田 娟 何 艮 麥康森 周慧慧
(1.中國海洋大學(xué),農(nóng)業(yè)部水產(chǎn)動物營養(yǎng)與飼料重點實驗室,青島266003;2.中國水產(chǎn)科學(xué)研究院長江水產(chǎn)研究所,農(nóng)業(yè)部淡水生物多樣性保護與利用重點開放實驗室,武漢430223)
?
營養(yǎng)物質(zhì)對魚類食欲的影響
田 娟1,2何 艮1*麥康森1周慧慧1
(1.中國海洋大學(xué),農(nóng)業(yè)部水產(chǎn)動物營養(yǎng)與飼料重點實驗室,青島266003;2.中國水產(chǎn)科學(xué)研究院長江水產(chǎn)研究所,農(nóng)業(yè)部淡水生物多樣性保護與利用重點開放實驗室,武漢430223)
尋找理想魚粉替代物是近20年動物營養(yǎng)學(xué)的研究熱點之一,盡管在肉食性魚類中魚粉替代物因適口性差、消化率低、氨基酸不平衡和存在抗營養(yǎng)因子等原因?qū)е缕涮娲壤^低,然而,隨著魚粉供求關(guān)系的進一步不平衡,替代魚粉已成為肉食性魚類養(yǎng)殖可持續(xù)發(fā)展的必然要求。因此,如何提高肉食性魚類對魚粉替代物的利用率成為了魚粉替代研究的瓶頸。本文從食欲的角度,綜述各種營養(yǎng)物質(zhì)對食欲的影響,以便利用營養(yǎng)措施來人為調(diào)控魚類的食欲,從而提高飼料利用率。
食欲;營養(yǎng)物質(zhì);調(diào)控;魚類
隨著水產(chǎn)養(yǎng)殖業(yè)的快速發(fā)展,配合飼料原料的需求量越來越大,飼料蛋白質(zhì)源供應(yīng)不足在20世紀90年代就已出現(xiàn),魚粉作為最優(yōu)質(zhì)的蛋白質(zhì)源表現(xiàn)得尤為突出,因此尋找理想魚粉替代物成為近20年動物營養(yǎng)學(xué)研究熱點之一[1-3]。目前,在水產(chǎn)動物上關(guān)于利用低廉易得的植物蛋白質(zhì)源替代魚粉的研究已有大量報道,一般認為非肉食性魚類能較好的利用植物蛋白質(zhì)原料,在配合飼料中可用植物蛋白質(zhì)原料部分或全部替代魚粉。但在肉食性魚類中,植物蛋白質(zhì)原料替代魚粉后在相當大程度上降低了魚類的食欲,并造成了負面影響(生產(chǎn)性能下降、生理和免疫機能降低、肉質(zhì)品質(zhì)劣化等),從而極大限制了植物蛋白質(zhì)源在肉食性魚類上的應(yīng)用[3-4]。然而,替代魚粉已成為肉食性魚類養(yǎng)殖可持續(xù)發(fā)展的必然要求,因此,全面深入研究魚類的食欲生理調(diào)節(jié)機制,并利用營養(yǎng)措施來人為調(diào)控其食欲,提高其對植物蛋白質(zhì)原料的利用率,將為有效解決植物蛋白質(zhì)源在肉食性魚類上的應(yīng)用提供必要的理論依據(jù)與技術(shù)支持。本文將重點綜述營養(yǎng)物質(zhì)對魚類食欲的影響。
食欲是指動物對攝食的天然動機,是驅(qū)使動物進行攝食活動(ingestion)的欲望,以獲得能量和營養(yǎng)物質(zhì)來維持正常生理活動為目的,這也是消化代謝過程的首要環(huán)節(jié)。反映動物食欲好壞的重要指標是其主動攝食量(feed intake),攝食量的大小是諸多因素相互間復(fù)雜作用的結(jié)果,這些因素包括動物自身因素如生理狀況(感覺刺激、胃腸信號、循環(huán)因子和化學(xué)信號等),以及外在因素如餌料(氣味、形狀、大小、原料構(gòu)成、營養(yǎng)成分等)、水環(huán)境(溫度、溶氧、pH、金屬離子、CO2等)、飼養(yǎng)密度和疾病防治等。魚類攝食的基本調(diào)控過程如圖1[5]所示。
圖1 魚類攝食調(diào)控過程示意圖Fig.1 Schematic diagram of the processes that control feed intake in fishes[5]
2.1 蛋白質(zhì)和氨基酸對食欲的影響
動物為了生長和維持生命活動需要攝入一定量的蛋白質(zhì),飼糧中蛋白質(zhì)或氨基酸水平對動物攝食的影響極為重要,下丘腦的攝食調(diào)控中樞可以通過神經(jīng)與體液通路監(jiān)測攝入食物中的蛋白質(zhì)和氨基酸水平,從而調(diào)節(jié)動物的食欲[6-7]。研究證實,當食物中蛋白質(zhì)甚或某一種必需氨基酸不足時,動物的攝食行為會出現(xiàn)不良表現(xiàn);當食物中的蛋白質(zhì)或必需氨基酸只能滿足機體的最低需要時,動物會增加攝食量以滿足生理需要;當食物中蛋白質(zhì)水平過高時,動物攝食量會明顯減少[8]。如當食物中的能量只有5%~8%來自于蛋白質(zhì)時,小鼠的攝食量較標準飲食顯著增加(小鼠的營養(yǎng)標準中規(guī)定所需能量的14%需由蛋白質(zhì)提供),但當?shù)鞍踪|(zhì)提供的能量低于5%時,小鼠的攝食量顯著降低[9];在保證碳水化合物含量不變的情況下,將食物中蛋白質(zhì)提供能量的比例由15%增加到30%,可使人的食欲減退,攝食量顯著降低[10]。諸多學(xué)者已報道了類似的結(jié)果[11-14]。同時,蛋白質(zhì)存在攝食補償效應(yīng)[15]。這主要是因為在短時間內(nèi)蛋白質(zhì)相對于糖類和脂肪更容易讓人產(chǎn)生飽食感,這與蛋白質(zhì)代謝生熱效應(yīng)比糖和脂肪更強有關(guān)[16],同時蛋白質(zhì)相對其他主要營養(yǎng)物質(zhì)較難在體內(nèi)消化分解,因此,需要消耗更多的時間和能量來消化吸收,相對不容易引起饑餓感[17]。也有研究者發(fā)現(xiàn)蛋白質(zhì)會提高小腸內(nèi)的葡萄糖“產(chǎn)量”,而大腦在分析了小腸內(nèi)的葡萄糖水平后,會決定是否發(fā)出“吃飽了”的信息,這條信息一旦發(fā)出,就會起到抑制食欲的作用[18-19]。此外,蛋白質(zhì)通過影響機體食欲相關(guān)肽如瘦素(leptin)、饑餓素(ghrelin)、膽囊收縮素(CCK)、肽YY(PYY)的分泌,來影響食欲[10,20]。
