国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

miR—21—5p在肺動脈高壓發(fā)病機制中的調(diào)控作用研究

2016-12-27 18:05:17張洪亮董天崴張磊藝
中國醫(yī)藥導報 2016年29期
關鍵詞:肺動脈高壓調(diào)控

張洪亮 董天崴 張磊藝

[摘要] 目的 研究miR-21-5p在肺動脈高壓發(fā)病中的調(diào)控機制。 方法 應用qRT-PCR方法檢測miR-21-5p在正常人和先天性心臟病伴肺動脈高壓患者血清,以及常氧和缺氧處理肺動脈平滑肌細胞中的表達;利用Edu滲入法以及劃痕實驗研究miR-21-5p對肺動脈平滑肌細胞增殖及遷移的影響;應用Targetscan軟件進行靶基因預測并在肺動脈平滑肌細胞中進行驗證。 結果 肺動脈高壓患者血清miR-21-5p水平顯著高于正常人血清(P < 0.001);與常氧相比,缺氧處理肺動脈平滑肌細胞明顯促進miR-21-5p表達(P < 0.01);miR-21-5p能夠促進缺氧條件下的肺動脈平滑肌細胞增殖、遷移;雙熒光素酶報告系統(tǒng)證明miR-21-5p能夠結合骨形成蛋白Ⅱ型受體(BMPR2)的3UTR;鑒定miR-21-5p在肺動脈平滑肌細胞中靶向BMPR2基因。 結論 miR-21-5p調(diào)控靶基因BMPR2參與肺動脈高壓發(fā)病。

[關鍵詞] 肺動脈高壓;microRNA;骨形成蛋白Ⅱ型受體;調(diào)控

[中圖分類號] R543.2 [文獻標識碼] A [文章編號] 1674-4721(2016)10(b)-0012-04

[Abstract] Objective To reveal the role of miR-21-5p in the development of pulmonary arterial hypertention (PAH). Methods qRT-PCR method was used to detect the expression of miR-21-5p in the serum of healthy donors and patients with PAH associated with congenital heart disease (CHD-PAH), and the pulmonary artery smooth muscle cells (PASMC) exposed to normoxia and hypoxia. The effects of miR-21-5p on hypoxia-induced PASMC proliferation and migration were detected by Edu incorporation and wound assay. The target gene of miR-21-5p was predicted by targetscan and validated by luciferase report assay. Results miR-21-5p level was significantly increased in the serum of CHD-PAH patient as compared with healthy donors (P < 0.001). In addition, the expression of miR-21-5p was significantly induced in PASMC treated by hypoxic as compared with normoxia (P < 0.01). Functional analysis revealed that miR-21-5p significantly enhanced hypoxia-induced PASMC proliferation and migration. Finally, dual-luciferase reporter system proved miR-21-5p could integrate with BMPR2 3UTR, then BMPR2 was identified as a direct target of miR-21-5p. Conclusion The study demonstrates that miR-21-5p is involved in regulating PAH by targeting BMPR2.

[Key words] Pulmonary arterial hypertension; microRNA; BMPR2; Regulation

肺動脈高壓是以肺動脈壓力持續(xù)升高、肺血管阻力增加和肺小血管重構為特征的肺血管疾病[1]。肺動脈平滑肌細胞的增殖和遷移,使得肺小動脈內(nèi)徑變細,最終肺動脈阻力增加,壓力升高為其病理學特征[2-3]。

microRNA(miRNA)是一類高度保守、長度為20~25個核苷酸的非編碼單鏈小RNA[4]。miRNA通過與靶基因mRNA 3′非翻譯區(qū)(3′-UTR)特異結合,在轉錄后水平對基因進行調(diào)控[5]。研究表明,miRNA參與肺動脈高壓的發(fā)生發(fā)展進程[6-7]。miRNA通過促進肺動脈平滑肌細胞的分化和抗凋亡效應來參與肺動脈高壓的進程[8-9]。本研究對miR-21-5p調(diào)控BMPR2參與肺動脈高壓的發(fā)病機制進行初步探索。

1 材料與方法

1.1 患者血清標本采集

血清標本來源于北京阜外醫(yī)院先天性心臟病伴有肺動脈高壓(CHD-PAH)患者及健康人各24例。肺動脈高壓的診斷標準為在海平面靜息狀態(tài)下右心導管檢查肺動脈收縮壓>4 kPa(30 mmHg)和/或肺動脈平均壓>3.33 kPa(25 mmHg)。血液樣本在室溫下靜置1 h,4℃離心機3000 r/min離心10 min,上清液保存于-80℃冰箱。

