限公司;YH-A型電子天平:瑞安市樂祺有限公司;FA2004電子分析天平:上海舜宇恒平科學(xué)儀器有限公司。
3.3 試驗方法
3.3.1 樣品的制備
采用2種樣品制備方法進行對比試驗,分別是往花生仁和帶殼花生噴灑水來獲得不同含水率梯度花生仁樣品[22-28],帶殼花生剝殼后檢測花生仁含水率。根據(jù)國家標準GB 5497-1985方法,采用130℃干燥法,測得花生仁和帶殼花生樣品初始含水率分別約為6%和7%,兩組花生分別稱取7份樣品,將7份樣品放入密封袋中。為配制不同含水率的花生樣品,分別對每份樣品加入不同量的水,樣品水分高于15%時,分多次、每次少量加入水。將配置好的花生樣品放在2℃的冰箱中3 d,在此期間對各樣品袋進行晃動,使樣品水分吸收均勻。在每次測量前,將樣品放在不同溫度的環(huán)境下20 h,使其與外界環(huán)境達到溫度平衡。試驗前,用烘干法獲得2組樣品的濕基含水率分別為6.4%、8.4%、10.5%、12.6%、14.5%、16.3%、18.2%和5.4%、7.5%、9.5%、11.4%、13.3%、15.5%、17.7%,配制的樣品用于儀器的標定與檢驗。
3.3.2 測量方法
每次樣品水分的標定都采用國標法,將花生仁樣品置于130℃的電熱鼓風(fēng)干燥箱中烘干,直至質(zhì)量不再改變,根據(jù)烘干前后花生仁的質(zhì)量變化計算出并記錄下各組的水分值,作為標準值,含水率采用濕基表示法。將花生仁在固定高度(距容器底部約13 cm)以自由落體方式落到固定容器內(nèi)測得無壓實花生仁質(zhì)量,然后對花生仁施加不同大小的壓力或采取振動容器的方式,改變?nèi)萜鲀?nèi)所放花生仁的質(zhì)量,用花生仁質(zhì)量除以所使用容器的體積,得到不同容積密度的花生仁樣品。分別在不同溫度環(huán)境下進行試驗,每組樣品進行5次試驗取平均值,記錄各組數(shù)據(jù)。
4.1 不同含水率、溫度和差頻試驗
采用自由落體方式,不同含水率和溫度與所測花生仁差頻的關(guān)系如圖6所示。
圖6 花生仁含水率、溫度與差頻的關(guān)系Fig.6 Relationship of moisture content, temperature and difference frequency of peanut kernels
從圖6可以看出,2種方法得到的花生仁樣品的差頻值隨含水率的增大成上升的趨勢,隨溫度的升高也成增大的趨勢,在高水分和高溫度情況下增長更快。
4.2 容積密度和差頻試驗
表1為室溫20℃左右下,不同含水率花生仁在不同容積密度下測得的差頻值。分析表中數(shù)據(jù)可知,對于同一水分含量的花生仁,容積密度增大,差頻值也隨之增大。低含水率階段,差頻值變化較小,高含水率階段,差頻值變化較大。
4.3 含水率模型的建立與驗證
4.3.1 模型建立檢驗
測量時采用定容積取樣法,花生仁在一定高度自由落體,如果不人為振動電容傳感器或改變其體積,由表1可知花生仁的容積密度變化不大,對結(jié)果影響不顯著;由圖6可知,溫度對花生仁水分檢測的結(jié)果有很大影響,同一含水率花生仁樣品,溫度越高,花生仁內(nèi)部自由水的布朗運動速度越快,介電常數(shù)增大,電容量越大,頻率差值越大。因此在自由落體條件下,采取對含水率、頻率和溫度3個變量進行建模。分析2種方法得到的數(shù)據(jù)可知,影響規(guī)律和參數(shù)對比結(jié)果具有一致性,所以采用國際通用的樣品制備方法1所得數(shù)據(jù)建立數(shù)學(xué)模型。含水率值作為輸出值,頻率和溫度為輸入值,用MATLAB軟件進行多元二次建模,可采用的模型有線性、純二次、交叉和完全二次模型[29-31],通過比較分析4種模型的參數(shù),選擇最佳擬合方程。
表1 不同含水率和容積密度的花生仁差頻值Table 1 Difference frequency values of peanut kernels under different moisture contents and bulk densities
表2為4種回歸模型的擬合參數(shù)。由表2可知,完全二次模型的數(shù)據(jù)剩余標準差最小,說明數(shù)據(jù)較集中,建立的模型顯著性最好;殘差平方和最小,且復(fù)相關(guān)系數(shù)R2=0.9959最大,說明擬合程度最好。因此可采用完全二次模型建立花生仁含水率檢測模型。各模型方程為:
線性模型方程
純二次模型方程
交叉模型方程
完全二次模型方程