相對于高等陸生動物,魚類對蛋白質(zhì)的需要量更高,蛋白質(zhì)在魚類的生長過程中發(fā)揮著極其重要的生理功能,魚體內(nèi)的蛋白質(zhì)不僅可用于各組織和器官的生長及自我修復(fù),也是許多生物活性物質(zhì)如酶、激素和抗體等的重要組成成分。研究發(fā)現(xiàn),魚體生長與魚體蛋白質(zhì)的增長具有顯著的正相關(guān)關(guān)系,因而真正的魚類生長指的是魚體蛋白質(zhì)的增長[21],但一般認為過低或過高的飼料蛋白質(zhì)水平對魚類的攝食率、蛋白質(zhì)效率和飼料效率均會產(chǎn)生不良影響[22-23]。在魚類上少有的機理研究結(jié)果卻與高等動物存在明顯差異,在大西洋鮭上發(fā)現(xiàn)高植物蛋白質(zhì)飼料對leptin、ghrelin和CCK的mRNA表達水平較魚粉無顯著影響[24-25];在草魚上發(fā)現(xiàn),神經(jīng)肽Y(NPY)作為草魚的促進食欲調(diào)節(jié)因子[26],飼料中含35%~40%的蛋白質(zhì)可顯著提高其下丘腦NPY的mRNA表達水平[27];在虹鱒上(Oncorhynchusmykiss)的研究表明,植物蛋白質(zhì)源飼料并不影響其雷帕霉素靶蛋白(TOR)信號通路中的TOR和核糖體蛋白S6(ribosomal protein S6,S6)蛋白質(zhì)磷酸化水平[28],但隨飼料中蛋白質(zhì)與碳水化合物比的降低,虹鱒TOR信號通路被激活[29];對中華鱉(Pelodiscussinensis)的研究發(fā)現(xiàn),當用大豆?jié)饪s蛋白替代飼料中60%魚粉后,TOR、S6和4E結(jié)合蛋白1(4E-BP1)蛋白質(zhì)磷酸化水平顯著下降[30]。這表明魚類TOR信號通路受到飼料蛋白質(zhì)水平的調(diào)控,蛋白質(zhì)源對TOR信號通路的影響與動物種類有關(guān)。
本質(zhì)上講,魚類對蛋白質(zhì)的需求實際上是對蛋白質(zhì)中比例平衡的氨基酸的需求。因此,在魚類配合飼料中,不僅要注重蛋白質(zhì)給食欲帶來的影響,更要關(guān)注氨基酸對食欲的影響。現(xiàn)在普遍認為氨基酸對動物的攝食行為有著極強的刺激作用,是動物良好的誘食劑。氨基酸可分為L型(左旋)和D型(右旋)。L型氨基酸已被公認是引誘魚類、甲殼類和其他水產(chǎn)動物采食的最有效的化合物之一。L型氨基酸(鹽)具有一定的口感,其中組氨酸、精氨酸、苯丙氨酸表現(xiàn)為苦味;丙氨酸、脯氨酸、蘇氨酸表現(xiàn)為甜昧;天冬氨酸表現(xiàn)為酸味;谷氨酸鹽具有鮮味;纈氨酸、亮氨酸和異亮氨酸等支鏈氨基酸具有巧克力味;而蛋氨酸及其衍生物則具有鮮肉味[31]。不同魚類喜歡的風味不同,對風味具有定向性,即使同一種氨基酸或氨基酸組合對不同的魚類也會表現(xiàn)出不同的誘食活性,一般認為非肉食性魚類偏愛甜味,而肉食性魚類偏愛鮮肉味[32-33]。同時氨基酸對魚類的食欲影響還與氨基酸的酸堿性有關(guān)。酸性氨基酸包括天冬氨酸和谷氨酸,堿性氨基酸包括賴氨酸、精氨酸和組氨酸。一般認為,肉食性魚類對堿性和中性氨基酸敏感,而草食性魚類對酸性氨基酸敏感[34-35]。在哺乳動物上的研究發(fā)現(xiàn),與識別氨基酸相關(guān)的口腔受體屬味覺受體第1家族(taste receptor family 1members,T1Rs),它們均為G蛋白偶聯(lián)受體,T1R1和T1R3以異源二聚體的形式識別氨基酸的味道[36]。
關(guān)于氨基酸影響動物攝食調(diào)控的研究結(jié)果在不同的物種間以及不同處理方式間存在差異。例如:腦部注射亮氨酸后,大鼠采食量顯著減少,同時促食欲NPY和刺鼠相關(guān)蛋白(AgRP)的蛋白質(zhì)表達量顯著下降[6];在飼料中添加亮氨酸卻并不影響泌乳期大鼠的采食量、產(chǎn)熱量、體增重,但顯著抑制了下丘腦NPY和AgRPmRNA的表達[37]。近年來,關(guān)于中樞信號通路對食欲的影響成為研究的熱點,在斷奶仔豬中發(fā)現(xiàn),添加0.55%的L-亮氨酸組較對照組和添加0.27%L-亮氨酸組顯著提高了TOR信號通路中的核糖體S6激酶1(S6K1)和4E-BP1蛋白質(zhì)磷酸化水平,從而促進了仔豬的蛋白質(zhì)合成能力[38]。在魚類中的研究主要集中在轉(zhuǎn)錄水平上。對鯽魚的研究發(fā)現(xiàn),飼料中添加0.54%精氨酸顯著降低了其肝臟和肌肉中TOR和S6K1的mRNA表達水平,但不影響4E-BP2的mRNA表達水平[39]。隨飼料中亮氨酸水平的升高,團頭魴肝臟中的TORmRNA表達水平顯著升高[40]。亮氨酸和精氨酸可提高饑餓中國對蝦的TOR和S6K1蛋白質(zhì)磷酸化水平及其mRNA表達水平[41],而色氨酸抑制了建鯉肌肉和肝臟中TORmRNA的表達,提高了中腸和后腸TOR和4E-BP的mRNA表達水平[42]。TOR在進化上是一種十分保守的蛋白激酶,廣泛存在于各種生物細胞中,魚類TOR基因與人類的同源性達到90%以上,鯉魚與斑馬魚的TOR基因同源性達到97%以上[43]。在高等哺乳動物上,通常TOR信號通路的上、下游關(guān)鍵因子如蛋白激酶B(Akt)、TOR、S6K1、S6、4E-BP1等一般主要體現(xiàn)在蛋白質(zhì)磷酸化水平上,而在對魚類的居多研究中均發(fā)現(xiàn)了轉(zhuǎn)錄水平上的差異,因此需要進一步通過蛋白質(zhì)表達水平來確認魚類與哺乳類的差異。