1.2 miR-21-5p實時熒光定量檢測

應用qRT-PCR檢測試劑盒(深圳盎然生物)進行檢測。miRNA經(jīng)加poly A后立即逆轉錄反應形成cDNA,snoRNA44作為內(nèi)參。每個樣本PCR反應做3個復孔,引物如下:miR-21-5p 5′-GTGCAGGGTCCGAGGTCAGAGCCACCTGGGCAATTTTTTTTTTTCAACAT-3′(RT),5′-TTCGGTAGCTTACAGACTGA-3′(Forward); SNORD44:5′ -GTGCAGGGTCCGAGGTCAGAGCCACCTGGGCAATTTTTTTTTTTAGTCAG-3′(RT),5′-TGGCCTGGATGATGATAAGCA-3′ (Forward)。

1.3 肺動脈平滑肌細胞的分離和培養(yǎng)

人肺動脈平滑肌細胞(HPASMC)購自美國Science Cell公司,大鼠肺動脈平滑肌原代細胞(RPASMC)分離自SD大鼠[北京市維通利華實驗動物技術有限公司,合格證號:SCXK(京)2011-0011]肺動脈。

1.4 靶基因3-UTR熒光素酶載體及其突變載體的構建

以大鼠的基因組DNA為模板,將pGL3-ccdb載體經(jīng)雙酶切后與基因的3-UTR產(chǎn)物連接。BMPR2的3-UTR突變引物,擴增產(chǎn)物連接到雙酶切后的pGL3-ccdb載體,連接后轉化酶切鑒定后進行測序分析。

1.5 BMPR2蛋白表達檢測

采用Western blot法進行蛋白檢測。4%~10%的預制膠電泳分離蛋白質,經(jīng)濕轉法將蛋白轉移至硝酸纖維素膜上,一抗4℃搖床孵育過夜,用Totallab TL100圖像分析軟件對特異條帶進行灰度掃描,并用相對灰度值表示蛋白相對含量。一抗?jié)舛确謩e為:抗BMPR2(Abcam)1∶1000,抗β-Tubulin(Santa Cruz)1∶2000;二抗?jié)舛葹?∶2000。

1.6 細胞增殖實驗

根據(jù)試劑盒(廣州銳博生物),接種細胞于48孔板,加入20 μmol/L EdU繼續(xù)培養(yǎng)24 h后,用4%多聚甲醛室溫固定30 min,0.5%Triton X-100透化10 min,每孔細胞加入150 μL染色反應液反應30 min。DNA用1×Hochest (150 μL/孔)染色5 min,在熒光顯微鏡下拍照。

1.7 細胞遷移實驗

細胞密度達到90%以上時進行劃痕(每組劃3~5個位置),更換成含0.5%FBS的SmGM-2培養(yǎng)基進行饑餓處理,并標記和拍照,所有細胞遷移實驗重復3次。

1.8 統(tǒng)計學方法

采用SPSS 17.0統(tǒng)計學軟件進行數(shù)據(jù)分析,計量資料數(shù)據(jù)用均數(shù)±標準差(x±s)表示,兩組間比較采用t檢驗;以P < 0.05為差異有統(tǒng)計學意義。

2 結果

2.1 miR-21-5p在CHD-PAH患者血清中及缺氧條件下肺動脈平滑細胞中的表達

RT-PCR檢測結果顯示:miR-21-5p在CHD-PAH血清中表達升高,與正常人血清樣本比較,差異有高度統(tǒng)計學意義(P < 0.001);RPASMC和HPASMC分別在常氧條件下培養(yǎng)48 h以及缺氧條件下分別培養(yǎng)12、24、48 h,收集細胞后檢測miR-21-5p的表達,結果顯示缺氧條件下miR-21-5p的表達升高最明顯,與常氧比較在24 h達到高峰值(P < 0.001)。

2.2 miR-21-5p對人肺動脈平滑肌細胞增殖的影響

觀察在缺氧條件下分別轉染miRNA-control、miR-21-5p mimic、anti-cnotrol、anti-miR-21-5p后對HPASMC增殖影響。從圖2(封四)結果可見,與對照組相比,過表達miR-21-5p能促進HPASMC增殖(P < 0.01),相反,當轉染miR-21-5p拮抗物后抑制了HPASMC增殖(P < 0.01)。

2.3 miR-21-5p在人肺動脈平滑肌細胞遷移過程中的作用

實驗表明,在缺氧24 h條件下miR-21-5p具有促進HPASMC遷移作用(P < 0.01);應用miR-21-5p抑制物缺氧24 h后,anti-21-5p抑制了HPASMC的遷移功能(P < 0.01)。