式中M為含水率,%;F為差頻,kHz;T為溫度,℃。
為驗證模型可靠性,隨機配制多份不同含水率的花生仁,在不同溫度下測得差頻,用上述4個模型的計算值與實際水分值進行比較,比較結(jié)果如圖7所示。由圖7模型驗證數(shù)據(jù)可知,完全二次模型的相關(guān)系數(shù)R2最高,該模型優(yōu)于其他3個模型,說明完全二次模型能準確地描述含水率、差頻和溫度之間的關(guān)系,即最佳數(shù)學(xué)模型為模型(4)。
表2 擬合方程參數(shù)對比Table 2 Comparison of parameters for fitting equations
圖7 計算值和實際值對比Fig.7 Comparing calculated values with actual values of moisture content
4.3.2 含水率預(yù)測試驗驗證
將表示花生仁含水率與差頻、溫度的關(guān)系的方程(4)編寫程序?qū)懭雴纹瑱C,用隨機配制的12份不同含水率花生仁樣品檢驗測量儀測量的精確度。用本文設(shè)計的花生仁含水率檢測儀進行檢測,每個樣品進行3次測量,結(jié)果取3次測量的平均值。表3是檢測儀測量值與標準值的比較結(jié)果。
表3 含水率測量值和實際值對比Table 3 Comparing measured values with actual values of moisture content %
由表3可以看出,測量結(jié)果與烘箱法結(jié)果相比,測量相對誤差的絕對值小于0.5%。因此,設(shè)計的花生仁含水率測量儀檢測結(jié)果較好的滿足設(shè)計要求,能夠?qū)崿F(xiàn)花生仁含水率的快速準確檢測。
1)本文設(shè)計了一種圓筒式花生仁水分測量儀。檢測硬件電路采用高頻電容測量技術(shù),其可將料筒電容變化轉(zhuǎn)換成頻率變化。由于被測料筒電容為皮法級,為避免雜散電容的引入,影響測量精度,試驗數(shù)據(jù)采用差頻法獲得。即試驗數(shù)據(jù)取自空料桶和裝滿物料料桶分別接入電路后測量頻率之差。由于圓桶邊界效應(yīng)小,差頻法又能盡可能的減小引入誤差,因此該儀器精度高、重復(fù)率好。
2)研究了溫度10~40℃、花生仁含水率6.4%~18.2%、容積密度0.632~0.719 g/cm3范圍內(nèi),差頻與含水率、溫度和容積密度的關(guān)系,建立了含水率、差頻和溫度的三元二次方程,并對回歸模型的準確性進行了驗證,在容積密度基本保持不變的情況下,該模型可以準確地描述花生仁差頻與含水率、溫度的關(guān)系。
3)驗證了所設(shè)計的花生仁含水率檢測儀的測量結(jié)果,試驗結(jié)果表明,該水分儀測量的水分值與實際水分值誤差在±0.5%范圍內(nèi)。
[1] 關(guān)萌,沈永哲,高連興,等. 花生起挖晾曬后的果柄機械特性[J]. 農(nóng)業(yè)工程學(xué)報,2014,30(2):87-93. Guan Meng, Shen Yongzhe, Gao Lianxing, et al. Mechanical properties of peanut peg after digging and drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(2): 87-93. (in Chinese with English abstract)
[2] 高連興,李飛,張新偉,等. 含水率對種子玉米脫粒性能的影響機理[J]. 農(nóng)業(yè)機械學(xué)報,2011,42(12):92-96,42. Gao Lianxing, Li Fei, Zhang Xinwei, et al. Mechanism of moisture content affect on corn seed threshing[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(12): 92-96, 42. (in Chinese with English abstract)
[3] Trabelsi S, Nelson S O. Microwave dielectric properties of shelled and unshelled peanuts[J]. Transactions of the ASAE, 2004, 47(4): 1215-1222.