2.2 脂肪與脂肪酸對食欲的影響
動物從外界攝取營養(yǎng)物質(zhì)的第一需要是為了供給生命活動的能量需要,脂肪作為一種高能營養(yǎng)素,每克脂肪在體內(nèi)的氧化產(chǎn)熱量分別是糖類、蛋白質(zhì)的2.3和1.7倍(蛋白質(zhì)、脂肪和糖類的氧化產(chǎn)熱量分別為23640、39539和17154J/g)[44];同時,相對蛋白質(zhì)和糖類,動物對脂肪的敏感性較低,脂肪相對最不容易使機體產(chǎn)生飽食感[20],因此攝入同質(zhì)量的這3種營養(yǎng)物質(zhì),脂肪意味著更多的能量輸入,卻不因能量過剩而抑制食欲,因而出現(xiàn)脂肪沉積并發(fā)生肥胖癥。Boyd等[45]認為高脂飲食不影響人的攝食量與血漿CCK和胰高血糖素樣肽-Ⅰ(GLP-Ⅰ)的水平。但也有研究者認為長期攝食過高脂肪飲食將抑制食欲,使抑制食欲的相關(guān)肽水平升高,如CCK、生長激素抑制素(somatostatin)[46-47]。
近幾年的生理學(xué)研究發(fā)現(xiàn),人和嚙齒目動物能通過口腔識別出脂肪酸的味道,但并不能識別出甘油三酯的味道[48],能被識別的脂肪酸包括多不飽和脂肪酸(亞油酸)、單不飽和脂肪酸(油酸)、飽和脂肪酸(C18∶0、C12∶0、C6∶0)等[49]。與脂肪攝入和代謝相關(guān)的作用受體主要分布在口腔[味覺感受細胞(taste receptor cells)]和小腸??谇恢舅崦舾行?oral fatty acid sensitivity)在控制脂肪的攝入量中起關(guān)鍵作用,研究顯示長期大量攝入高脂食物后,口腔脂肪酸敏感性會降低。例如:膳食誘導(dǎo)肥胖鼠(diet-induced obesity prone,DIO-P)較膳食誘導(dǎo)肥胖抵抗鼠(diet-induced obesity resistant,DIO-R)口腔脂肪酸敏感性顯著降低,當給這2種鼠同時飼喂同種高脂飼料時,前者的食欲和攝食量顯著高于后者[50]。腸道對脂肪攝入的調(diào)節(jié)主要是通過調(diào)節(jié)胃腸道的運動力和刺激胃腸道分泌與食欲相關(guān)的激素來實現(xiàn),當攝入的脂肪較多時,小腸會減緩胃腸胃的運動力,從而延長胃排空的時間,并分泌出抑制食欲的激素,如CCK、GLP-Ⅰ等,進而減少能量的攝入[51]。同樣,脂肪酸對leptin和ghrelin的分泌也產(chǎn)生影響,如二十碳五烯酸(EPA)會增加小鼠leptin的分泌[52],增長脂肪酸碳鏈的長度會抑制ghrelin的分泌,促進PYY、胰多肽和胰高血糖素樣肽-2(GLP-2)的分泌[53]。
在魚類上,脂肪的消化能和代謝能轉(zhuǎn)化為凈能的效率比糖類和蛋白質(zhì)高5%~10%,直接來自飼料或體內(nèi)代謝產(chǎn)生的游離脂肪酸、甘油三酯是魚類維持生長的重要能源物質(zhì),特別是海水魚類,因其對糖類的利用率較差,脂肪在海水魚類營養(yǎng)中的供能作用就更為重要,適量的脂肪具有促進攝食和節(jié)約蛋白質(zhì)的作用[44]。研究發(fā)現(xiàn)魚類攝食率能夠根據(jù)飼料脂肪水平的改變而調(diào)整。在非等能飼料中,有些魚類的攝食率先隨著飼料脂肪水平的增加而增加,當脂肪水平超過一定范圍時攝食率顯著下降,如虹鱒[54]、歐洲鱸[55]、草魚[56]、南方鲇[57]等。也有研究發(fā)現(xiàn),在等能飼料中,虹鱒的攝食率不受飼料脂肪水平的顯著影響[58]。這表明魚類主要是根據(jù)飼料的能量水平來調(diào)整飼料的攝入量,脂肪對魚類攝食率的影響可能更多的取決于其供能作用。類脂如磷脂和膽固醇對某些水生動物具有一定的誘食作用[59-60]。飼料中添加適量的必需脂肪酸,可提高水產(chǎn)動物的攝食量和飼料效率[61]。
2.3 糖類對食欲的影響
糖類是自然界中分布最為廣泛的一類有機化合物,在植物體內(nèi)通??烧几芍氐?0%~80%,是人和動物最重要的能量來源,在人類食物中糖類供給的能量占全部能量的50%~55%,在畜禽上也在50%以上。水產(chǎn)動物雖然也可以利用糖類作為能源,但因其自身分泌胰島素和糖代謝能力有限,因此糖類在水產(chǎn)動物上的應(yīng)用受到魚的種類、糖的種類及糖的消化率的影響,一般糖類供給的能量占水產(chǎn)動物全部能量的比例不超過50%[44]。因植物蛋白質(zhì)源自身所含的糖類相對魚粉高出很多,因此有必要了解糖類對食欲的影響。
關(guān)于動物攝食糖類后所產(chǎn)生的影響具體見圖2[62],圖中各種淀粉定義:易消化淀粉(rapidly digestible starch,RDS),指能在小腸中被迅速消化吸收的淀粉;慢消化淀粉(slowly digestible starch,SDS)是指在小腸中能被完全消化吸收但速度較慢的淀粉;抗消化淀粉(resistant starch,RS),是指在小腸中會產(chǎn)生抗消化現(xiàn)象的淀粉,其功能相當于纖維素。目前在高等動物上主要是根據(jù)血糖指數(shù)(glycemic index,GI)和血糖負荷(glycemic load,GL)對淀粉進行劃分[63-64]。亦可以根據(jù)體外模擬酶水解法來判斷不同淀粉的消化性能[59]。一般葡萄糖和RDS可提高動物的食欲,SDS和RS抑制動物的食欲,果糖的過量攝入可能對機體造成不良影響[65]。多數(shù)學(xué)者認為糖類對食欲的影響主要是通過血糖和胰島素來進行調(diào)節(jié)[66-69],糖類對食欲神經(jīng)肽如CCK、PYY和ghrelin的分泌無顯著影響[20]。