2.4 miR-21-5p靶基因預測及3-UTR熒光素酶報告系統(tǒng)驗證

TargetScan在線軟件預測候選靶基因中BMPR2的3-UTR與miR-21-5p結合位點(圖4A)。雙熒光素酶檢測結果顯示,過表達miR-21-5p使野生型BMPR2報告載體熒光素酶活性下降,與野生型對照組比較,差異有高度統(tǒng)計學意義(P < 0.01),突變的熒光素酶報告基因的活性與對照組比較大致不變(P > 0.05)(圖4B)。

2.5 miR-21-5p抑制內(nèi)源性BMPR2的表達

與對照組比較,轉染miR-21-5p mimic組中BMPR2表達水平明顯上調(diào)(P < 0.001),轉染miR-21-5p inhibitor組BMPR2表達水平明顯降低(P < 0.001)(圖5A、B)。應用Western blot檢測BMPR2蛋白表達水平,結果顯示,與mimic-control相比,過表達miR-21-5p BMPR2蛋白表達下降;抑制miR-21-5p的表達,能使HPASMC中BMPR2蛋白表達水平上調(diào)(圖5C)。

3 討論

既往研究證明miRNA參與肺動脈高壓的發(fā)病機制[10-11]。本研究檢測肺動脈高壓患者血清及缺氧誘導的肺動脈平滑肌細胞中miR-21-5p表達升高,細胞功能實驗在缺氧條件下miR-21-5p具有促進細胞增殖和遷移功能,應用Target scan在線軟件預測miR-21-5p靶基因為BMPR2,實驗證實miR-21-5p通過靶向BMPR2參與肺動脈高壓的細胞增殖和血管重構過程。

肺動脈高壓發(fā)病機制中BMPR2基因突變會引發(fā)肺動脈高壓易感性[12-13]。BMPR2是轉錄生長因子-β家族的重要成員,很早就有實驗證實BMPR2基因雜合子突變是肺動脈高壓家族患者人群的重要遺傳易感因素[14]。在肺動脈高壓患者的家族人群檢測結果顯示:大約有75%的家庭中檢測到BMPR2基因突變[15]。實驗證明,BMPR2和其下游信號途徑在肺血管重構中扮演著重要角色,通過激活BMPR2基因阻止細胞周期從而抑制肺動脈平滑肌細胞的分化[16-17]。

microRNA參與肺動脈高壓的調(diào)控機制已經(jīng)在多個研究中得到證實,miR-145通過靶向BMPR2參與肺動脈高壓[18],抑制miR-20a導致BMPR2下游基因Id-1和Id-2的激活,從而抑制肺動脈平滑肌細胞的增殖[19]。miR-21在肺動脈高壓的動物模型肺組織中高表達,通過激活RhoB信號途徑促進肺動脈高壓的發(fā)生[20]。本研究發(fā)現(xiàn)缺氧條件下,過表達miR-21-5P具有促進肺動脈平滑肌細胞的遷移和增殖功能。說明在缺氧條件下,miR-21-5p對肺動脈的重構過程具有重要的作用。

本研究只探討了miR-21-5p通過BMPR2基因對HPASMC增殖和遷移的影響,Target scan軟件預測miR-21-5p同時靶向多個靶基因,其他靶基因是否同時參與了肺動脈高壓的調(diào)控需要下一步驗證。

[參考文獻]

[1] Leopold JA,Maron BA. Molecular Mechanisms of Pulmonary Vascular Remodeling in Pulmonary Arterial Hypertension [J]. Int J Mol Sci,2016,17(5):761-775.

[2] Archer SL,Weir EK,Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians:new concepts and experimental therapies [J]. Circulation,2010,121 (18):2045-2066.

[3] Humbert M,Morrel NW,Archer SL,et al. Cellular and molecular pathobiology of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2004,43(12):108-124.

[4] Chen CZ,Li L,Lodish,et al. MicroRNAs modulate hematopoietic lineage differentiation [J]. Science,2004,303(56):83–86.

[5] Bartel DP. MicroRNAs:genomics, biogenesis, mechanism, and function [J]. Cell,2004,116(2):281-297.

[6] Dang LT,Lawson ND,F(xiàn)ish JE. MicroRNA control of vascular endothelial growth factor signaling output during vascular development [J]. Arterioscler Thromb Vasc Biol,2013,33(2):193-200.

[7] Joshi SR,McLendon JM,Comer BS,et al. MicroRNAs-control of essential genes: Implications for pulmonary vascular disease [J]. Pulm Circ,2011,1 (3):357-364.