[4] 彭三河,劉洋. 影響新收帶殼花生含水率的參數(shù)研究[J].長江大學(xué)學(xué)報:自然科學(xué)版農(nóng)學(xué)卷,2009,6(2):75-77. Peng Sanhe, Liu Yang. Study on influence parameters of water content of newly harvested peanuts[J]. Journal of Yangtze University: Nat Sci Edit Agri Sci, 2009, 6(2): 75-77. (in Chinese with English abstract)
[5] GB/T 5497-1985 糧食、油料檢驗水分測定法[S]. 1985. GB/T 5497-1985 Inspection of grain and oilseeds-methods for determination of moisture content[S]. 1985. (in Chinese with English abstract)
[6] Govindarajan K N, Kandala C V K., Subbiah J. NIR reflectance spectroscopy for nondestructive moisture content determination in peanut kernels[J]. Transactions of the ASABE, 2009, 52(5): 1661-1665.
[7] Trabelsi S, Nelson S O, Lewis M A. Microwave nondestructive sensing of moisture content in shelled peanuts independent of bulk density and with temperature compensation[J]. Sensing & Instrumentation for Food Quality & Safety, 2009, 3(2): 114-121.
[8] Kandala C V K, Butts C L, Nelson S O. Capacitance sensor for nondestructive measurement of moisture content in nuts and grain[J]. IEEE Transactions on Instrumentation and Measurement, 2007, 56(5): 1809-1813.
[9] 翟寶峰,白媛. 電容式糧食水分檢測儀的設(shè)計[J]. 遼寧工學(xué)院學(xué)報,2003,23(1):34-39. Zhai Baofeng, BaiYuan. Design of capacitor moisture detector for cereal[J]. Journal of LiaoNing Institute of Technology, 2003, 23(1): 34-39. (in Chinese with English abstract)
[10] 郭文川,趙志翔,楊沉陳. 基于介電特性的小雜糧含水率檢測儀設(shè)計與試驗[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(5):188-193. Guo Wenchuan, Zhao Zhixiang, Yang Chenchen. Moisture meter for coarse cereals based on dielectric properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(5): 188-193. (in Chinese with English abstract)
[11] 劉志壯,呂貴勇. 基于電容法的稻谷含水率檢測[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(7):179-182. Liu Zhizhuang, Lü Guiyong. Moisture content detection of paddy rice based on capacitance approach[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(7): 179-182. (in Chinese with English abstract)
[12] 滕召勝,周光俊,童調(diào)生. 糧食的導(dǎo)電浴盆效應(yīng)與新型水分檢測方法研究[J]. 中國糧油學(xué)報,1999,14(1):59-62. Teng Zhaosheng, Zhou Guangjun, Tong Tiaosheng. Electric conductivity bathtub effect of grain and a new method of measuring moisture content[J]. Journal of the Chinese Cereals and Oils Association, 1999, 14(1): 59-62. (in Chinese with English abstract)
[13] Nelson S O. Factors affecting the dielectric properties of Grain[J]. Transactions of the ASAE, 1982, 25(4): 1045-1049.
[14] Nelson S O, Trabelsi S. Principles for microwave moisture and density measurement in grain and seed[J]. Journal of Microwave Power and Electromagnetic Energy, 2004, 39(2): 107-117.
[15] 郭文川,朱新華. 國外農(nóng)產(chǎn)品及食品介電特性測量技術(shù)及應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報,2009,25(2):308-312. Guo Wenchuan, Zhu Xinhua. Foreign dielectric property measurement techniques and their applications in agricultural products and food materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(2): 308-312. (in Chinese with English abstract)
[16] 付鶴翔,張利鳳,郭文川. 電容式糧食含水率測量儀的設(shè)計[J]. 農(nóng)機化研究,2011,33(11):131-134. Fu Hexiang, Zhang Lifeng, Guo Wenchuan. Research on capacitive grain moisture content meter[J]. Journal of Agricultural Mechanization Research, 2011, 33(11): 131-134. (in Chinese with English abstract)
[17] 張文昭,劉志壯,周文真. 電容法豬肉含水率快速檢測的研究[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(20):272-275. Zhang Wenzhao, Liu Zhizhuang, Zhou Wenzhen. Quick detection of water content for pork by capacitance method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(20): 272-275. (in Chinese with English abstract)
[18] 楊柳,毛志懷,董蘭蘭. 電容式谷物水分傳感器平面探頭的研制[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(2):185-189. Yang Liu, Mao Zhihuai, Dong Lanlan. Development of plane polar probe of capacitive grain moisture sensor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 185-189. (in Chinese with English abstract)
[19] 楊柳,楊明皓,董蘭蘭. 主動屏蔽式平面探頭水分在線傳感器研究[J]. 農(nóng)業(yè)機械學(xué)報,2010,41(1):77-80. Yang Liu, Yang Minghao, Dong Lanlan. Development of a coplanar electrode capacitance moisture sensor[J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(1): 77-80. (in Chinese with English abstract)