圖2 碳水化合物的分類和攝食碳水化合物后產(chǎn)生的主要反應(yīng)Fig.2 Carbohydrate classification and their main postprandial effects[62]
2.4 核苷酸(nucleotides)對食欲的影響
核苷酸是低分子化合物,具有編碼遺傳信息、調(diào)節(jié)能量代謝、傳遞細胞信號、作為輔酶等重要的生理生化功能。由于動物機體能合成各種核苷酸,且沒有特異性缺乏癥,因而長期以來核苷酸一直被視為非必需營養(yǎng)素。近年研究發(fā)現(xiàn),核苷酸作為一種誘食劑能顯著提高動物的食欲,并能促進腸道的生長發(fā)育及腸道損傷后的修復(fù),還有利于腸道有益微生物的生長[76]。在水產(chǎn)動物上,飼料中補充核苷酸能提高大西洋鮭[77]、條紋鱸[78]等的攝食率,但對真鯛、條紋鱸和紅鰭東方魨的攝食有抑制作用[26],其作用機理有待進一步研究。
2.5 維生素對食欲的影響
因動物對維生素的需要量較少,且一般可通過外源性添加來滿足動物對維生素的需要,因此維生素對動物食欲影響的報道較少。在魚類上,缺乏維生素C、泛酸、葉酸、煙酸、肌醇等會出現(xiàn)厭食癥[44]。在高等動物上維生素A和維生素D對食欲的影響較為明顯[79-81]。食物中若缺乏維生素D,會使小鼠胰島素分泌受到明顯的損傷,最終導(dǎo)致小鼠攝食量降低[81];維生素D攝入過高會導(dǎo)致幼兒食欲減退[80];高水平維生素A可使小鼠的leptin mRNA表達水平下調(diào),但卻并未導(dǎo)致攝食量的增加[82]。
2.6 礦物元素對食欲的影響
與水產(chǎn)動物食欲相關(guān)的礦物元素主要有鎂、鐵、鋅等[47]。在高等動物上,鋅對食欲的調(diào)控作用最為明顯,鋅是唾液中味覺素(gustin)的構(gòu)成成分,動物缺鋅不易刺激味覺,進而影響食欲;缺鋅使代謝所需的各種含鋅酶的活性降低,影響核酸和蛋白質(zhì)的合成與分解。此外,鋅還可通過直接改變中樞神經(jīng)系統(tǒng)中去甲腎上腺素受體、多巴胺受體、血清素受體和阿片肽受體等的活性而調(diào)節(jié)食欲,并影響神經(jīng)系統(tǒng),表現(xiàn)為氨基酸代謝和神經(jīng)遞質(zhì)(主要是兒茶酚胺類物質(zhì))含量發(fā)生改變,進而導(dǎo)致動物攝食異常[83-84]。缺鋅和高鋅均可調(diào)控大鼠垂體內(nèi)基因的表達,缺鋅可下調(diào)NPYmRNA的表達水平,上調(diào)CCK和降鈣素基因相關(guān)肽(CGRP)mRNA的表達水平;高鋅則可上調(diào)黑素色濃縮素和ghrelin mRNA的表達水平[85]。關(guān)于其他礦物元素對食欲的影響目前未見系統(tǒng)報道。
在哺乳動物上均發(fā)現(xiàn)高蛋白質(zhì)飲食容易使機體產(chǎn)生飽食感并刺激抑制食欲的調(diào)節(jié)肽分泌,而碳水化合物和脂肪卻不同,特別是機體味覺系統(tǒng)對脂肪不敏感,同時蛋白質(zhì)和糖類產(chǎn)生的總能相近,那么今后在魚類配方設(shè)計時,需要合理降低飼料蛋白質(zhì)水平,即蛋白質(zhì)只需要滿足魚體的最低需求量,使更多的脂肪和碳水化合物供能。特別是在飼料蛋白質(zhì)源供應(yīng)不足成為水產(chǎn)養(yǎng)殖業(yè)可持續(xù)發(fā)展的瓶頸問題時,如何降低飼料蛋白質(zhì)的供能作用,使更多的蛋白質(zhì)用于生長,從而降低飼料蛋白質(zhì)水平和提高蛋白質(zhì)利用率,緩解飼料蛋白質(zhì)源緊缺的問題,并減少大量的代謝氮排放對水環(huán)境的污染,更成為目前水產(chǎn)動物營養(yǎng)研究迫切需要解決的內(nèi)容。
[1] HARDY R W.Alternate protein sources for salmon and trout diets[J].Animal Feed Science and Technology,1996,59(1/2/3):71-80.
[2] WATANABE T.Strategies for further development of aquatic feeds[J].Fisheries Science,2002,68(2):242-252.
[3] HARDY R W.Utilization of plant proteins in fish diets:effects of global demand and supplies of fishmeal[J].Aquaculture Research,2010,41(5):770-776.
[4] 鄧君明.動植物蛋白源對牙鲆攝食、生長和蛋白質(zhì)及脂肪代謝的影響[D].博士學(xué)位論文.青島:中國海洋大學(xué),2006.
[5] HUNTINGFORD F,JOBLING M,KADRI S.Aquaculture and behavior[M].Blackwell:Wiley,2012:183-219.