[8] Brock M,Trenkmann M,Gay RE,et al. Interleukin-6 modulates the expression of the bone morphogenic protein receptor type II through a novel STAT3-microRNA cluster 17/92 pathway [J]. Circ Res,2009,104(10):1184-1191.

[9] Jin Y,Chen B,Tipple TE,et al. Arginase II is a target of miR-17-5p and regulates miR-17-5p expression in human pulmonary artery smooth muscle cells [J]. Am J Physiol Lung Cell Mol Physiol,2014,307(2):197-204.

[10] Caruso P,Maclean MR,Khanin R,et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline [J]. Arterioscler Thromb Vasc Biol,2010, 30(4):716-723.

[11] Zeng Y,Liu HT, Gou DM,et al. Hypoxia inducible factor-1 mediates expression of miR-322:potential role in proliferation and migration of pulmonary arterial smooth muscle cells [J].Scientific Repotrs,2015,5(3):12098-120109.

[12] Jones PL,Cowan KN,Rabinovitch M,et al. Tenascin-C, proliferation and subendothelial fibronectin in progressive pulmonary vascular disease [J]. Am J Pathol,1997, 150(4):1349-1360.

[13] Malenfant S,Neyron AS,Paulin R,et al. Signal transduction in the development of pulmonary arterial hypertension [J]. Pulm Circ,2013,3(2):278-293.

[14] Deng Z,Morse JH,Slager SL,et al. Familial primary pulmonary hypertension(gene PPH1)is caused by mutations in the bone morphogenetic protein receptor-II gene [J]. Am J Hum Genet,2000,67(3):737-744.

[15] Soubrier F,Chung WK,Machado R,et al. Genetics and genomics of pulmonary arterial hypertension [J]. J Am Coll Cardiol,2013,62(25):13-21.

[16] Wang J,Song Y,Zhang Y,et al. Cardiomyocyte overexpression of miR-27b induces cardiac hypertrophy and dysfunction in mice [J]. Cell Res,2012,22(3):516-527.

[17] Yang J,Li X,AlLamki RS,et al. Smad-dependent and smad-independent induction of id1 by prostacyclin analogues inhibits proliferation of pulmonary artery smooth muscle cells in vitro and in vivo [J]. Circ Res,2010, 107(2):252-262.

[18] Caruso P,Dempsie Y,Stevens HC,et al. A Role for miR-145 in Pulmonary Arterial Hypertension:Evidence From Mouse Models and Patient Samples[J]. Circ Res,2012,111(3):290-300.

[19] Brock M,Samillan VJ,Trenkmann M,et al. AntagomiR directed against miR-20a restores functional BMPR2 signalling and prevents vascular remodelling in hypoxia-induced pulmonary hypertension [J]. European Heart Journal,2014,35(45):3203-3211.

[20] Parikh VN,Jin RC,Rabello S,et al. MicroRNA-21 Integrates Pathogenic Signaling to Control Pulmonary Hypertension: Results of a Network Bioinformatics Approach [J]. Circulation,2012,125(12):1520-1532.

(收稿日期:2016-07-13 本文編輯:程 銘)

猜你喜歡
肺動脈高壓調(diào)控
心理調(diào)控在中小學管理中的有效應用
甘肅教育(2020年4期)2020-09-11 07:41:20
如何調(diào)控困意
經(jīng)濟穩(wěn)中有進 調(diào)控托而不舉
中國外匯(2019年15期)2019-10-14 01:00:34
肺動脈高壓靶向藥物治療經(jīng)濟學研究進展
先天性心臟病合并心臟聲帶綜合征患兒心臟矯治術后肺動脈壓力及聲帶癥狀的變化
法舒地爾對肺動脈高壓血管重塑中ROCK及ET—1活性的影響
順勢而導 靈活調(diào)控
超聲心動圖評價血液透析患者并發(fā)肺動脈高壓
嬰幼兒室間隔缺損合并肺動脈高壓的外科治療
重度COPD合并肺動脈高壓患者心肺運動試驗參數(shù)研究
镇赉县| 民勤县| 廉江市| 南郑县| SHOW| 九龙县| 高平市| 沂源县| 呼和浩特市| 鲁山县| 临泽县| 徐水县| 永嘉县| 三明市| 鹿邑县| 钟山县| 曲水县| 宁南县| 岐山县| 自贡市| 青川县| 南川市| 清远市| 驻马店市| 义乌市| 隆林| 文昌市| 清流县| 鄂温| 宁陵县| 平陆县| 沂源县| 甘泉县| 英山县| 棋牌| 黄浦区| 阳春市| 察雅县| 错那县| 大竹县| 城固县|