[20] 楊王凡,黃磊,吳素萍,等. 多路數(shù)據(jù)采集與處理模型的設(shè)計及水分傳感器埋設(shè)位置優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(21):148-153. Wang Fan, Huang Lei, Wu Suping, et al. Design of multi-channel data acquisition and processing model and optimization of moisture sensor buried position[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(21): 148-153. (in Chinese with English abstract)
[21] 劉賀,趙燕東. 基于駐波原理的短探針小麥莖水分傳感器[J].農(nóng)業(yè)工程學(xué)報,2011,27(11):140-144. Liu He, Zhao Yandong. Wheat stem moisture sensor using short probes based on SWR principle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11):140-144. (in Chinese with English abstract)
[22] 郭文川,王婧,劉馳. 基于介電特性的薏米含水率檢測方法[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(3):113-117. Guo Wenchuan, Wang Jing, Liu Chi. Predicating moisture content of pearl barley based on dielectric properties[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(3): 113-117. (in Chinese with English abstract)
[23] 郭文川,王婧,朱新華. 基于介電特性的燕麥含水率預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(24):272-279. Guo Wenchuan, Wang Jing, Zhu Xinhua. Moisture content prediction of oat seeds based on dielectric property[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(24): 272-279. (in Chinese with English abstract)
[24] Casada M E, Armstrong P R. Wheat moisture measurement with a fringing field capacitive sensor[J]. Transactions of the ASABE, 2009, 52(5):1785-1791.
[25] 郭文川,劉馳,楊軍. 小麥秸稈含水率測量儀的設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(1):33-40. Guo Wenchuan, Liu Chi, Yang Jun. Design and experiment on wheat straw moisture content meter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(1): 33-40. (in Chinese with English abstract)
[26] Guo Wenchuan, Wang Shaojin, Tiwari Gopal et al. Temperature and moisture dependent dielectric properties of legume flour associated with dielectric heating[J]. LWT-Food Science and Technology, 2010, 43(2): 193-201.
[27] Kandala C V, Sundaram J. Nondestructive measurement of moisture content using a parallel-plate capacitance sensor for grain and nuts[J]. Sensors Journal, IEEE, 2010, 10(7):1282-1287.
[28] McIntosh R B, Casada M E. Fringing field capacitance sensor for measuring the moisture content of agricultural commodities[J]. Sensors Journal, IEEE, 2008, 8(3): 240-247.
[29] 黃操軍,田芳明,劉坤,等. 基于DSP的谷物含水率在線測量方法[J]. 農(nóng)業(yè)機械學(xué)報,2009,40(Z1):61-64. Huang Caojun, Tian Fangming, Liu Kun, et al. Universal online measuring method of grain moisture content based on DSP[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(Z1): 61-64. (in Chinese with English abstract)
[30] 黃操軍,段玉波,李愛傳,等. 基于DSP和單片機的谷物含水率準動態(tài)檢測技術(shù)研究[J]. 農(nóng)業(yè)工程學(xué)報,2008,24(5):127-130. Huang Caojun, Duan Yubo, Li Aichuan, et al. Quasi-dynamic measurement technology for grain moisture content based on DSP and MPU[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(5): 127-130. (in Chinese with English abstract)
[31] 張永林,王旺平,鄭長征,等. 谷物干燥實時在線智能水分測量系統(tǒng)[J]. 農(nóng)業(yè)工程學(xué)報,2007,23(9):137-140. Zhang Yonglin, Wang Wangping, Zheng Changzheng, et al. Intelligent real-time on-line measuring system for moisture content during grain drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(9): 137-140. (in Chinese with English abstract)
Nondestructive measurement of moisture content of peanut kernels based on concentric cylindrical capacitance
Zhao Liqing1,2, Shang Shuqi2, Gao Lianxing1※, Hu Xiuhui2, Yin Yuanyuan2, Gong Linong2
(1. College of Engineering, Shenyang Agricultural University, Shenyang 110161, China; 2. College of Mechanical and Electrical Engineering, Qingdao Agricultural University, Qingdao 266109, China)