[6] COTA D,PROULX K,SMITH K A B,et al.Hypothalamic mTOR signaling regulates food intake[J].Science,2006,312(5775):927-930.
[7] JOURNEL M,CHAUMONTET C,DARCEL N,et al.Brain responses to high-protein diets[J].Advances in Nutrition:An International Review Journal,2012,3(3):322-329.
[8] TOME D.Protein,amino acids and the control of food intake[J].British Journal of Nutrition,2004,92(Suppl.1):S27-S30.
[9] DU F Y,HIGGINBOTHAM D A,WHITE B D.Food intake,energy balance and serum leptin concentrations in rats fed low-protein diets[J].The Journal of Nutrition,2000,130(3):514-521.
[10] WEIGLE D S,BREEN P A,MATTHYS C C,et al.A high-protein diet induces sustained reductions in appetite,ad libitum caloric intake,and body weight despite compensatory changes in diurnal plasma leptin and ghrelin concentrations[J].The American Journal of Clinical Nutrition,2005,82(1):41-48.
[11] COLOMBO J P,CERVANTES H,KOKOROVIC M,et al.Effect of different protein diets on the distribution of amino acids in plasma,liver and brain in the rat[J].Annals of Nutrition & Metabolism,1992,36(1):23-33.
[12] LEIDY H J,RACKI E M.The addition of a protein-rich breakfast and its effects on acute appetite control and food intake in ‘breakfast-skipping’ adolescents[J].International Journal of Obesity,2010,34(7):1125-1133.
[13] WESTERTERP-PLANTENGA M S,LEJEUNE M P G M,NIJS I,et al.High protein intake sustains weight maintenance after body weight loss in humans[J].International Journal of Obesity,2004,28(1):57-64.
[14] WHITE B D,DEAN R G,MARTIN R J.An association between low levels of dietary protein,elevatedNPYgene expression in the basomedial hypothalamus and increased food intake[J].Nutritional Neuroscience,1998,1(3):173-182.
[15] GRIFFIOEN-ROOSE S,MARS M,SIEBELINK E,et al.Protein status elicits compensatory changes in food intake and food preferences[J].The American Journal of Clinical Nutrition,2012,95(1):32-38.
[16] JOHNSTON C S,DAY C S,SWAN P D.Postprandial thermogenesis is increased 100% on a high-protein,low-fat diet versus a high-carbohydrate,low-fat diet in healthy,young women[J].Journal of the American College of Nutrition,2002,21(1):55-61.
[17] WESTERTERP-PLANTENGA M S.The significance of protein in food intake and body weight regulation[J].Current Opinion in Clinical Nutrition & Metabolic Care,2003,6(6):635-638.
[18] PADDON-JONES D,WESTMAN E,MATTES R D,et al.Protein,weight management,and satiety[J].The American Journal of Clinical Nutrition,2008,87(5):1558S-1561S.