Peanut is an important oil and economic crop, and also a major export product in China. Peanut industries manufacture many types of peanut-based products for human’s life. The moisture content of peanuts is in the range of 45%-50% when peanuts are freshly harvested, and the moisture content has to be below 10.5% in storage. High moisture content in peanut kernels can make them moldy, which mainly produces the toxic aflatoxins and causes huge waste and jeopardizes human’s health. Therefore it is necessary to keep proper moisture content in every treating process of peanuts. The detection of moisture content plays an important role in harvesting, drying, storage and trade of peanuts. Although the traditional oven-drying method has high precision, it is cumbersome and takes a lot of time. In addition to the oven-drying method and the microwave method, the near infrared method and the capacitance method are also common methods of moisture content detection. Comparing to other methods, the capacitance method has advantages of simple structure and low cost. In order to develop a rapid and accurate moisture content detection method for peanut kernels, the capacitance method was adopted to measure moisture content by using dielectric properties of grain. A peanut kernel moisture content detector was designed; MSP430 single chip microcomputer was taken as its control chip, and cylindrical capacitance sensor, temperature sensor and weighing sensor were used to detect capacitance, temperature and bulk density of peanut kernels respectively. Capacitance was converted to frequency through the signal detection and conditioning circuit, and frequency was detected when the capacitance sensor was empty or full of peanut kernels samples. The difference frequency values were processed and calculated by the single chip microcomputer. Subsequently an equation of measured difference frequency, temperature and moisture content values was established by the oven-drying method, and the detection results were displayed on the liquid crystal display (LCD) screen and all detected data were saved in a memory card. To investigate the influence of moisture content, temperature and bulk density on difference frequency, the tests were conducted at 7 moisture content levels from 6.4% to 18.2% and 4 temperature levels from 10 to 40℃ . The results indicated that there was a good linear relationship between moisture content and difference frequency, as the difference frequency values increased with the elevation of moisture content, temperature and bulk density. In the test, because peanut kernels fell into the capacitance sensor from fixed height, the bulk density was not changed, which caused little effect on measurement. Therefore a mathematical model of 3 parameters of moisture content, temperature and difference frequency was established based on the MATLAB 7.10.0 software by using a multi-variation binomial regression method. Linear model, pure quadratic model, interaction model and full quadratic model were compared and the results suggested that the full quadratic model described the relationship of moisture content, temperature and difference frequency more accurately. In the validation test, the results showed the absolute value of relative error measured by the moisture content detector was below 0.5%. Therefore the feasibility of detecting the moisture content of peanut kernels based on the capacitance method was verified, as well as the reliability of the multi-linear regression model. This investigation provides a useful tool for the rapid and nondestructive measurement of moisture content for peanut kernels.
capacitance; moisture content; temperature; peanut kernel; temperature compensation; bulk density
10.11975/j.issn.1002-6819.2016.09.030
S237
A
1002-6819(2016)-09-0212-07
趙麗清,尚書旗,高連興,胡修慧,殷元元,龔麗農(nóng). 基于同心軸圓筒式電容傳感器的花生仁水分無損檢測技術(shù)[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(9):212-218.
10.11975/j.issn.1002-6819.2016.09.030 http://www.tcsae.org
Zhao Liqing, Shang Shuqi, Gao Lianxing, Hu Xiuhui, Yin Yuanyuan, Gong Linong. Nondestructive measurement of moisture content of peanut kernels based on concentric cylindrical capacitance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(9): 212-218. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2016.09.030 http://www.tcsae.org
2015-11-16
2016-03-02
國家自然科學(xué)基金資助項目(51575367);國家公益性行業(yè)(農(nóng)業(yè))科研專項(200903053);山東省農(nóng)機局農(nóng)機技術(shù)提升項目(2015YH106);山東省自主創(chuàng)新專項(2013CXC90205-1);山東省自然基金(ZR2011FM034)
趙麗清,女(蒙古族),內(nèi)蒙古呼和浩特人,副教授,博士,碩士生導(dǎo)師,主要從事農(nóng)業(yè)智能裝備及測試技術(shù)研究。青島 青島農(nóng)業(yè)大學(xué)機電工程學(xué)院,266109。Email:zhlq017214@163.com
※通信作者:高連興,男,教授,博士生導(dǎo)師,主要從事農(nóng)產(chǎn)品加工與收獲機械研究。沈陽 沈陽農(nóng)業(yè)大學(xué)工程學(xué)院,110866。Email:lianxing_gao@126.com