[19] MITHIEUX G,MISERY P,MAGNAN C,et al.Portal sensing of intestinal gluconeogenesis is a mechanistic link in the diminution of food intake induced by diet protein[J].Cell Metabolism,2005,2(5):321-329.
[20] BRENNAN I M,LUSCOMBE-MARSH N D,SEIMON R V,et al.Effects of fat,protein,and carbohydrate and protein load on appetite,plasma cholecystokinin,peptide YY,and ghrelin,and energy intake in lean and obese men[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2012,303(1):G129-G140.
[21] NRC.Nutrient requirements of fish and shrimp[S].Washington,D.C.:The National Academics Press,2011.
[22] COUTINHO F,PERES H,GUERREIRO I,et al.Dietary protein requirement of sharpsnout sea bream (Diploduspuntazzo,Cetti 1777) juveniles[J].Aquaculture,2012,356-357:391-397.
[23] JAUNCEY K.The effects of varying dietary protein level on the growth,food conversion,protein utilization and body composition of juvenile tilapias (Sarotherodonmossambicus)[J].Aquaculture,1982,27(1):43-54.
[24] HEVR?Y E M,EL-MOWAFI A,TAYLOR R,et al.Effects of a high plant protein diet on the somatotropic system and cholecystokinin in Atlantic salmon (SalmosalarL.)[J].Comparative Biochemistry and Physiology Part A:Molecular & Integrative Physiology,2008,151(4):621-627.
[25] SISSENER N H,HEMRE G I,ESPE M,et al.Effects of plant-based diets on glucose and amino acid metabolism,leptin,ghrelin and GH-IGF system regulation in Atlantic salmon (SalmosalarL.)[J].Aquaculture Nutrition,2013,19(3):399-412.
[26] ZHOU Y,LIANG X F,YUAN X C,et al.Neuropeptide Y stimulates food intake and regulates metabolism in grass carp,Ctenopharyngodonidellus[J].Aquaculture,2013,380/381/382/383:52-61.
[27] JIN Y,TIAN L X,XIE S W ,et al.Interactions between dietary protein levels,growth performance,feed utilization,gene expression and metabolic products in juvenile grass carp (Ctenopharyngodonidella)[J].Aquaculture,2015,437:75-83.
[28] LANSARD M,PANSERAT S,SEILIEZ I,et al.Hepatic protein kinase B (Akt)-target of rapamycin (TOR)-signalling pathways and intermediary metabolism in rainbow trout (Oncorhynchusmykiss) are not significantly affected by feeding plant-based diets[J].British Journal of Nutrition,2009,102(11):1564-1573.
[29] SEILIEZ I,PANSERAT S,LANSARD M,et al.Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal[J].American Journal of Physiology:Regulatory, Integrative and Comparative Physiology,2011,300(3):R733-R743.
[30] ZHOU F,WANG Y Q,TANG L,et al.Effects of dietary soy protein concentrate on growth,digestive enzymes activities and target of rapamycin signaling pathway regulation in juvenile soft-shelled turtle,Pelodiscussinensis[J].Agricultural Sciences,2015,6:335-345.
[31] 高冬余,李呂木.水產(chǎn)飼料中氨基酸類誘食劑的研究進展[J].中國飼料,2008(18):27-30.
[32] 伍一軍,包華駒,吳文勝,等.氨基酸對鯽魚、泥鰍的誘食活性[J].水產(chǎn)學(xué)報,1993,17(4):337-339.
[33] 梁萌青,于宏,常青,等.不同誘食劑對3種魚類誘食活性的研究[J].中國水產(chǎn)科學(xué),2000,7(1):60-63.
[34] JOHNSEN P B,ADAMS M A.Chemical feeding stimulants for the herbivorous fish,Tilapiazillii[J].Comparative Biochemistry and Physiology Part A:Physiology,1986,83(1):109-112.
[35] REIG L,GINOVART M,FLOS R.Modification of the feeding behaviour of sole (Soleasolea) through the addition of a commercial flavour as an alternative to betaine[J].Aquatic Living Resources,2003,16(4):370-379.
[36] CHANDRASHEKAR J,HOON M A,RYBA N J P,et al.The receptors and cells for mammalian taste[J].Nature,2006,444(7117):288-294.
[38] YIN Y L,YAO K,LIU Z J,et al.SupplementingL-leucine to a low-protein diet increases tissue protein synthesis in weanling pigs[J].Amino Acids,2010,39(5):1477-1486.
[39] TU Y Q,XIE S Q,HAN D,et al.Dietary arginine requirement for gibel carp (Carassisauratusgibelio var.CAS Ⅲ) reduces with fish size from 50g to 150g associated with modulation of genes involved in TOR signaling pathway[J].Aquaculture,2015,449:37-47.
[40] REN M C,HABTE-TSION H M,LIU B,et al.Dietary leucine level affects growth performance,whole body composition,plasma parameters and relative expression of TOR and TNF-α in juvenile blunt snout bream,Megalobramaamblycephala[J].Aquaculture,2015,448:162-168.
[41] SUN S J,WANG B J,JIANG KY,et al.Target of rapamycin (TOR) inFenneropenaeuschinensis:cDNA cloning,characterization,tissue expression and response to amino acids[J].Aquaculture Nutrition,2015,21(1):1-9.
[42] TANG L,FENG L,SUN C Y,et al.Effect of tryptophan on growth,intestinal enzyme activities andTORgene expression in juvenile Jian carp (Cyprinuscarpiovar.Jian):studiesinvivoandinvitro[J].Aquaculture,2013,412/413:23-33.
[43] 王嘉,薛敏,吳秀峰,等.魚類對不同蛋白質(zhì)源飼料選擇性攝食調(diào)控機制的研究進展[J].動物營養(yǎng)學(xué)報,2014,26(4):833-842.
[44] 李愛杰.水產(chǎn)動物營養(yǎng)與飼料學(xué)[M].北京:農(nóng)業(yè)出版社,1996:36-46.
[45] BOYD K A,O’DONOVAN D G,DORAN S,et al.High-fat diet effects on gut motility,hormone,and appetite responses to duodenal lipid in healthy men[J].American Journal of Physiology:Gastrointestinal and Liver Physiology,2003,284(2):G188-G196.
[46] BEGLINGER C,DEGEN L.Fat in the intestine as a regulator of appetite-role of CCK[J].Physiology & Behavior,2004,83(4):617-621.
[47] BLUDELL J E,LAWTON C L,COTTON J R,et al.Control of human appetite:implications for the intake of dietary fat[J].Annual Review of Nutrition,1996,16:285-319.
[48] MATTES R D.Is there a fatty acid taste?[J].Annual Review of Nutrition,2009,29:305-327.
[49] MATTES R D.Oral detection of short-,medium-,and long-chain free fatty acids in humans[J].Chemical Senses,2009,34(2):145-150.
[50] GILBERTSON T A,LIU L D,KIM I,et al.Fatty acid responses in taste cells from obesity-prone and -resistant rats[J].Physiology & Behavior,2005,86(5):681-690.
[51] LITTLE T J,FEINLE-BISSET C.Effects of dietary fat on appetite and energy intake in health and obesity-oral and gastrointestinal sensory contributions[J].Physiology & Behavior,2011,104(4):613-620.
[52] PéREZ-MATUTE P,MARTI A,MARTNEZ J A,et al.Eicosapentaenoic fatty acid increases leptin secretion from primary cultured rat adipocytes:role of glucose metabolism[J].American Journal of Physiology:Regulatory,Integrative and Comparative Physiology,2005,288(6):R1682-R1688.
[53] FELTRIN K L,PATTERSON M,GHATEI M A,et al.Effect of fatty acid chain length on suppression of ghrelin and stimulation of PYY,GLP-2and PP secretion in healthy men[J].Peptides,2006,27(7):1638-1643.
[54] GéLINEAU A,CORRAZE G,BOUJARD T,et al.Relation between dietary lipid level and voluntary feed intake,growth,nutrient gain,lipid deposition and hepatic lipogenesis in rainbow trout[J].Reproduction,Nutrition,Development,2001,41(6):487-503.
[55] BOUJARD T,GéLINEAU A,COVS D,et al.Regulation of feed intake,growth,nutrient and energy utilisation in European sea bass (Dicentrarchuslabrax) fed high fat diets[J].Aquaculture,2004,231(1/2/3/4):529-545.
[56] DU Z Y,LIU Y J,TIAN L X,et al.Effect of dietary lipid level on growth,feed utilization and body composition by juvenile grass carp (Ctenopharyngodonidella)[J].Aquaculture Nutrition,2005,11(2):139-146.
[57] FU S J,CAO Z D.Effect of dietary protein and lipid levels on feed intake and growth performance of southern catfish,SilurusmeridionalisChen[J].Aquaculture Research,2006,37(1):107-110.
[58] YAMAMOTO T,KONISHI K,SHIMA T,et al.Influence of dietary fat and carbohydrate levels on growth and body composition of rainbow troutOncorhynchusmykissunder self-feeding conditions[J].Fisheries Science,2001,67(2):221-227.
[59] PAIBULKICHAKUL C,PIYATIRATITIVORAKUL S,KITTAKOOP P,et al.Optimal dietary levels of lecithin and cholesterol for black tiger prawnPenaeusmonodonlarvae and postlarvae[J].Aquaculture,1998,167(3/4):273-281.
[60] BRIGGS M R P,BROWN J H,FOX C J.The effect of dietary lipid and lecithin levels on the growth,survival,feeding efficiency,production and carcass composition of post-larvalPenaeusmonodonFabricius[J].Aquaculture Research,1994,25(3):279-294.
[61] TAKEUCHI T.Essential fatty acid requirements of aquatic animals with emphasis on fish larvae and fingerlings[J].Reviews in Fisheries Science,1997,5(1):1-25.
[62] ALLER E E J G,ABETE I,ASTRUP A,et al.Starches,sugars and obesity[J].Nutrients,2011,3:341-369.
[63] JENKINS D J,WOLEVER T M,TAYLOR R H,et al.Glycemic index of foods:a physiological basis for carbohydrate exchange[J].The American Journal of Clinical Nutrition,1981,34(3):362-366.
[64] ZHANG G Y,SOFYAN M,HAMAKER B R.Slowly digestible state of starch:mechanism of slow digestion property of gelatinized maize starch[J].Journal of Agricultural and Food Chemistry,2008,56(12):4695-4702.
[65] 繆銘,江波,張濤.淀粉的消化性能與RVA曲線特征值的相關(guān)性研究[J].食品科學(xué),2009,30(5):16-19.
[66] VAN DAM R M,SEIDELL J C.Carbohydrate intake and obesity[J].European Journal of Clinical Nutrition,2007,61(Suppl.1):S75-S99.
[67] PETERS H P F,RAVESTEIN P,VAN DER HIJDEN H T W M,et al.Effect of carbohydrate digestibility on appetite and its relationship to postprandial blood glucose and insulin levels[J].European Journal of Clinical Nutrition,2011,65(1):47-54.
[68] WOLEVER T M S,LEUNG J,VUKSAN V,et al.Day-to-day variation in glycemic response elicited by white bread is not related to variation in satiety in humans[J].Appetite,2009,52(3):654-658.
[69] FLINT A,GREGERSEN N T,GLUUD L L,et al.Associations between postprandial insulin and blood glucose responses,appetite sensations and energy intake in normal weight and overweight individuals:a meta-analysis of test meal studies[J].British Journal of Nutrition,2007,98(1):17-25.
[70] ALI M Z,JAUNCEY K.Optimal dietary carbohydrate to lipid ratio in African catfishClariasgariepinus(Burchell 1822)[J].Aquaculture International,2004,12(2):169-180.
[71] 付世建,謝小軍.飼料碳水化合物水平對南方鲇生長的影響[J].水生生物學(xué)報,2005,29(4):393-398.
[72] 裴之華,解綬啟,雷武,等.長吻鮠和異育銀鯽對玉米淀粉利用差異的比較研究[J].水生生物學(xué)報,2005,29(3):239-246.
[73] 譚肖英,劉永堅,田麗霞,等.飼料中碳水化合物水平對大口黑鱸Micropterussalmoides生長、魚體營養(yǎng)成分組成的影響[J].中山大學(xué)學(xué)報:自然科學(xué)版,2005,44(增刊1):258-263.
[74] 周華,樊啟學(xué),宗克金,等.飼料碳水化合物水平對鳡幼魚生長和體成分的影響[J].水生態(tài)學(xué)雜志,2011,32(3):108-113.
[75] 任鳴春.軍曹魚和虹鱒糖類營養(yǎng)生理研究[D].博士學(xué)位論文.青島:中國海洋大學(xué),2012.
[76] 羅國富,楊小萍,宋煥,等.外源核苷酸對動物營養(yǎng)的作用[J].飼料博覽,2009(4):8-11.
[77] BURRELLS C,WILLIAMS P D,FORNO P F.Dietary nucleotides:a novel supplement in fish feeds:1.Effects on resistance to disease in salmonids[J].Aquaculture,2001,199(1/2):159-169.
[78] PAPATRYPHON E,SOARESJR J H,Jr.Optimizing the levels of feeding stimulants for use in high-fish meal and plant feedstuff-based diets for striped bass,Moronesaxatilis[J].Aquaculture,2001,202(3/4):279-288.
[79] 何云飛.維生素A缺乏與兒童厭食行為的相關(guān)研究[D].碩士學(xué)位論文.南京:南京醫(yī)科大學(xué),2006.
[80] 袁秀琴.維生素D中毒誤診為小兒厭食癥5例報告[J].哈爾濱醫(yī)藥,2006,26(3):64-65.
[81] CHERTOW B S,SIVITZ W I,BARANETSKY N G,et al.Cellular mechanisms of insulin release:the effects of vitamin D deficiency and repletion on rat insulin secretion[J].Endocrinology,1983,113(4):1511-1518.
[82] FELIPE F,MERCADER J,RIBOT J,et al.Effects of retinoic acid administration and dietary vitamin A supplementation on leptin expression in mice:lack of correlation with changes of adipose tissue mass and food intake[J].Biochimica et Biophysica Acta:Molecular Basis of Disease,2005,1740(2):258-265.
[83] TAKEDA A.Movement of zinc and its functional significance in the brain[J].Brain Research Reviews,2000,34(3):137-148.
[84] HENDY H A E,YOUSEF M I,EL-NAGA N I A.Effect of dietary zinc deficiency on hematological and biochemical parameters and concentrations of zinc,copper,and iron in growing rats[J].Toxicology,2001,167(2):163-170.
[85] 井明艷.鋅影響大鼠生長發(fā)育及其與降鈣素基因相關(guān)肽調(diào)控攝食的機理研究[D].博士學(xué)位論文.杭州:浙江大學(xué),2007.
(責任編輯 菅景穎)
Effect of Nutrients on Appetite of Fishes
TIAN Juan1,2HE Gen1*MAI Kangsen1ZHOU Huihui1
(1.KeyLaboratoryofAquacultureNutrition,MinistryofAgriculture,OceanUniversityofChina,Qingdao266003,China; 2.KeyLaboratoryofFreshwaterBiodiversityConservationandUtilization,MinistryofAgriculture,YangtzeRiverFisheriesResearchInstitute,ChineseAcademyofFisherySciences,Wuhan430223,China)
Finding ideal fish meal substitutes has become one of the research hotspots of animal nutrition in recently two decades. In carnivorous fishes, fish meal substitutes due to poorer palatability, lower digestibility, imbalance amino acid and anti-nutritional factors and other reasons lead to a lower replacement. Despite all this, with the fish meal requirement further increasing, replacement of fish meal has become an inevitable requirement for sustainable development of carnivorous fish farming. Therefore, how to improve the utilization of fish meal substitutes becomes the bottle-neck of fish meal substitution study. This paper from the perspective of appetite, reviews the recent advances towards nutrients on the appetite, so as to regulate the appetite through nutrition measures, thus improves the utilization of feed through nutrition measures.[ChineseJournalofAnimalNutrition, 2016, 28(4):974-983]
appetite; nutrients; regulation; fishes
10.3969/j.issn.1006-267x.2016.04.003
2015-10-30
國家自然科學(xué)基金面上項目(31572627);國家自然科學(xué)基金優(yōu)秀青年基金(31222055)
田 娟(1983—),女,湖北蘄春人,助理研究員,博士研究生,主要從事魚類營養(yǎng)學(xué)研究。E-mail: tianjuan0303@163.com
*通信作者:何 艮,教授,博士生導(dǎo)師,E-mail: hegen@ouc.edu.cn
S963.7
A
1006-267X(2016)04-0974-10
*Corresponding author, professor, E-mail: hegen@ouc.edu.cn